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1 Group Theory

1.3 Subgroups (supplemental)

Example 1. Some more examples of subgroups:

1. Z ⊂ Q ⊂ R ⊂ C are subgroups.

2. GL(n,Q) ⊂ GL(n,R) ⊂ GL(n,C) are subgroups.

3. The following are subgroups (for R = Q,R or C):

{
(

1 b
0 1

)
|b ∈ R} ⊂ {

(
a b
0 1

)
|a ∈ R×, b ∈ R} ⊂ {

(
a b
0 c

)
|a, c ∈ R×, b ∈ R} ⊂ GL(2, R)

Example 2. Some special subgroups:

1. {e} and G are the non-proper subgroups of G.

2. The center Z(G) of a group G is defined as Z(G) = {g ∈ G|gx = γ,∀x ∈ G}. Then Z(G) is a subgroup.

3. The commutator [a, b] = aba−1b−1 and [G,G] = 〈[a, b]|a, b ∈ G〉 is a subgroup. Indeed, [a, b]−1 = [b, a]
but a product of commutators need not be a commutator. For exampleG = S3 = {1, (12), (13), (23), (123), (132)}
has center Z(S3) = 1 and commutator 〈1, (123), (132)〉 = {1, (123), (132) = (123)2} which is a subgroup
since (123) has order 3.

4. If X ⊂ G then 〈X〉 = {
∏
ai|ai or a−1i ∈ X}.

1.5 Homomorphisms

Suppose (G, ·G, eG) and (H, ·H , eH) are two groups.

Definition 3. A map f : G→ H is said to be a homomorphism if f(x ·G y) = f(x) ·H f(y) for all x, y ∈ G.

Proposition 4. If f : G→ H is a homomorphism then:

1. f(eG) = eH .

2. f(x−1) = f(x)−1.

Proof. f(x) = f(egx) = f(eG)f(x) for all x ∈ G and so f(eG) = eH . Also eH = f(eG) = f(xx−1) =
f(x)f(x−1) and the second property follows.
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Definition 5. Suppose f : G→ H is a homomorphism of groups. The kernel is ker(f) = {g ∈ G|f(g) = e}
and Im(f) = {f(g)|g ∈ G}. The homomorphism f is said to be an isomorphism if it is bijective as a function.

Proposition 6. Let f : G→ H be a homomorphism.

1. ker f ⊂ G and Im f ⊂ H are subgroups.

2. f is injective iff ker f = 1 and surjective iff Im f = H.

3. If f is an isomorphism then f−1 : H → G is also a homomorphism, which is then necessarily an
isomorphism.

4. If f is an injective homomorphism then G ∼= Im f .

Proof. If f(x) = 1 and f(y) = 1 then f(xy−1) = f(x)f(y)−1 = 1 and so ker f ⊂ G is a subgroup. Similarly,
f(x)f(y)−1 = f(xy−1) ∈ Im f and so Im f ⊂ H is a subgroup as well.

Have f(x) = f(y) iff f(x)f(y)−1 = 1 iff f(xy−1) = 1 iff xy−1 ∈ ker f .
Since f(x)f(y) = f(xy) it follows that f−1(f(x)f(y)) = xy = f−1(f(x))f−1(f(y)) and so f−1 is also a

homomorphism.
The last part is by definition.

Definition 7. Two groups G and H are said to be isomorphic if there exists an isomorphism between them.

Example 8. 1. The n-roots of unity in C form a group µn wrt multiplication. The map Z/nZ → µn
given by k 7→ exp(2πik/n) is an isomorphism of groups.

2. The map Z→ nZ given by f(x) = nx is an isomorphism of infinite cyclic groups.

3. This example I did in lecture 2 but fits better here. Suppose G is a finite group with n elements. For
g ∈ G let σg : G → G given by σg(h) = gh. This is clearly injective and since σ−1g = σg−1 it is also
bijective. Note that σg ◦ σg′ = σgg′ and so we get a homomorphism σ : G → SG from G to the set
SG of permutations of G. Since σg = σg′ if and only if g = g′ (evaluate at 1) we get an injective
homomorphism from G into Sn = SG. Thus we realized G ∼= Im f ⊂ Sn.

4. Consider the map f : Sn → GL(n,Q) ∼= AutQ−vs(Qn) taking the permutation σ ∈ Sn to the n × n
matrix with 0-s everywhere except at (i, σ(i)) for all i where there is a 1. For example

f(

(
1 2 3
3 1 2

)
) =

 1
1

1


What is f(σ)f(τ) for σ, τ ∈ Sn? Let e1, . . . , en be the standard basis of Qn. Then f(σ) is the matrix
wrt this basis of the linear map Tσ : Qn → Qn taking

∑
xiei to

∑
xieσ(i). Thus f(σ)f(τ) is the

matrix of Tσ ◦ Tτ which takes
∑
xiei to Tσ(

∑
xieτ(i)) =

∑
xieσ(τ(i)) and so Tσ ◦ Tτ = Tστ and thus

f(σ)f(τ) = f(στ) which shows that f is a homomorphism. It’s also clearly injective.

Thus we realized Sn as a subgroup of GL(n,Q). This is the first instance of realizing a group as a
subgroup of a matrix group using a “faithful linear representation”, which is a very powerful tool about
which we’ll learn in representation theory.

1.6 The alternating group An

Proposition 9. There is a homomorphism ε : Sn → {−1, 1} such that ε((i1, . . . , ik)) = (−1)k−1.
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Proof. Let f : Sn → GL(n,Q) as above and take ε(σ) = det f(σ). Then ε is a homomorphism Sn → Q×.
We’d like to check that ε(σ) = ±1 for every permutation σ.

What is det f(σ)? It is the linear map ∧nf(σ) : ∧nQn → ∧nQn. Explicitly, it is ∧nf(σ)e1 ∧ . . . ∧ en =
(f(σ)e1) ∧ . . . ∧ (f(σ)en) = eσ(1) ∧ . . . ∧ eσ(n) = ±e1 ∧ . . . ∧ en a number which is 1 if σ has an even number
of inversions and −1 otherwise.

There is something more general to be said. Suppose that f(σ) has integer entries. Then the above
explanation implies that det f(σ) ∈ Z. Note that f(σ)−1 = f(σ−1) and so In = f(σ)f(σ−1) and so
1 = ε(σ)ε(σ−1) and each of the two factors is an integer. Thus again we get that ε(σ) = ±1 indirectly this
time.

Finally ε((ij)) = −1 and the conclusion follows from writing the cycle as a product of transpositions.

Definition 10. Let An ⊂ Sn be the subgroup An = ker ε of the sign homomorphism ε.
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