Graduate Algebra, Fall 2014 Lecture 28

Andrei Jorza

2014-11-05

Started with a panoramic view of what we'll do in ring theory.

2 Rings

2.3 Special types of ideals (continued)

2.3.2 Radicals (continued)

Lemma 1. If \mathfrak{m} is a maximal ideal of R then \mathfrak{m} is also maximal wrt inclusion, i.e., if I is such that $\mathfrak{m} \subset I \subset R$ then I is either \mathfrak{m} or R.

Proof. I/\mathfrak{m} is an ideal of R/\mathfrak{m} which is a field. Thus I/\mathfrak{m} is either 0 (in which case $I = \mathfrak{m}$) or all of R/\mathfrak{m} in which case $R/I \cong (R/\mathfrak{m})/(I/\mathfrak{m}) = 0$ so I = R.

Definition 2. The **Jacobson** radical of R is $J(R) = \cap \mathfrak{m}$ the intersection of all maximal ideals of R.

Proposition 3. Let R be a commutative ring.

1.
$$\operatorname{Nil}(R) \subset J(R)$$
.

2.
$$x \in J(R)$$
 if and only if $1 - xy \in R^{\times}$ for all y

Proof. (1): trivial.

(2): If 1 - xy is not a unit then $(1 - xy) \subset \mathfrak{m}$ for some \mathfrak{m} maximal and so, since $x \in \mathfrak{m}$, we get $1 \in \mathfrak{m}$, a contradiction. Reciprocally, if $x \notin \mathfrak{m}$ for some maximal \mathfrak{m} , then $\mathfrak{m} \subsetneq \mathfrak{m} + (x)$ and by maximality get $\mathfrak{m} + (x) = R$. Thus $1 \in \mathfrak{m} + (x)$ so 1 = a + xy for some $a \in \mathfrak{m}$ which implies that $a = 1 - xy \in \mathfrak{m}$ is not a unit.

2.4 Pullbacks and pushforwards of ideals

For a ring R denote by $\mathcal{P}_R \subset \mathcal{I}_R$ be the set of prime resp all ideals of R.

Proposition 4. Let $f : R \to S$ be a ring homomorphism.

- 1. The map f^* defined as $f^*(J) = f^{-1}(J)$ gives a map $f^* : \mathcal{I}_S \to \mathcal{I}_R$ which restricts to $f^* : \mathcal{P}_S \to \mathcal{P}_R$.
- 2. The map f_* defined as $f_*(I) = f(I)S$ (defined as the ideal generated by $\{f(x)s|x \in I, s \in S\}$) gives a map $f_* : \mathcal{I}_R \to \mathcal{I}_S$. However, f_* need not take prime ideals to prime ideals.

Proof. (1): Consider the composite $\overline{f} : R \to S \to S/J$. Then ker $\overline{f} = f^*(J)$ and so $f^*(J)$ is an ideal. Moreover, $R/f^*(J) \cong \operatorname{Im}(\overline{f}) \subset S/J$. If J is prime then S/J is integral domain and so $R/f^*(J) \cong \operatorname{Im} f \subset S/J$ is also an integral domain. However, if J were maximal we'd get $R/f^*(J)$ is a subring of a field which need not be a field.

(2): This is tautological.

- **Example 5.** 1. Consider $f : \mathbb{Z} \hookrightarrow \mathbb{C}$ and J = (0) which is maximal in \mathbb{C} but $f^*((0)) = (0)$ is not maximal in \mathbb{Z} .
 - 2. Consider the injection $f : \mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ and $\mathfrak{p} = (2)$. Then $f_*(I) = (2)\mathbb{Z}[i]$ is not a prime ideal since $2 = -i(1+i)^2$ and so $(1+i)^2 \in f_*(I)$ but $1+i \notin f_*(I)$ since if 1+i = 2x then $x = (1+i)/2 \notin \mathbb{Z}[i]$.