Graduate Algebra, Fall 2014
 Lecture 26

Andrei Jorza

2014-10-31

2 Rings

2.2 Ideals (continued)

2.2.3 Isomorphism theorems (continued)

Theorem 1. Let R be a ring and $I \subset J \subset R$ ideals. Then

1. The abelian group quotient J / I is an ideal of R / I.
2. $(R / I) /(J / I) \cong R / I$.

Proof. (1): $(R / I)(J / I)=R J / I=J / I$ so J / I is an ideal of R / I.
(2): Again, this is an isomorphism of additive groups. The map is $(r+I)+J / I \mapsto r+I$. This respects multiplication so the bijection is in fact a ring isomorphism.

2.2.4 The Chinese Remainder Theorem

Definition 2. We say that I and J are coprime if $I+J=R$.
Proposition 3. Let R be a ring and I_{1}, \ldots, I_{n} be pairwise coprime ideals. Then

$$
R / I_{1} \cdots I_{n} \cong R / I_{1} \oplus \cdots \oplus R / I_{n}
$$

via the map sending $r+I_{1} \cdots I_{n}$ to $\left(r+I_{1}, \ldots, r+I_{n}\right)$.
Proof. By induction. It suffice to show that if $I+J=R$ then $R / I J \cong R / I \oplus R / J$ and if I, J, K are pairwise coprime then I and $J K$ are coprime.

First, if $I+J=R$ and $I+K=R$ then $a+b=1$ and $c+d=1$ for $a, c \in I, b \in J$ and $d \in K$. Then $b d=(1-a)(1-c)=1-a-c+a c \in 1+I$ and so $b d \in J K \cap(1+I)$ showing that $I+J K=(1)=R$.

Next, suppose $I+J=R$ so $a+b=1$ with $a \in I$ and $b \in J$. The map $R / I J \rightarrow R / I \oplus R / J$ sending $r+I J \rightarrow(r+I, r+J)$ is a homomorphism. Suppose $r+I=I, r+J=J$ so $r \in I \cap J$. Then $r=r(a+b)=r a+r b$. But $r a \in(I \cap J) I \subset I J$ and $r b \in(I \cap J) J \subset I J$ and so $r \in I J$. Thus the map is injective. For surjectivity, note that if $x+I \in R / I$ and $y+J \in R / J$ then $r=x b+y a$ has the property that $r+I=x b+I=x(1-a)+I=x+I$ (as $a \in I$) and similarly $r+J=y+J$. Thus $r+I J$ maps to $(x+I, y+J)$ yielding surjectivity.

2.3 Special types of ideals

2.3.1 Prime and maximal ideals

Definition 4. An ideal $\mathfrak{p} \subset R$ is prime if R / \mathfrak{p} is an integral domain. An ideal $\mathfrak{m} \subset R$ is maximal if R / \mathfrak{m} is a field.

Lemma 5. An ideal \mathfrak{p} is prime if and only if for every $x, y \in R$ such that $x y \in \mathfrak{p}$ it follows that $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.

Example 6. 1. $p \mathbb{Z} \subset \mathbb{Z}$ is prime and maximal if p is a prime.
2. If $P(X)$ is an irreducible polynomial in $F[X]$ for a field F then $(P(X))$ is a prime and maximal ideal.
3. The ideal $(p) \subset \mathbb{Z}[X]$ is prime but not maximal. The ideal $(p, X) \subset \mathbb{Z}[X]$ is maximal. Indeed, by the isomorphism theorem, $\mathbb{Z}[X] /(p, X) \cong(\mathbb{Z}[X] /(X)) /((p, X) /(X)) \cong \mathbb{Z} / p \mathbb{Z} \cong \mathbb{F}_{p}$ which is a field.
4. From the homework: if $\mathfrak{p} \subset R$ is a prime ideal then $\mathfrak{p}[X] \subset R[X]$ is a prime ideal.
5. If $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \subset F\left[x_{1}, \ldots, x_{n}\right]$ then \mathfrak{m}^{k} consists of polynomials with each monomial of degree at least k.

Lemma 7 (Zorn's lemma). Suppose S is a partially ordered set. An ascending chain T in S is a totally ordered subset of S. If every such T has a supremum $\max (T) \in S$ then S contains a supremum $\max (S)$ in S.

Proof. This is equivalent to the axiom of choice.
Proposition 8. Let R be a commutative ring and $I \neq R$ an ideal. Then $I \subset \mathfrak{m}$ for some maximal ideal $\mathfrak{m} \subset R$.

Proof. Consider S the set of proper ideals of R containing I. Since $I \in S$, the set S is nonempty. Order S partially with respect to inclusion. Suppose $T \subset S$ is an ascending chain of ideals. Then $I_{T}=\cup_{I \in T} I$ is also an ideal. Indeed, if $x \in I_{T}$ and $r \in R$ then $x \in I$ for some $I \in T$ and so $x r \in I \subset I_{T}$. Moreover, $I_{T} \neq R$ because otherwise $1 \in I \in T$ for some I and this would imply $I=R$. By Zorn's lemma this implies that S has a maximal element \mathfrak{m} which is clearly a proper ideal of R containing I.

Let's show that \mathfrak{m} is a maximal ideal. Suppose $r \in R / \mathfrak{m}$ is nonzero, we'd like to show that it has an inverse. Since $r \notin \mathfrak{m}$, the ideal $\mathfrak{n}=\mathfrak{m}+(r)$ contains \mathfrak{m} properly. By maximality of \mathfrak{m}, it follows that \mathfrak{n} (which is an ideal containing I) cannot be proper so $\mathfrak{n}=R$ so $1 \in R=\mathfrak{m}+(r)$ can be written as $1=u+r s$ for $u \in \mathfrak{m}$ and $s \in S$. But then $r s=1$ in R / \mathfrak{m} as desired.

2.3.2 Radicals

Definition 9. A nilpotent element of a ring R is $x \in R$ such that $x^{n} \in R$. The set of nilpotent elements of a ring R is called the nilradical $\operatorname{Nil}(R)$.

Definition 10. Let $I \subset R$ be an ideal. The radical of I is the set $\sqrt{I}=\left\{x \in R \mid x^{n} \in I\right.$ for some $\left.n \geq 1\right\}$.
Example 11. 1. $\operatorname{Nil}(R)=\sqrt{(0)}$.
2. Let $R=\mathbb{Z}[x, y]$ and $I=\left(x, y^{3}\right)$. What is \sqrt{I} ? We seek polynomials $P(x, y) \in \mathbb{Z}[x, y]$ such that $P(x, y)^{n} \in\left(x, y^{3}\right)$ for some $n \geq 1$. Write $P(x, y)=a+y F(y)+x G(x, y)$. We need $P(x, y)^{n}=$ $(a+y F(y)+x G(x, y))^{n}$ to be in $\left(x, y^{3}\right)=x \mathbb{Z}[x, y]+y^{3} \mathbb{Z}[x, y]$. But $P(x, y)^{n}=(a+y F(y))^{n}+$ x • polynomial is in $\left(x, y^{3}\right)$ iff $(a+y F(y))^{n} \in\left(x, y^{3}\right)$ iff $(a+y F(y))^{n} \in\left(y^{3}\right)$. This is equivalent to $a^{n}+n a^{n-1} y F(y)+\binom{n}{2} a^{n-2} y^{2} F(y)^{2} \in\left(y^{3}\right)$. Thus we need $a^{n}=0$ so $a=0$ and this is sufficient. Therefore $P(x, y)=y F(y)+x G(x, y) \in(x, y)$ so $\sqrt{\left(x, y^{3}\right)}=(x, y)$.

