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2 Rings

2.3 Special types of ideals (continued)
2.3.2 Radicals (continued)
Proposition 1. If I C R is an ideal then \/T is an ideal of R. In particular Nil(R) is an ideal of R.

Proof. A subset J C R is an ideal iff for 2,y € J and r € R have z+yr € J. Suppose z,y € VI so z",y"™ € I
for n,m > 1 and let r € R. Then
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Proposition 2. Let R be a commutative ring and I an ideal. Then
1. Nil(R) = Np is the intersection of all prime ideals of R.
2. VI is the intersection of all prime ideals of R containing I.

Proof. (1): If x € Nil(R) then 2™ = 0 € p for any prime ideal p. Thus x € p and we deduce that Nil(R) C Np.
Reciprocally, suppose x € Np but x is not nilpotent.

Let S be the set of ideals I C R not containing any positive power of x or, equivalently, ideals I such
that ™ ¢ I for n > 0. Since 2™ # 0 for all n, at least S contains the trivial ideal (0) so S is not empty.
Again, if T is a totally ordered subset of S, then I = Urer! is an ideal I+ C R (see last lecture). If 2™ € It
then ™ € I € T for some I, which is not the case as I € S, and so I € S, not containing any power of x.
Again by Zorn’s lemma we deduce that S has a maximal element p C R.

It’s enough to show that p is a prime ideal. Suppose a,b ¢ p but ab € p. Then p + (a) and p + (b)
are bigger than p and so they contain powers of z. Let 2™ € p + (a) and 2™ € p + (b) for m,n > 0.
Then x™*™ € p + (ab) = p giving a contradiction as p € S. This implies that x ¢ p for the prime ideal p,
contradicting the choice of z.

(2): Consider R — R/I. The image of /T is, by definition, Nil(R/I) and so is the intersection of the
prime ideals of R/I. From the homework, this is the intersection of the prime ideals of R containing I as
desired. O

Lemma 3. A unit in a ring R is an element © € R which has an inverse y € R, i.e., such that xy = 1.
1. The set R* of units is a group.
2. Ifue R* and I is an ideal such that w € I then I = (1) = R.



3. Ifu e R* and I is an ideal then (u)l = I.

Proof. If xy = 1 and uv = 1 then zu(vy) = 1 so zu € R* and if x € R* with inverse y then y € R* with
inverse x so R* is a group.

Ifue R*NI thenforallr € R, ru=' € Rsor =rulu € RI =1 so R=1. This proves the last two
parts. O

Example 4. 1. Z2* = {£1}.
2. If F'is a field then F* = F — (.
3. C[X]* =C -0 as a polynomial has an inverse which is also a polynomial only if it has degree 0.
4. From the homework, R[X]* consists of power series ag + a1 X + --- such that ap € R*.

Example 5. Let R = C[X]/(X?) = {a+ bX]|a,b € C}. If a # 0 then (a + bX)(a™* —ba"2X) =1in R so
a+bX € R*.

If I is an ideal of R containing some a+bX then the lemma says that I = R. If I only contains expressions
of the form bX then either I = (0) or I = (bX) = (X) if b # 0. So the ideals of R are either 0, (X) or R.
Thus the unique prime ideal is (X).

What about Nil(R)? The theorem says it should be (X). Note that (a + bX)™ = a™ + na™ *bX which
isOiff a=0iff a +bX € (X) so Nil(R) = (X) from the definition.

Example 6. What is \/(z,93) in Clz,y]? From last time this is (z,y). If p C C[z,y] is a prime ideal
containing x,y? then it contains x,y, from primality, so p contains (x,y) which is a maximal ideal.
What about /(y3)? Certainly (y) contains (y*) and is a prime ideal. Thus 1/(y®) C (y). But also

(yP(z,))° € I'so (y) C /(y*) so we have /(%) = (y)-

Remark 1. Algebraic geometry starts with Hilbert’s Nullstellensatz which states that if I = (P (X;),. .., Pn(X;))
is an ideal of C[X1, ..., X,] then v/T will be generated by irreducible polynomials Q;(X1,...,X,) such that
the set of solutions in C™ of the systems of equations P;(X;) = 0 and Q;(X;) = 0 are the same.

For example, /(x,y3) = (z,y) because we seek irreducible polynomials whose set of common roots are
the solutions to = 0 and 3% = 0, i.e., z = y = 0, and the polynomials x and y work.



