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2 Rings

2.6 Special types of rings

2.6.1 Euclidean domains

Definition 1. A Euclidean function on a ring R is a function d : R−0→ Z≥0 such that for every x, y ∈ R
with y 6= 0 there exists q, r ∈ R such that x = qy + r and either r = 0 or d(r) < d(y).

A ring R is said to be Euclidean if it admits some (not necessarily unique) Euclidean function.

Example 2. 1. On Z take d(n) = |n|. Then division with remainder shows that this is a Euclidean
function.

2. On F [X] take d(P ) = deg(P ). Again, division with remainder gives that d is a Euclidean function.

3. Let F be a field. On F [[X]] take d(anX
n + O(Xn+1)) = n if an 6= 0. Indeed, if f, g ∈ F [X] then

either d(f) < d(g) in which case take q = 0, r = f or d(f) ≥ d(g) = n in which case q = f/g =
(fX−n)/(gX−n) ∈ F [[X]] as gX−n is invertible, and r = 0.

Proposition 3. The ring Z[i] = {a + bi|a, b ∈ Z} is Euclidean.

Proof. Define d(a + bi) = |a + bi|2 = a2 + b2. If x, y ∈ Z[i], the complex number x/y lands inside (or on
the boundary) of a unit square in the lattice Z[i] ⊂ C. Let q be the corner of this/one of these squares that
closest to the complex number x/y. Then |q − x/y| ≤ 1/

√
2 by inspection. Thus r = x − qy ∈ Z[i] has the

property that d(r) = |x− qy|2 ≤ |y|2/2 as desired.

2.6.2 PID

Definition 4. A principal ideal domain (PID) is a ring R such that every ideal is generated by a single
element.

Theorem 5. Every Euclidean domain is a PID.

Proof. Choose x ∈ I nonzero with d(x) minimal. If y ∈ I then y = qx + r with d(r) < d(x). If r 6= 0 it
contradicts the choice of x. Thus y = qx and so I = (x).

Example 6. 1. Z is a PID.

2. F [X] is a PID.

3. Z[i] is a PID.

4. F [[X]] is a PID.

5. but Z[X] is not a PID since (2, X) cannot be generated by a single element as 2 and X are coprime.
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2.6.3 UFD

Definition 7. An element x ∈ R is prime if (x) ⊂ R is a prime ideal. It is irreducible if x = ab implies a
or b is a unit in R.

Definition 8. A unique factorization domain (UFD) is a ring R such that every nonzero x ∈ R can
be written as

x = y1 . . . yn

where y1, . . . , yn are irreducibles and if this expression is unique up to permutation and multiplication by
units.

Proposition 9. Let R be a commutative integral domain.

1. Every prime is irreducible.

2. If, furthermore, every irreducible is prime then every factorization into irreducibles is unique up to
units and permutations.

3. If R is a UFD then every irreducible is prime.

Proof. (1): Suppose x is prime but reducible. Then x = ab with a, b not units. But then ab ∈ (x) so by
primality get a ∈ (x) or b ∈ (x). Suppose a ∈ (x). then a = xc and x = ab = xbc. Thus bc = 1 so b is a unit.

(2): Suppose every irreducible is a prime and

x =
∏

yi =
∏

zj

with yi, zj irreducible and thus prime. Going to ideals get∏
(yi) =

∏
(zj) ⊂ (z1)

Since (z1) is a prime ideal, from homework 8 deduce that (yi) ⊂ (z1) for some i and so yi = az1. By
irreducibility get a is a unit and so (z1) = (yi). Since we are in an integral domain we deduce that∏

j 6=i

yj =
∏
k>1

zk

up to a unit (or equality as ideals).
By induction, it follows that every factorization into irreducibles is unique up to units and up to permu-

tations.
(3): Suppose (x) is not a prime ideal. Then there exist a, b ∈ R, a, b /∈ (x) such that ab ∈ (x). Thus

ab = xy. Since x is irreducible, by the uniqueness of factorization of a and b into irreducibles it follows that
x appears, up to a unit, among the irreducible factors of a of b. But the a or b is in (x).

Theorem 10. Every PID is a UFD.

Proof. First, let x ∈ R be irreducible (nonzero and not a unit) and let m be a maximal ideal of R containing
x. Since R is a PID it follows that m = (a) and so (x) ⊂ (a) so a = xy. But (a) is maximal and so prime
and so either x is a unit or y is a unit. Since x is not a unit it follows that (a) = (xy) = (x) is a prime ideal.

To be continued.
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