Graduate Algebra, Fall 2014 Lecture 24

Andrei Jorza

2014-10-27

1 Group Theory

1.22 Topological groups (continued)

1.22.2 Pontryagin duals (continued)

Proposition 1. Let G be a topological abelian group and \widehat{G} its Pontryagin dual. For a compact subset $K \subset G$ and an open $U \subset S^1$ (here S^1 is endowed with the subset topology from $S^1 \subset \mathbb{C}$) let $W(K,U) = \{f \in \widehat{G} | f(K) \subset U\}$. Consider the smallest topology on \widehat{G} in which all $f \cdot W(K,U)$ are open sets as $f \in \widehat{G}$, K is compact and U is open vary. Then \widehat{G} is a locally compact topological abelian group.

Proof. Continuity of inversion: last time.

Let's check that multiplication is continuous. Suppose $fg = h \in \eta W(K,U)$, for some $\eta \in \widehat{G}$. We would like to show that there exists an open neighborhood of (f,g) in $\widehat{G} \times \widehat{G}$ contained inside the set $\{(\phi,\gamma) \in \widehat{G} \times \widehat{G} | \phi\gamma \in \eta W(K,U)\}$.

Since S^1 is a topological group, the preimage of U under multiplication is open and, in particular, it contains an open set $V_1 \times V_2$, with $V_1V_2 \subset U$. Then $fW(K, V_1) \times gW(K, V_2)$ via multiplication is $hW(K, V_1)W(K, V_2) \subset hW(K, U) \subset \eta W(K, U)$ as desired.

Theorem 2 (Pontryagin duality). If G is an abelian topological group then $\widehat{\widehat{G}} \cong G$.

This is not easy.

2 Rings

2.1 Basics

2.1.1 Definitions

Definition 3. A ring (with unit) is a set R together with binary operations + and \cdot such that (R, +) is an abelian group and (R, \cdot) is a monoid and multiplication is distributive wrt addition.

Example 4. 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are rings, but \mathbb{N} is not.

- 2. If $n \ge 2$ then $\mathbb{Z}/n\mathbb{Z}$ is a ring wrt addition and multiplication mod n.
- 3. If R is a ring then R[X] is also a ring.
- 4. If X is a set and R is a ring then the set of functions $\{f : X \to R\}$ is a ring. (E.g., if X is a topological space then continuous/smooth/differentiable/integrable functions $f : X \to \mathbb{R}$ forms a ring as well.)
- 5. If R is a ring then R[X] is a ring.

6. If R is a ring then $n \times n$ matrices with entries in R form a noncommutative ring $M_n(R)$.

Definition 5. Let R be a ring.

- 1. *R* is a **division ring** if $(R 0, \cdot)$ is a group.
- 2. *R* is **commutative** if (R, \cdot) is commutative.
- 3. A commutative division ring is a **field**.
- **Example 6.** 1. The real hamiltonians $\mathbb{H} = \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}$, addition component-wise and multiplication given by $i^2 = j^2 = k^2 = -1$ and ij = k. Then if $(a, b, c, d) \neq 0$ we get the inverse

$$(a+bi+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$$

so \mathbb{H} is a division ring.

2. Let G be a group and R a ring. Then $R[G] = \{\sum a_g[g]\}\$ with component-wise addition and multiplication given by $\sum a_g[g] \sum b_h[h] = \sum a_g b_h[gh]$ is a ring with unit [1]. It is commutative if and only if both R and G are.

For example $R[\mathbb{Z}] \cong R[X, X^{-1}]$ the ring of Laurent polynomials via the map $\sum a_n[n] \mapsto \sum a_n X^n$.

- 3. \mathbb{Z} is not a field.
- 4. $M_n(R)$ is not a division ring since the matrix with 1 in the top right corner and 0 elsewhere is a 0 divisor (it has square 0).

2.1.2 Integral Domains

Definition 7. Let R be a ring.

- 1. $x \in R$ is a **zero divisor** if xy = 0 or yx = 0 for some $y \neq 0$.
- 2. *R* is a (integral) domain if it has no zero divisors.

Example 8. 1. \mathbb{Z} is a domain.

- 2. $\mathbb{Z}/p\mathbb{Z}$ is a domain for p prime.
- 3. $\mathbb{Z}/n\mathbb{Z}$ is not a domain if n is not a prime.
- 4. $M_n(R)$ is not a domain.
- 5. If R is a domain then R[X] and R[X] are integral domains. Indeed, if $f(X) = aX^n + O(X^{n+1})$ and $g(X) = bX^m + O(X^{m+1})$ then $f(X)g(X) = abX^{m+n} + O(X^{m+n+1})$ and if this is 0 then ab = 0 which implies that a or b is 0.