Graduate Algebra, Fall 2014
 Lecture 28

Andrei Jorza

2014-11-05

Started with a panoramic view of what we'll do in ring theory.

2 Rings

2.3 Special types of ideals (continued)

2.3.2 Radicals (continued)

Lemma 1. If \mathfrak{m} is a maximal ideal of R then \mathfrak{m} is also maximal wrt inclusion, i.e., if I is such that $\mathfrak{m} \subset I \subset R$ then I is either \mathfrak{m} or R.

Proof. I / \mathfrak{m} is an ideal of R / \mathfrak{m} which is a field. Thus I / \mathfrak{m} is either 0 (in which case $I=\mathfrak{m}$) or all of R / \mathfrak{m} in which case $R / I \cong(R / \mathfrak{m}) /(I / \mathfrak{m})=0$ so $I=R$.

Definition 2. The Jacobson radical of R is $J(R)=\cap \mathfrak{m}$ the intersection of all maximal ideals of R.
Proposition 3. Let R be a commutative ring.

1. $\operatorname{Nil}(R) \subset J(R)$.
2. $x \in J(R)$ if and only if $1-x y \in R^{\times}$for all y.

Proof. (1): trivial.
(2): If $1-x y$ is not a unit then $(1-x y) \subset \mathfrak{m}$ for some \mathfrak{m} maximal and so, since $x \in \mathfrak{m}$, we get $1 \in \mathfrak{m}$, a contradiction. Reciprocally, if $x \notin \mathfrak{m}$ for some maximal \mathfrak{m}, then $\mathfrak{m} \subsetneq \mathfrak{m}+(x)$ and by maximality get $\mathfrak{m}+(x)=R$. Thus $1 \in \mathfrak{m}+(x)$ so $1=a+x y$ for some $a \in \mathfrak{m}$ which implies that $a=1-x y \in \mathfrak{m}$ is not a unit.

2.4 Pullbacks and pushforwards of ideals

For a ring R denote by $\mathcal{P}_{R} \subset \mathcal{I}_{R}$ be the set of prime resp all ideals of R.
Proposition 4. Let $f: R \rightarrow S$ be a ring homomorphism.

1. The map f^{*} defined as $f^{*}(J)=f^{-1}(J)$ gives a map $f^{*}: \mathcal{I}_{S} \rightarrow \mathcal{I}_{R}$ which restricts to $f^{*}: \mathcal{P}_{S} \rightarrow \mathcal{P}_{R}$.
2. The map f_{*} defined as $f_{*}(I)=f(I) S$ (defined as the ideal generated by $\{f(x) s \mid x \in I, s \in S\}$) gives a $\operatorname{map} f_{*}: \mathcal{I}_{R} \rightarrow \mathcal{I}_{S}$. However, f_{*} need not take prime ideals to prime ideals.
Proof. (1): Consider the composite $\bar{f}: R \rightarrow S \rightarrow S / J$. Then ker $\bar{f}=f^{*}(J)$ and so $f^{*}(J)$ is an ideal. Moreover, $R / f^{*}(J) \cong \operatorname{Im}(\bar{f}) \subset S / J$. If J is prime then S / J is integral domain and so $R / f^{*}(J) \cong \operatorname{Im} f \subset S / J$ is also an integral domain. However, if J were maximal we'd get $R / f^{*}(J)$ is a subring of a field which need not be a field.
(2): This is tautological.

Example 5. 1. Consider $f: \mathbb{Z} \hookrightarrow \mathbb{C}$ and $J=(0)$ which is maximal in \mathbb{C} but $f^{*}((0))=(0)$ is not maximal in \mathbb{Z}.
2. Consider the injection $f: \mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ and $\mathfrak{p}=(2)$. Then $f_{*}(I)=(2) \mathbb{Z}[i]$ is not a prime ideal since $2=-i(1+i)^{2}$ and so $(1+i)^{2} \in f_{*}(I)$ but $1+i \notin f_{*}(I)$ since if $1+i=2 x$ then $x=(1+i) / 2 \notin \mathbb{Z}[i]$.

