# Graduate Algebra, Fall 2014 <br> Lecture 27 

Andrei Jorza

2014-11-03

## 2 Rings

### 2.3 Special types of ideals (continued)

### 2.3.2 Radicals (continued)

Proposition 1. If $I \subset R$ is an ideal then $\sqrt{I}$ is an ideal of $R$. In particular $\operatorname{Nil}(R)$ is an ideal of $R$.
Proof. A subset $J \subset R$ is an ideal iff for $x, y \in J$ and $r \in R$ have $x+y r \in J$. Suppose $x, y \in \sqrt{I}$ so $x^{n}, y^{m} \in I$ for $n, m \geq 1$ and let $r \in R$. Then

$$
(x+y r)^{n+m}=x^{n} \sum_{k=0}^{m}\binom{m+n}{k} x^{m-k} r^{k} y^{k}+y^{m} \sum_{k=m+1}^{n+m}\binom{m+n}{k} x^{n+m-k} r^{k} y^{k-m} \in I
$$

Proposition 2. Let $R$ be a commutative ring and $I$ an ideal. Then

1. $\operatorname{Nil}(R)=\cap \mathfrak{p}$ is the intersection of all prime ideals of $R$.
2. $\sqrt{I}$ is the intersection of all prime ideals of $R$ containing $I$.

Proof. (1): If $x \in \operatorname{Nil}(R)$ then $x^{n}=0 \in \mathfrak{p}$ for any prime ideal $\mathfrak{p}$. Thus $x \in \mathfrak{p}$ and we deduce that $\operatorname{Nil}(R) \subset \cap \mathfrak{p}$. Reciprocally, suppose $x \in \cap \mathfrak{p}$ but $x$ is not nilpotent.

Let $S$ be the set of ideals $I \subsetneq R$ not containing any positive power of $x$ or, equivalently, ideals $I$ such that $x^{n} \notin I$ for $n \geq 0$. Since $x^{n} \neq 0$ for all $n$, at least $S$ contains the trivial ideal ( 0 ) so $S$ is not empty. Again, if $T$ is a totally ordered subset of $S$, then $I_{T}=\cup_{I \in T} I$ is an ideal $I_{T} \subsetneq R$ (see last lecture). If $x^{n} \in I_{T}$ then $x^{n} \in I \in T$ for some $I$, which is not the case as $I \in S$, and so $I_{T} \in S$, not containing any power of $x$. Again by Zorn's lemma we deduce that $S$ has a maximal element $\mathfrak{p} \subsetneq R$.

It's enough to show that $\mathfrak{p}$ is a prime ideal. Suppose $a, b \notin \mathfrak{p}$ but $a b \in \mathfrak{p}$. Then $\mathfrak{p}+(a)$ and $\mathfrak{p}+(b)$ are bigger than $\mathfrak{p}$ and so they contain powers of $x$. Let $x^{m} \in \mathfrak{p}+(a)$ and $x^{n} \in \mathfrak{p}+(b)$ for $m, n \geq 0$. Then $x^{m+n} \in \mathfrak{p}+(a b)=\mathfrak{p}$ giving a contradiction as $\mathfrak{p} \in S$. This implies that $x \notin \mathfrak{p}$ for the prime ideal $\mathfrak{p}$, contradicting the choice of $x$.
(2): Consider $R \rightarrow R / I$. The image of $\sqrt{I}$ is, by definition, $\operatorname{Nil}(R / I)$ and so is the intersection of the prime ideals of $R / I$. From the homework, this is the intersection of the prime ideals of $R$ containing $I$ as desired.

Lemma 3. $A$ unit in a ring $R$ is an element $x \in R$ which has an inverse $y \in R$, i.e., such that $x y=1$.

1. The set $R^{\times}$of units is a group.
2. If $u \in R^{\times}$and $I$ is an ideal such that $u \in I$ then $I=(1)=R$.
3. If $u \in R^{\times}$and $I$ is an ideal then $(u) I=I$.

Proof. If $x y=1$ and $u v=1$ then $x u(v y)=1$ so $x u \in R^{\times}$and if $x \in R^{\times}$with inverse $y$ then $y \in R^{\times}$with inverse $x$ so $R^{\times}$is a group.

If $u \in R^{\times} \cap I$ then for all $r \in R, r u^{-1} \in R$ so $r=r u^{-1} u \in R I=I$ so $R=I$. This proves the last two parts.

Example 4. 1. $\mathbb{Z}^{\times}=\{ \pm 1\}$.
2. If $F$ is a field then $F^{\times}=F-0$.
3. $\mathbb{C}[X]^{\times}=\mathbb{C}-0$ as a polynomial has an inverse which is also a polynomial only if it has degree 0 .
4. From the homework, $R \llbracket X \rrbracket^{\times}$consists of power series $a_{0}+a_{1} X+\cdots$ such that $a_{0} \in R^{\times}$.

Example 5. Let $R=\mathbb{C}[X] /\left(X^{2}\right)=\{a+b X \mid a, b \in \mathbb{C}\}$. If $a \neq 0$ then $(a+b X)\left(a^{-1}-b a^{-2} X\right)=1$ in $R$ so $a+b X \in R^{\times}$.

If $I$ is an ideal of $R$ containing some $a+b X$ then the lemma says that $I=R$. If $I$ only contains expressions of the form $b X$ then either $I=(0)$ or $I=(b X)=(X)$ if $b \neq 0$. So the ideals of $R$ are either $0,(X)$ or $R$. Thus the unique prime ideal is $(X)$.

What about $\operatorname{Nil}(R)$ ? The theorem says it should be $(X)$. Note that $(a+b X)^{n}=a^{n}+n a^{n-1} b X$ which is 0 iff $a=0$ iff $a+b X \in(X)$ so $\operatorname{Nil}(R)=(X)$ from the definition.

Example 6. What is $\sqrt{\left(x, y^{3}\right)}$ in $\mathbb{C}[x, y]$ ? From last time this is $(x, y)$. If $\mathfrak{p} \subset \mathbb{C}[x, y]$ is a prime ideal containing $x, y^{3}$ then it contains $x, y$, from primality, so $\mathfrak{p}$ contains $(x, y)$ which is a maximal ideal.

What about $\sqrt{\left(y^{3}\right)}$ ? Certainly $(y)$ contains $\left(y^{3}\right)$ and is a prime ideal. Thus $\sqrt{\left(y^{3}\right)} \subset(y)$. But also $(y P(x, y))^{3} \in I$ so $(y) \subset \sqrt{\left(y^{3}\right)}$ so we have $\sqrt{\left(y^{3}\right)}=(y)$.

Remark 1. Algebraic geometry starts with Hilbert's Nullstellensatz which states that if $I=\left(P_{1}\left(X_{j}\right), \ldots, P_{m}\left(X_{j}\right)\right)$ is an ideal of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ then $\sqrt{I}$ will be generated by irreducible polynomials $Q_{j}\left(X_{1}, \ldots, X_{n}\right)$ such that the set of solutions in $\mathbb{C}^{n}$ of the systems of equations $P_{i}\left(X_{j}\right)=0$ and $Q_{i}\left(X_{j}\right)=0$ are the same.

For example, $\sqrt{\left(x, y^{3}\right)}=(x, y)$ because we seek irreducible polynomials whose set of common roots are the solutions to $x=0$ and $y^{3}=0$, i.e., $x=y=0$, and the polynomials $x$ and $y$ work.

