
Graduate Algebra, Fall 2014

Lecture 27

Andrei Jorza

2014-11-03

2 Rings

2.3 Special types of ideals (continued)

2.3.2 Radicals (continued)

Proposition 1. If I ⊂ R is an ideal then
√
I is an ideal of R. In particular Nil(R) is an ideal of R.

Proof. A subset J ⊂ R is an ideal iff for x, y ∈ J and r ∈ R have x+yr ∈ J . Suppose x, y ∈
√
I so xn, ym ∈ I

for n,m ≥ 1 and let r ∈ R. Then

(x + yr)n+m = xn
m∑

k=0

(
m + n

k

)
xm−krkyk + ym

n+m∑
k=m+1

(
m + n

k

)
xn+m−krkyk−m ∈ I

Proposition 2. Let R be a commutative ring and I an ideal. Then

1. Nil(R) = ∩p is the intersection of all prime ideals of R.

2.
√
I is the intersection of all prime ideals of R containing I.

Proof. (1): If x ∈ Nil(R) then xn = 0 ∈ p for any prime ideal p. Thus x ∈ p and we deduce that Nil(R) ⊂ ∩p.
Reciprocally, suppose x ∈ ∩p but x is not nilpotent.

Let S be the set of ideals I ( R not containing any positive power of x or, equivalently, ideals I such
that xn /∈ I for n ≥ 0. Since xn 6= 0 for all n, at least S contains the trivial ideal (0) so S is not empty.
Again, if T is a totally ordered subset of S, then IT = ∪I∈T I is an ideal IT ( R (see last lecture). If xn ∈ IT
then xn ∈ I ∈ T for some I, which is not the case as I ∈ S, and so IT ∈ S, not containing any power of x.
Again by Zorn’s lemma we deduce that S has a maximal element p ( R.

It’s enough to show that p is a prime ideal. Suppose a, b /∈ p but ab ∈ p. Then p + (a) and p + (b)
are bigger than p and so they contain powers of x. Let xm ∈ p + (a) and xn ∈ p + (b) for m,n ≥ 0.
Then xm+n ∈ p + (ab) = p giving a contradiction as p ∈ S. This implies that x /∈ p for the prime ideal p,
contradicting the choice of x.

(2): Consider R → R/I. The image of
√
I is, by definition, Nil(R/I) and so is the intersection of the

prime ideals of R/I. From the homework, this is the intersection of the prime ideals of R containing I as
desired.

Lemma 3. A unit in a ring R is an element x ∈ R which has an inverse y ∈ R, i.e., such that xy = 1.

1. The set R× of units is a group.

2. If u ∈ R× and I is an ideal such that u ∈ I then I = (1) = R.

1



3. If u ∈ R× and I is an ideal then (u)I = I.

Proof. If xy = 1 and uv = 1 then xu(vy) = 1 so xu ∈ R× and if x ∈ R× with inverse y then y ∈ R× with
inverse x so R× is a group.

If u ∈ R× ∩ I then for all r ∈ R, ru−1 ∈ R so r = ru−1u ∈ RI = I so R = I. This proves the last two
parts.

Example 4. 1. Z× = {±1}.

2. If F is a field then F× = F − 0.

3. C[X]× = C− 0 as a polynomial has an inverse which is also a polynomial only if it has degree 0.

4. From the homework, R[[X]]× consists of power series a0 + a1X + · · · such that a0 ∈ R×.

Example 5. Let R = C[X]/(X2) = {a + bX|a, b ∈ C}. If a 6= 0 then (a + bX)(a−1 − ba−2X) = 1 in R so
a + bX ∈ R×.

If I is an ideal of R containing some a+bX then the lemma says that I = R. If I only contains expressions
of the form bX then either I = (0) or I = (bX) = (X) if b 6= 0. So the ideals of R are either 0, (X) or R.
Thus the unique prime ideal is (X).

What about Nil(R)? The theorem says it should be (X). Note that (a + bX)n = an + nan−1bX which
is 0 iff a = 0 iff a + bX ∈ (X) so Nil(R) = (X) from the definition.

Example 6. What is
√

(x, y3) in C[x, y]? From last time this is (x, y). If p ⊂ C[x, y] is a prime ideal
containing x, y3 then it contains x, y, from primality, so p contains (x, y) which is a maximal ideal.

What about
√

(y3)? Certainly (y) contains (y3) and is a prime ideal. Thus
√

(y3) ⊂ (y). But also

(yP (x, y))3 ∈ I so (y) ⊂
√

(y3) so we have
√

(y3) = (y).

Remark 1. Algebraic geometry starts with Hilbert’s Nullstellensatz which states that if I = (P1(Xj), . . . , Pm(Xj))

is an ideal of C[X1, . . . , Xn] then
√
I will be generated by irreducible polynomials Qj(X1, . . . , Xn) such that

the set of solutions in Cn of the systems of equations Pi(Xj) = 0 and Qi(Xj) = 0 are the same.

For example,
√

(x, y3) = (x, y) because we seek irreducible polynomials whose set of common roots are
the solutions to x = 0 and y3 = 0, i.e., x = y = 0, and the polynomials x and y work.
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