Graduate Algebra, Fall 2014
 Lecture 3

Andrei Jorza

2014-09-01

1 Group Theory

1.3 Subgroups (supplemental)

Example 1. Some more examples of subgroups:

1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are subgroups.
2. $\mathrm{GL}(n, \mathbb{Q}) \subset \mathrm{GL}(n, \mathbb{R}) \subset \mathrm{GL}(n, \mathbb{C})$ are subgroups.
3. The following are subgroups (for $R=\mathbb{Q}, \mathbb{R}$ or \mathbb{C}):

$$
\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in R\right\} \subset\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in R^{\times}, b \in R\right\} \subset\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, c \in R^{\times}, b \in R\right\} \subset \operatorname{GL}(2, R)
$$

Example 2. Some special subgroups:

1. $\{e\}$ and G are the non-proper subgroups of G.
2. The center $Z(G)$ of a group G is defined as $Z(G)=\{g \in G \mid g x=\gamma, \forall x \in G\}$. Then $Z(G)$ is a subgroup.
3. The commutator $[a, b]=a b a^{-1} b^{-1}$ and $[G, G]=\langle[a, b] \mid a, b \in G\rangle$ is a subgroup. Indeed, $[a, b]^{-1}=[b, a]$ but a product of commutators need not be a commutator. For example $G=S_{3}=\{1,(12),(13),(23),(123),(132)\}$ has center $Z\left(S_{3}\right)=1$ and commutator $\langle 1,(123),(132)\rangle=\left\{1,(123),(132)=(123)^{2}\right\}$ which is a subgroup since (123) has order 3.
4. If $X \subset G$ then $\langle X\rangle=\left\{\prod a_{i} \mid a_{i}\right.$ or $\left.a_{i}^{-1} \in X\right\}$.

1.5 Homomorphisms

Suppose $\left(G, \cdot{ }_{G}, e_{G}\right)$ and $\left(H,{ }_{\cdot H}, e_{H}\right)$ are two groups.
Definition 3. A map $f: G \rightarrow H$ is said to be a homomorphism if $f\left(x \cdot{ }_{G} y\right)=f(x) \cdot{ }_{H} f(y)$ for all $x, y \in G$.
Proposition 4. If $f: G \rightarrow H$ is a homomorphism then:

1. $f\left(e_{G}\right)=e_{H}$.
2. $f\left(x^{-1}\right)=f(x)^{-1}$.

Proof. $f(x)=f\left(e_{g} x\right)=f\left(e_{G}\right) f(x)$ for all $x \in G$ and so $f\left(e_{G}\right)=e_{H}$. Also $e_{H}=f\left(e_{G}\right)=f\left(x x^{-1}\right)=$ $f(x) f\left(x^{-1}\right)$ and the second property follows.

Definition 5. Suppose $f: G \rightarrow H$ is a homomorphism of groups. The kernel is $\operatorname{ker}(f)=\{g \in G \mid f(g)=e\}$ and $\operatorname{Im}(f)=\{f(g) \mid g \in G\}$. The homomorphism f is said to be an isomorphism if it is bijective as a function.

Proposition 6. Let $f: G \rightarrow H$ be a homomorphism.

1. $\operatorname{ker} f \subset G$ and $\operatorname{Im} f \subset H$ are subgroups.
2. f is injective iff ker $f=1$ and surjective iff $\operatorname{Im} f=H$.
3. If f is an isomorphism then $f^{-1}: H \rightarrow G$ is also a homomorphism, which is then necessarily an isomorphism.
4. If f is an injective homomorphism then $G \cong \operatorname{Im} f$.

Proof. If $f(x)=1$ and $f(y)=1$ then $f\left(x y^{-1}\right)=f(x) f(y)^{-1}=1$ and so ker $f \subset G$ is a subgroup. Similarly, $f(x) f(y)^{-1}=f\left(x y^{-1}\right) \in \operatorname{Im} f$ and so $\operatorname{Im} f \subset H$ is a subgroup as well.

Have $f(x)=f(y)$ iff $f(x) f(y)^{-1}=1$ iff $f\left(x y^{-1}\right)=1$ iff $x y^{-1} \in \operatorname{ker} f$.
Since $f(x) f(y)=f(x y)$ it follows that $f^{-1}(f(x) f(y))=x y=f^{-1}(f(x)) f^{-1}(f(y))$ and so f^{-1} is also a homomorphism.

The last part is by definition.
Definition 7. Two groups G and H are said to be isomorphic if there exists an isomorphism between them.
Example 8. 1. The n-roots of unity in \mathbb{C} form a group μ_{n} wrt multiplication. The map $\mathbb{Z} / n \mathbb{Z} \rightarrow \mu_{n}$ given by $k \mapsto \exp (2 \pi i k / n)$ is an isomorphism of groups.
2. The map $\mathbb{Z} \rightarrow n \mathbb{Z}$ given by $f(x)=n x$ is an isomorphism of infinite cyclic groups.
3. This example I did in lecture 2 but fits better here. Suppose G is a finite group with n elements. For $g \in G$ let $\sigma_{g}: G \rightarrow G$ given by $\sigma_{g}(h)=g h$. This is clearly injective and since $\sigma_{g}^{-1}=\sigma_{g^{-1}}$ it is also bijective. Note that $\sigma_{g} \circ \sigma_{g^{\prime}}=\sigma_{g g^{\prime}}$ and so we get a homomorphism $\sigma: G \rightarrow S_{G}$ from G to the set S_{G} of permutations of G. Since $\sigma_{g}=\sigma_{g^{\prime}}$ if and only if $g=g^{\prime}$ (evaluate at 1) we get an injective homomorphism from G into $S_{n}=S_{G}$. Thus we realized $G \cong \operatorname{Im} f \subset S_{n}$.
4. Consider the map $f: S_{n} \rightarrow \operatorname{GL}(n, \mathbb{Q}) \cong \operatorname{Aut}_{\mathbb{Q}-\mathrm{vs}}\left(\mathbb{Q}^{n}\right)$ taking the permutation $\sigma \in S_{n}$ to the $n \times n$ matrix with 0 -s everywhere except at $(i, \sigma(i))$ for all i where there is a 1 . For example

$$
f\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right)=\left(\begin{array}{lll}
& & 1 \\
1 & & \\
& 1 &
\end{array}\right)
$$

What is $f(\sigma) f(\tau)$ for $\sigma, \tau \in S_{n}$? Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{Q}^{n}. Then $f(\sigma)$ is the matrix wrt this basis of the linear map $T_{\sigma}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{n}$ taking $\sum x_{i} e_{i}$ to $\sum x_{i} e_{\sigma(i)}$. Thus $f(\sigma) f(\tau)$ is the matrix of $T_{\sigma} \circ T_{\tau}$ which takes $\sum x_{i} e_{i}$ to $T_{\sigma}\left(\sum x_{i} e_{\tau(i)}\right)=\sum x_{i} e_{\sigma(\tau(i))}$ and so $T_{\sigma} \circ T_{\tau}=T_{\sigma \tau}$ and thus $f(\sigma) f(\tau)=f(\sigma \tau)$ which shows that f is a homomorphism. It's also clearly injective.
Thus we realized S_{n} as a subgroup of $\operatorname{GL}(n, \mathbb{Q})$. This is the first instance of realizing a group as a subgroup of a matrix group using a "faithful linear representation", which is a very powerful tool about which we'll learn in representation theory.

1.6 The alternating group A_{n}

Proposition 9. There is a homomorphism $\varepsilon: S_{n} \rightarrow\{-1,1\}$ such that $\varepsilon\left(\left(i_{1}, \ldots, i_{k}\right)\right)=(-1)^{k-1}$.

Proof. Let $f: S_{n} \rightarrow \operatorname{GL}(n, \mathbb{Q})$ as above and take $\varepsilon(\sigma)=\operatorname{det} f(\sigma)$. Then ε is a homomorphism $S_{n} \rightarrow \mathbb{Q}^{\times}$. We'd like to check that $\varepsilon(\sigma)= \pm 1$ for every permutation σ.

What is $\operatorname{det} f(\sigma)$? It is the linear map $\wedge^{n} f(\sigma): \wedge^{n} \mathbb{Q}^{n} \rightarrow \wedge^{n} \mathbb{Q}^{n}$. Explicitly, it is $\wedge^{n} f(\sigma) e_{1} \wedge \ldots \wedge e_{n}=$ $\left(f(\sigma) e_{1}\right) \wedge \ldots \wedge\left(f(\sigma) e_{n}\right)=e_{\sigma(1)} \wedge \ldots \wedge e_{\sigma(n)}= \pm e_{1} \wedge \ldots \wedge e_{n}$ a number which is 1 if σ has an even number of inversions and -1 otherwise.

There is something more general to be said. Suppose that $f(\sigma)$ has integer entries. Then the above explanation implies that $\operatorname{det} f(\sigma) \in \mathbb{Z}$. Note that $f(\sigma)^{-1}=f\left(\sigma^{-1}\right)$ and so $I_{n}=f(\sigma) f\left(\sigma^{-1}\right)$ and so $1=\varepsilon(\sigma) \varepsilon\left(\sigma^{-1}\right)$ and each of the two factors is an integer. Thus again we get that $\varepsilon(\sigma)= \pm 1$ indirectly this time.

Finally $\varepsilon((i j))=-1$ and the conclusion follows from writing the cycle as a product of transpositions.
Definition 10. Let $A_{n} \subset S_{n}$ be the subgroup $A_{n}=\operatorname{ker} \varepsilon$ of the sign homomorphism ε.

