Graduate Algebra, Fall 2014 Lecture 29

Andrei Jorza

2014-11-07

2 Rings

2.5 Rings of fractions and localization

Proposition 1. Let R be a commutative ring and $S \subset R$ be a subset closed under multiplication and such that $1 \in S$. Consider the relation $(a, s) \sim (b, r)$ on $R \times S$ iff (ar - bs)u = 0 for some $u \in S$.

- 1. The equivalence relation \sim is reflexive and transitive.
- 2. Write a/s for the equivalence class (a, s). Define $S^{-1}R = \{a/s | a \in R, s \in S\}$. The operations a/s + b/r = (ar + bs)/(rs) and (a/s)(b/r) = (ab)/(sr) are well-defined and turn $S^{-1}R$ into a ring.
- 3. The natural map $f: R \to S^{-1}R$ sending x to x/1 is a ring homomorphism.

Example 2. If R is an integral domain and S = R - 0 then $S^{-1}R$ is a field, called the fraction field Frac R.

Proposition 3. Suppose $g: R \to T$ be a ring homomorphism such that for $u \in S$, $g(u) \in T^{\times}$ is a unit. Then g factors through $S^{-1}R$, i.e., there exists a unique $h: S^{-1}R \to T$ such that $g = h \circ f$.

Proof. Given h, note that $h(a/s) = h(a/1)h(1/s) = g(a)h(s)^{-1} = g(a)g(s)^{-1}$ so h is uniquely determined. Now define $h(a/s) = g(a)g(s)^{-1}$. It's not hard to check that h is well-defined and a ring homomorphism.

Example 4. 1. $S^{-1}R = 0$ iff $0 \in S$.

- 2. If $x \in R$ then $S = \{x^n | n \ge 0\}$ is multiplicatively closed and $R_f = S^{-1}R$. In the case of $R = \mathbb{Z}$, this is what we called $\mathbb{Z}[1/f]$.
- 3. If I is an ideal of R then S = 1 + I is multiplicatively closed.
- 4. If \mathfrak{p} is a prime ideal then $S = R \mathfrak{p}$ is multiplicatively closed in R. The localization of R at \mathfrak{p} is $R_{\mathfrak{p}} = S^{-1}R$.
- 5. $\mathbb{Z}_{(p)}$ consists of rationals whose denominators are not disible by p.
- 6. For $R = \mathbb{C}[x, y]$ and $\mathfrak{p} = (x, y)$ the localization $R_{\mathfrak{p}}$ consists of rational functions P(x, y)/Q(x, y) such that $Q \notin (x, y)$, i.e., such that $Q(0, 0) \neq 0$.

Proposition 5. If R is an integral domain defined $\operatorname{Frac} R = S^{-1}R$ where S = R - 0. Then $\operatorname{Frac} R$ is a field and $R \to \operatorname{Frac} R$ is injective.

Proof. Suppose x/r is nonzero in Frac R. Then $x \neq 0$ and so $s/x \in \operatorname{Frac} R$ is an inverse. Suppose x/1 = 0 in Frac R. Then xs = 0 for some $s \neq 0$ which, since R is an integral domain, implies x = 0 and so $R \hookrightarrow \operatorname{Frac} R$.

Proposition 6. Let R be a commutative ring and S a multiplicatively closed subset containing 1. Consider the map $f: R \to S^{-1}R$ sending $x \mapsto x/1$.

- 1. If $I \subset R$ is an ideal then $f_*(I) = S^{-1}I$ and $f_* : \mathcal{I}_R \to \mathcal{I}_{S^{-1}R}$ is surjective.
- 2. If \overline{S} is the image of S in R/I then $S^{-1}R/S^{-1}I \cong \overline{S}^{-1}(R/I)$.
- 3. There is a bijection $\mathfrak{p} \mapsto S^{-1}\mathfrak{p}$ between the prime ideals of R which are disjoint from S and the prime ideals of $S^{-1}R$.
- 4. If \mathfrak{p} is a prime ideal of R then there is a bijection between the prime ideals of $R_{\mathfrak{p}}$ and the prime ideals of R contained in \mathfrak{p} . This is a tool for constructing rings with few prime ideals.

Proof. (1): If $a \in I$ and $b/r \in S^{-1}R$ then $(a/1)(b/r) = (ab)/r \in S^{-1}I$ and so $S^{-1}I \subset f_*(I)$. Moreover, it is easy to check that $S^{-1}I$ is an ideal and so $f_*(I) = S^{-1}I$. Suppose that $J \subset S^{-1}R$ and let $I = \{a \in R | a/1 \in J\}$. If $a/s \in J$ then $a/1 = (s/1)(a/s) \in J$ so $a \in I$ and if $a \in I$ then $a/1 \in J$ and so $(1/s)(a/1) = a/s \in J$. Thus $J = S^{-1}I$.

(2): The map $a/s \mapsto (a+I)/(s+I)$ is a well defined homomorphism from $S^{-1}R$ to $\overline{S}^{-1}R/I$. It is clearly surjective. The kernel contains a/s iff (a+I)/(s+I) = 0 iff (a+I)(r+I) = 0 for some $r \in S$. But then $ar \in I$ and so $a \in S^{-1}I$ giving $a/s \in S^{-1}I$. The result then follows from the first isomorphism theorem.

(3): We need that $\mathfrak{p} \mapsto f_*(\mathfrak{p})$ is a bijection from prime ideals $\mathfrak{p} \cap S = \emptyset$ and prime ideals of $S^{-1}R$. For a prime ideal \mathfrak{p} of R we know that $S^{-1}R/f_*(\mathfrak{p}) \cong \overline{S}^{-1}(R/\mathfrak{p})$. Since R/\mathfrak{p} is an integral domain, it follows that $S^{-1}R/f_*(\mathfrak{p}) \subset \operatorname{Frac} R/\mathfrak{p}$ and so $f_*(\mathfrak{p})$ is either prime ideal or is all of $S^{-1}R$. The latter can happen iff $\overline{S}^{-1}R/\mathfrak{p} = 0$ iff $0 \in \overline{S}$ iff $\mathfrak{p} \cap S \neq \emptyset$.

This shows that f_* takes prime ideals disjoint from S to prime ideals of $S^{-1}R$.

Going in the other direction, suppose \mathfrak{q} is a prime ideal of $S^{-1}R$ and let $\mathfrak{p} = f^*(\mathfrak{q})$ the corresponding prime ideal of R. If $x \in \mathfrak{p} \cap S$ then $1 = (x/1)(1/x) \in \mathfrak{q}S^{-1}R = \mathfrak{q}$ so $\mathfrak{q} = S^{-1}R$ contradicting that \mathfrak{q} is a prime ideal. Thus $\mathfrak{p} \cap S = \emptyset$. What is $f_*(\mathfrak{p})$? Certainly $S^{-1}\mathfrak{p} \subset \mathfrak{q}$ as \mathfrak{q} is an ideal. If $a/s \in \mathfrak{q}$ then $a/1 \in \mathfrak{q}$ so $a \in \mathfrak{p}$ and so $a/s \in S^{-1}\mathfrak{p}$ which gives $\mathfrak{q} = S^{-1}\mathfrak{p} = f_*(\mathfrak{p})$.

This shows that $\mathfrak{p} \mapsto f_*(\mathfrak{p})$ is a bijection as desired.

(4): Apply (3) to $S = R - \mathfrak{p}$.

Example 7. Suppose $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subset R$ are prime ideals. Let $S = R - \bigcup \mathfrak{p}_i$ and set $R_{\mathfrak{p}_1,\ldots,\mathfrak{p}_n} = S^{-1}R$. Then the prime ideals of $R_{\mathfrak{p}_i}$ are in bijection with the prime ideals of R contained in $\bigcup \mathfrak{p}_i$.

Example 8. Let n be square-free. Then $\mathbb{Z}_{(n)} = \{\frac{a}{b} | (b, n) = 1\}$ has prime ideals (p) for $p \mid n$ only.