Graduate Algebra, Fall 2014 Lecture 30

Andrei Jorza

2014-11-10

2 Rings

2.6 Special types of rings

2.6.1 Euclidean domains

Definition 1. A Euclidean function on a ring R is a function $d : R - 0 \rightarrow Z_{\geq 0}$ such that for every $x, y \in R$ with $y \neq 0$ there exists $q, r \in R$ such that x = qy + r and either r = 0 or d(r) < d(y).

A ring R is said to be **Euclidean** if it admits some (not necessarily unique) Euclidean function.

- **Example 2.** 1. On \mathbb{Z} take d(n) = |n|. Then division with remainder shows that this is a Euclidean function.
 - 2. On F[X] take $d(P) = \deg(P)$. Again, division with remainder gives that d is a Euclidean function.
 - 3. Let F be a field. On F[X] take $d(a_nX^n + O(X^{n+1})) = n$ if $a_n \neq 0$. Indeed, if $f, g \in F[X]$ then either d(f) < d(g) in which case take q = 0, r = f or $d(f) \ge d(g) = n$ in which case $q = f/g = (fX^{-n})/(gX^{-n}) \in F[X]$ as gX^{-n} is invertible, and r = 0.

Proposition 3. The ring $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$ is Euclidean.

Proof. Define $d(a + bi) = |a + bi|^2 = a^2 + b^2$. If $x, y \in \mathbb{Z}[i]$, the complex number x/y lands inside (or on the boundary) of a unit square in the lattice $\mathbb{Z}[i] \subset \mathbb{C}$. Let q be the corner of this/one of these squares that closest to the complex number x/y. Then $|q - x/y| \leq 1/\sqrt{2}$ by inspection. Thus $r = x - qy \in \mathbb{Z}[i]$ has the property that $d(r) = |x - qy|^2 \leq |y|^2/2$ as desired.

2.6.2 PID

Definition 4. A principal ideal domain (PID) is a ring R such that every ideal is generated by a single element.

Theorem 5. Every Euclidean domain is a PID.

Proof. Choose $x \in I$ nonzero with d(x) minimal. If $y \in I$ then y = qx + r with d(r) < d(x). If $r \neq 0$ it contradicts the choice of x. Thus y = qx and so I = (x).

Example 6. 1. \mathbb{Z} is a PID.

- 2. F[X] is a PID.
- 3. $\mathbb{Z}[i]$ is a PID.
- 4. F[X] is a PID.
- 5. but $\mathbb{Z}[X]$ is not a PID since (2, X) cannot be generated by a single element as 2 and X are coprime.

2.6.3 UFD

Definition 7. An element $x \in R$ is **prime** if $(x) \subset R$ is a prime ideal. It is **irreducible** if x = ab implies a or b is a unit in R.

Definition 8. A unique factorization domain (UFD) is a ring R such that every nonzero $x \in R$ can be written as

$$x = y_1 \dots y_n$$

where y_1, \ldots, y_n are irreducibles and if this expression is unique up to permutation and multiplication by units.

Proposition 9. Let R be a commutative integral domain.

- 1. Every prime is irreducible.
- 2. If, furthermore, every irreducible is prime then every factorization into irreducibles is unique up to units and permutations.
- 3. If R is a UFD then every irreducible is prime.

Proof. (1): Suppose x is prime but reducible. Then x = ab with a, b not units. But then $ab \in (x)$ so by primality get $a \in (x)$ or $b \in (x)$. Suppose $a \in (x)$, then a = xc and x = ab = xbc. Thus bc = 1 so b is a unit.

(2): Suppose every irreducible is a prime and

$$x = \prod y_i = \prod z_j$$

with y_i, z_j irreducible and thus prime. Going to ideals get

$$\prod(y_i) = \prod(z_j) \subset (z_1)$$

Since (z_1) is a prime ideal, from homework 8 deduce that $(y_i) \subset (z_1)$ for some i and so $y_i = az_1$. By irreducibility get a is a unit and so $(z_1) = (y_i)$. Since we are in an integral domain we deduce that

$$\prod_{j \neq i} y_j = \prod_{k > 1} z_k$$

up to a unit (or equality as ideals).

By induction, it follows that every factorization into irreducibles is unique up to units and up to permutations.

(3): Suppose (x) is not a prime ideal. Then there exist $a, b \in R$, $a, b \notin (x)$ such that $ab \in (x)$. Thus ab = xy. Since x is irreducible, by the uniqueness of factorization of a and b into irreducibles it follows that x appears, up to a unit, among the irreducible factors of a of b. But the a or b is in (x).

Theorem 10. Every PID is a UFD.

Proof. First, let $x \in R$ be irreducible (nonzero and not a unit) and let \mathfrak{m} be a maximal ideal of R containing x. Since R is a PID it follows that $\mathfrak{m} = (a)$ and so $(x) \subset (a)$ so a = xy. But (a) is maximal and so prime and so either x is a unit or y is a unit. Since x is not a unit it follows that (a) = (xy) = (x) is a prime ideal.

To be continued.