Graduate Algebra, Fall 2014 Lecture 27

Andrei Jorza

2014-11-03

2 Rings

2.3 Special types of ideals (continued)

2.3.2 Radicals (continued)

Proposition 1. If $I \subset R$ is an ideal then \sqrt{I} is an ideal of R. In particular Nil(R) is an ideal of R.

Proof. A subset $J \subset R$ is an ideal iff for $x, y \in J$ and $r \in R$ have $x + yr \in J$. Suppose $x, y \in \sqrt{I}$ so $x^n, y^m \in I$ for $n, m \ge 1$ and let $r \in R$. Then

$$(x+yr)^{n+m} = x^n \sum_{k=0}^m \binom{m+n}{k} x^{m-k} r^k y^k + y^m \sum_{k=m+1}^{n+m} \binom{m+n}{k} x^{n+m-k} r^k y^{k-m} \in I$$

Proposition 2. Let R be a commutative ring and I an ideal. Then

1. Nil $(R) = \cap \mathfrak{p}$ is the intersection of all prime ideals of R.

2. \sqrt{I} is the intersection of all prime ideals of R containing I.

Proof. (1): If $x \in \text{Nil}(R)$ then $x^n = 0 \in \mathfrak{p}$ for any prime ideal \mathfrak{p} . Thus $x \in \mathfrak{p}$ and we deduce that $\text{Nil}(R) \subset \cap \mathfrak{p}$. Reciprocally, suppose $x \in \cap \mathfrak{p}$ but x is not nilpotent.

Let S be the set of ideals $I \subsetneq R$ not containing any positive power of x or, equivalently, ideals I such that $x^n \notin I$ for $n \ge 0$. Since $x^n \ne 0$ for all n, at least S contains the trivial ideal (0) so S is not empty. Again, if T is a totally ordered subset of S, then $I_T = \bigcup_{I \in T} I$ is an ideal $I_T \subsetneq R$ (see last lecture). If $x^n \in I_T$ then $x^n \in I \in T$ for some I, which is not the case as $I \in S$, and so $I_T \in S$, not containing any power of x. Again by Zorn's lemma we deduce that S has a maximal element $\mathfrak{p} \subsetneq R$.

It's enough to show that \mathfrak{p} is a prime ideal. Suppose $a, b \notin \mathfrak{p}$ but $ab \in \mathfrak{p}$. Then $\mathfrak{p} + (a)$ and $\mathfrak{p} + (b)$ are bigger than \mathfrak{p} and so they contain powers of x. Let $x^m \in \mathfrak{p} + (a)$ and $x^n \in \mathfrak{p} + (b)$ for $m, n \geq 0$. Then $x^{m+n} \in \mathfrak{p} + (ab) = \mathfrak{p}$ giving a contradiction as $\mathfrak{p} \in S$. This implies that $x \notin \mathfrak{p}$ for the prime ideal \mathfrak{p} , contradicting the choice of x.

(2): Consider $R \to R/I$. The image of \sqrt{I} is, by definition, $\operatorname{Nil}(R/I)$ and so is the intersection of the prime ideals of R/I. From the homework, this is the intersection of the prime ideals of R containing I as desired.

Lemma 3. A unit in a ring R is an element $x \in R$ which has an inverse $y \in R$, i.e., such that xy = 1.

- 1. The set R^{\times} of units is a group.
- 2. If $u \in \mathbb{R}^{\times}$ and I is an ideal such that $u \in I$ then $I = (1) = \mathbb{R}$.

3. If $u \in \mathbb{R}^{\times}$ and I is an ideal then (u)I = I.

Proof. If xy = 1 and uv = 1 then xu(vy) = 1 so $xu \in R^{\times}$ and if $x \in R^{\times}$ with inverse y then $y \in R^{\times}$ with inverse x so R^{\times} is a group.

If $u \in R^{\times} \cap I$ then for all $r \in R$, $ru^{-1} \in R$ so $r = ru^{-1}u \in RI = I$ so R = I. This proves the last two parts.

Example 4. 1. $\mathbb{Z}^{\times} = \{\pm 1\}.$

- 2. If F is a field then $F^{\times} = F 0$.
- 3. $\mathbb{C}[X]^{\times} = \mathbb{C} 0$ as a polynomial has an inverse which is also a polynomial only if it has degree 0.
- 4. From the homework, $R[X]^{\times}$ consists of power series $a_0 + a_1 X + \cdots$ such that $a_0 \in R^{\times}$.

Example 5. Let $R = \mathbb{C}[X]/(X^2) = \{a + bX | a, b \in \mathbb{C}\}$. If $a \neq 0$ then $(a + bX)(a^{-1} - ba^{-2}X) = 1$ in R so $a + bX \in R^{\times}$.

If I is an ideal of R containing some a+bX then the lemma says that I = R. If I only contains expressions of the form bX then either I = (0) or I = (bX) = (X) if $b \neq 0$. So the ideals of R are either 0, (X) or R. Thus the unique prime ideal is (X).

What about Nil(R)? The theorem says it should be (X). Note that $(a + bX)^n = a^n + na^{n-1}bX$ which is 0 iff a = 0 iff $a + bX \in (X)$ so Nil(R) = (X) from the definition.

Example 6. What is $\sqrt{(x,y^3)}$ in $\mathbb{C}[x,y]$? From last time this is (x,y). If $\mathfrak{p} \subset \mathbb{C}[x,y]$ is a prime ideal containing x, y^3 then it contains x, y, from primality, so \mathfrak{p} contains (x, y) which is a maximal ideal.

What about $\sqrt{(y^3)}$? Certainly (y) contains (y^3) and is a prime ideal. Thus $\sqrt{(y^3)} \subset (y)$. But also $(yP(x,y))^3 \in I$ so $(y) \subset \sqrt{(y^3)}$ so we have $\sqrt{(y^3)} = (y)$.

Remark 1. Algebraic geometry starts with Hilbert's Nullstellensatz which states that if $I = (P_1(X_j), \ldots, P_m(X_j))$ is an ideal of $\mathbb{C}[X_1, \ldots, X_n]$ then \sqrt{I} will be generated by irreducible polynomials $Q_j(X_1, \ldots, X_n)$ such that the set of solutions in \mathbb{C}^n of the systems of equations $P_i(X_j) = 0$ and $Q_i(X_j) = 0$ are the same.

For example, $\sqrt{(x, y^3)} = (x, y)$ because we seek irreducible polynomials whose set of common roots are the solutions to x = 0 and $y^3 = 0$, i.e., x = y = 0, and the polynomials x and y work.