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2 Rings

2.2 Ideals (continued)

2.2.3 Isomorphism theorems (continued)

Theorem 1. Let R be a ring and I ⊂ J ⊂ R ideals. Then

1. The abelian group quotient J/I is an ideal of R/I.

2. (R/I)/(J/I) ∼= R/I.

Proof. (1): (R/I)(J/I) = RJ/I = J/I so J/I is an ideal of R/I.
(2): Again, this is an isomorphism of additive groups. The map is (r + I) + J/I 7→ r + I. This respects

multiplication so the bijection is in fact a ring isomorphism.

2.2.4 The Chinese Remainder Theorem

Definition 2. We say that I and J are coprime if I + J = R.

Proposition 3. Let R be a ring and I1, . . . , In be pairwise coprime ideals. Then

R/I1 · · · In ∼= R/I1 ⊕ · · · ⊕R/In

via the map sending r + I1 · · · In to (r + I1, . . . , r + In).

Proof. By induction. It suffice to show that if I +J = R then R/IJ ∼= R/I⊕R/J and if I, J,K are pairwise
coprime then I and JK are coprime.

First, if I + J = R and I + K = R then a + b = 1 and c + d = 1 for a, c ∈ I, b ∈ J and d ∈ K. Then
bd = (1− a)(1− c) = 1− a− c + ac ∈ 1 + I and so bd ∈ JK ∩ (1 + I) showing that I + JK = (1) = R.

Next, suppose I + J = R so a + b = 1 with a ∈ I and b ∈ J . The map R/IJ → R/I ⊕ R/J
sending r + IJ → (r + I, r + J) is a homomorphism. Suppose r + I = I, r + J = J so r ∈ I ∩ J . Then
r = r(a + b) = ra + rb. But ra ∈ (I ∩ J)I ⊂ IJ and rb ∈ (I ∩ J)J ⊂ IJ and so r ∈ IJ . Thus the map
is injective. For surjectivity, note that if x + I ∈ R/I and y + J ∈ R/J then r = xb + ya has the property
that r + I = xb + I = x(1 − a) + I = x + I (as a ∈ I) and similarly r + J = y + J . Thus r + IJ maps to
(x + I, y + J) yielding surjectivity.

2.3 Special types of ideals

2.3.1 Prime and maximal ideals

Definition 4. An ideal p ⊂ R is prime if R/p is an integral domain. An ideal m ⊂ R is maximal if R/m is
a field.
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Lemma 5. An ideal p is prime if and only if for every x, y ∈ R such that xy ∈ p it follows that x ∈ p or
y ∈ p.

Example 6. 1. pZ ⊂ Z is prime and maximal if p is a prime.

2. If P (X) is an irreducible polynomial in F [X] for a field F then (P (X)) is a prime and maximal ideal.

3. The ideal (p) ⊂ Z[X] is prime but not maximal. The ideal (p,X) ⊂ Z[X] is maximal. Indeed, by the
isomorphism theorem, Z[X]/(p,X) ∼= (Z[X]/(X))/((p,X)/(X)) ∼= Z/pZ ∼= Fp which is a field.

4. From the homework: if p ⊂ R is a prime ideal then p[X] ⊂ R[X] is a prime ideal.

5. If m = (x1, . . . , xn) ⊂ F [x1, . . . , xn] then mk consists of polynomials with each monomial of degree at
least k.

Lemma 7 (Zorn’s lemma). Suppose S is a partially ordered set. An ascending chain T in S is a totally
ordered subset of S. If every such T has a supremum max(T ) ∈ S then S contains a supremum max(S) in
S.

Proof. This is equivalent to the axiom of choice.

Proposition 8. Let R be a commutative ring and I 6= R an ideal. Then I ⊂ m for some maximal ideal
m ⊂ R.

Proof. Consider S the set of proper ideals of R containing I. Since I ∈ S, the set S is nonempty. Order S
partially with respect to inclusion. Suppose T ⊂ S is an ascending chain of ideals. Then IT = ∪I∈T I is also
an ideal. Indeed, if x ∈ IT and r ∈ R then x ∈ I for some I ∈ T and so xr ∈ I ⊂ IT . Moreover, IT 6= R
because otherwise 1 ∈ I ∈ T for some I and this would imply I = R. By Zorn’s lemma this implies that S
has a maximal element m which is clearly a proper ideal of R containing I.

Let’s show that m is a maximal ideal. Suppose r ∈ R/m is nonzero, we’d like to show that it has an
inverse. Since r /∈ m, the ideal n = m+(r) contains m properly. By maximality of m, it follows that n (which
is an ideal containing I) cannot be proper so n = R so 1 ∈ R = m + (r) can be written as 1 = u + rs for
u ∈ m and s ∈ S. But then rs = 1 in R/m as desired.

2.3.2 Radicals

Definition 9. A nilpotent element of a ring R is x ∈ R such that xn ∈ R. The set of nilpotent elements
of a ring R is called the nilradical Nil(R).

Definition 10. Let I ⊂ R be an ideal. The radical of I is the set
√
I = {x ∈ R|xn ∈ I for some n ≥ 1}.

Example 11. 1. Nil(R) =
√

(0).

2. Let R = Z[x, y] and I = (x, y3). What is
√
I? We seek polynomials P (x, y) ∈ Z[x, y] such that

P (x, y)n ∈ (x, y3) for some n ≥ 1. Write P (x, y) = a + yF (y) + xG(x, y). We need P (x, y)n =
(a + yF (y) + xG(x, y))n to be in (x, y3) = xZ[x, y] + y3Z[x, y]. But P (x, y)n = (a + yF (y))n +
x · polynomial is in (x, y3) iff (a + yF (y))n ∈ (x, y3) iff (a + yF (y))n ∈ (y3). This is equivalent to
an + nan−1yF (y) +

(
n
2

)
an−2y2F (y)2 ∈ (y3). Thus we need an = 0 so a = 0 and this is sufficient.

Therefore P (x, y) = yF (y) + xG(x, y) ∈ (x, y) so
√

(x, y3) = (x, y).
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