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2 Rings

2.1 Basics

2.1.2 Integral Domains (continued)

Proposition 1. If R is a domain and ab = ac then a = 0 or b = c. If R is finite then it is a field.

Proof. ab− ac = 0 implies a(b− c) = 0 so either a = 0 or b = c.

2.1.3 Subrings

Definition 2. A subring of a ring R is a ring S ⊂ R inheriting + and · from R.

Example 3. 1. Z is a subring of Q.

2. R is a subring of Mn(R).

3. Z[
√
5] is a subring of Z[ 1+

√
5

2 ] which is a subring of Q(
√
5).

4. R[X] is a subring of R[[X]].

2.1.4 Homomorphisms

Definition 4. Let R,S be two rings. A homomorphism f : R → S is a map which is a homomorphism
of abelian groups for + and a homomorphism of monoids for ·.

Lemma 5. Let f : R→ S be a homomorphism.

1. Then the kernel ker f = {x ∈ R|f(x) = 0} is 0 iff f is injective.

2. If f is bijective then f−1 is also a homomorphism and f is said to be an isomorphism.

Example 6. 1. Inclusion of a subring into a ring.

2. Z→ Z/nZ with kernel nZ.

3. R[X]→ R given by evaluation at X = a ∈ R is a homomorphism.
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2.2 Ideals

2.2.1 Basic examples

Definition 7. A left ideal of a ring R is a subset I ⊂ R which is an abelian group wrt + and RI = I. It
is a right ideal if IR = I. It is a two-sided ideal if RI = IR = I.

Example 8. 1. 〈n〉 = nZ ⊂ Z.

2. 〈P (X)〉 = P (X)R[X] ⊂ R[X].

3. 〈r〉 = rR ⊂ R.

4. 〈p,X〉 = pZ[X] +XZ[X] ⊂ Z[X] is an ideal.

5. If r1, . . . , rk ∈ R then 〈r1, . . . , rk〉r =
∑

riR is a right ideal. The set 〈ri〉l =
∑

Rri is a left-ideal.

Definition 9. If I is a two-sided ideal of R then the abelian group quotient R/I is a ring. Indeed, it
is an abelian group and we need to check that it is a monoid wrt multiplication. Let r, s ∈ R. Then
(r + I)(s+ I) = rs+ rI + Is+ I2 = rs+ I.

2.2.2 Operations on ideals

Lemma 10. Let R be a ring and I, J ⊂ R be two ideals. Then

1. I ∩ J is an ideal of R.

2. I + J = {i+ j|i ∈ I, j ∈ J} is an ideal of R.

3. IJ = {
∑

ikjk|ik ∈ I, jk ∈ J} is an ideal of R.

Example 11. 1. mZ+ nZ = (m,n)Z.

2. mZ ∩ nZ = [m,n]Z

3. mZnZ = mnZ.

4. If I = 〈i1, . . . , im〉 and J = 〈j1, . . . , jn〉 then IJ = 〈iujv|1 ≤ u ≤ m, 1 ≤ v ≤ n〉.

5. In Z[X] have
I = (2, X)(3, X) = (6, 2X, 3X,X2)

Since 3X, 2X ∈ I, it follows that X ∈ I and if X ∈ I then automatically 2X, 3X,X2 ∈ I so

I = (6, X)

2.2.3 Isomorphism theorems

Theorem 12. Let f : R→ S be a homomorphism of rings.

1. Then ker f is an ideal of R and Im f is a subring of S.

2. If I is an ideal of R then f : R→ R/I is a surjective homomorphism with kernel I.

3. R/ ker f ∼= Im f .

Proof. (1): If f(x) = 0 and r ∈ R then f(rx) = f(r)f(x) = 0 so rx ∈ ker f which implies that ker f is an
ideal. Also f(x) + f(y)f(z) = f(x+ yz) so Im f is a subring of S.

(2): The map x 7→ x+ I is the homomorphism f and clearly has kernel I and is surjective.
(3): This is an isomorphism of groups the map begin x + ker f 7→ f(x). Note that this map is also

multiplicative and so the bijection of groups respects + and · and so is a ring homomorphism.
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Theorem 13. Let R be a ring, A ⊂ R a subring and I ⊂ R an ideal.

1. A+ I = {a+ i|a ∈ A, i ∈ I} is a subring of R.

2. A ∩ I is an ideal of A.

3. (A+ I)/I ∼= A/(A ∩ I).

Proof. (1): A+ I contains 1 = 1 + 0 and is closed under + and · and so is a subring.
(2): A(A ∩ I) ⊂ A2 ∩AI = A ∩ I so is an ideal.
(3): This is an isomorphism of additive groups (from group theory) and the map is given by a+ i+ I 7→

a+ I. This bijection respects multiplication as well and so is a ring homomorphism.
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