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2 Rings

2.6 Special types of rings (continued)
2.6.3 UFD (continued)
Theorem 1. Every PID is a UFD.

Proof. Continued from last time.

By the proposition every factorization into irreducibles is unique, so let’s show that such factorizations
always exist. Suppose € R. Let (a1) be a maximal ideal containing z. Then = € (a1) and z = ayz;. If
x1 is a unit, then z has a factorization. Otherwise, applying the same method get 1 = asxy. After n steps
T =aj...apTy. If x, is a unit then = has a factorization. Otherwise if x,, is never a unit, get a chain of
ideals I,, = (x,,) such that I; C Iy C .... Let I = UI,. Since each I,, is an ideal, if z € I and r € R then
x € I, for some n and rx € I,, C I and if z,y € I then z,y € I,, for some large n and so x +y € I, C I.
Thus [ is an ideal and since R is principal, I = (a) for some a € R. But then a € I is in some I,, and so
(zn) = (a) = (xy41). This contradicts the fact that (z,) = (an+1)(Tnt1) With a,4+1 not a unit. Thus x must
have a factorization and by the previous proposition such a factorization is unique. O

Example 2. Any Euclidean domain is a UFD.
1. Z
2. F[X]

3.
4
5. Z[G]

6. Z[V2

Example 3. The ring Z[v/—5| is not UFD since 6 = 2-3 = (1 + v/=5)(1 — v/—5) and each of these is
irreducible.

Definition 4. If R is an integral domain then Frac R = {§|x,y € R,y # 0} up to usual equivalences for
fractions, is a field, called the fraction field of R. We’ll come back to this construction when we talk about
localization later.

Lemma 5 (Gauss’ Lemma). Suppose R is a UFD with fraction field F. Suppose f(X) € R[X] is of the
form f(X) = g(X)h(X) with g(X),h(X) € F[X]. Then there exists a € F —0 such that G(X) = ag(X) and
H(X)=a"'h(X) are in R[X] with f(X)=G(X)H(X).



Proof. A polynomial A(X) € R[X] is said to be primitive if a='A(X) € R[X] implies a € R*. In other
words the coefficients have no nontrivial common denominator.

Clearing denominators, ag(X) = G(X) and bh(x) = H(X) for some a,b € R giving abf(X) = G(X)H(X).
Write ab = [ p; as a product of irreducibles/primes in the UFD R. We know from homework 8 that (p1)[X]
is a prime ideal of R[X] and so G(X)H(X) = 0 in R[X]/(p1)[X] which is an integral domain. Thus either
G(X) or H(X) is in (p1)[X] and so one of p; 'G(X) and p; ' H(X) is in R[X], let’s say the former. Then
[Lispif(X) = (p;'G(X))H(X) = G'(X)H(X). Repeating the argument gives f(X) = G(X)H(X) as
desired. O

Proposition 6. R is a UFD iff R[X] is a UFD, but R[X] is a PID iff R is a field.

Proof. One direction is trivial. Suppose R is a UFD and f(X) € R[X]. Then f = P, --- P, uniquely in
F[X] where F = Frac R. By Gauss’ lemma we may take P; € R[X] to get f(X) =aQ,---Q, where a € R
and Q; have coefficients with ged 1. Each @ is irreducible and a € R has a unique factorization [] a; into
irreducibles. Reciprocally, any other factorization in F[X] is of the form P; ... P, where P;(X) = f;Q:(X)
with f; € F. Thus any other factorization over R[X] is of the form [[b; [] ¢;Q:(X) and since the coefficients
of Q; have ged 1 it follows that ¢;Q; is irreducible iff ¢; is a unit in R. Thus [[a; = [[b; [] ¢; and since R is
a UFD, we get the desired unique factorization. O

Example 7. In class [ worked out the following example: If n € Z>; then the number of (z,y) € Z?* such
that n = 22 4 42 is
A(dy(n) — d_(n))
where d (n) is the number of divisors of n which are = +1 (mod 4).
This relied on the fact that n = 22 + y? = (z + iy)(x — iy) in Z[i] which is a UFD. Here is a summary:

L. If = yz in Z[i] then |z|? = |y|?|2|* and |z|?, |y|?,|2|> € Z. Thus if || is an integer prime p then
x € Z[i] must be irreducible.

2. 2= —i(1 +14)? and 1 + i is irreducible by the criterion.

3. If p =3 (mod 4) is an integer prime and p | 22 + y? then p | z,y. Otherwise we'd get, e.g., if p { v,
that —1 = (z/y)? (mod p) and raising to (p — 1)/2 gives a contradiction. Thus p must be a prime of
Z[i] as well since otherwise you'd get p = xy so p?> = |z|?|y|? and since z,y not units we’d get that
|z|2 = |y|?> = p. But if x = m + ni then |z|> = m? + n? = p and this cannot be by the above.

4. If p=1 (mod 4) is an integer prime. Then F; is cyclic of order p— 1, divisible by 4, so there is a € F;
of order 4. Then p | a® +1 = (a +i)(a —4). If p we a prime of Z[i] then p | a + i or p | a — i which
cannot be as p { £1. Thus p factors into irreducibles and if p = zy then |z|*> = |y|*> = 1 in which
case x,y are irreducibles. If x = a + bi then |z|?> = a® + b> = p so y = T = a — bi. For such p write
p = (ap + iby)(ap — ib,) as a product of irreducibles.

5. The units of Z[i] are {£1,+i}. Indeed, as on the homework, z € Z[i] is a unit iff |z] = 1 and simply
solving yields the unit.

6. Decompose n in Z as n = 2° szl (mod 4) P""” Hq53 (mod 44" I n = 22 + 9% then ¢ = 3 (mod 4)
must divide both z and y. Divide out by ¢ and repeat to obtain that n = 22 + y? implies that each
mg must be even. Now n = (z + iy)(z — iy) has prime decomposition in Z[i] (up to units):

(1+1)* H(ap + ibp)" (ap — iby)"" H qme

and necessarily © + iy must be a product of some of these prime factors (again up to units):

=2 + Zy — (]_ + ’L)b H(CLP + ibp)up (G,p — ibp)vp H qTq



But given that 2z = n we deduce that b = a, u, + v, = n, and r, = m,/2 so (up to units)

r+iy = (1+1)" H(ap + ibp)** (ap — iby)" """ H g/

and, up to units, the only choices are 0 < u, < ny,.

The total number of = + iy is therefore
4 (np + 1)

where 4 is the number of units.

7. A divisor d | n is odd iff it is of the form prkp [1¢'s with k, < n, and I, < m,. Moreover,
d=(-1)2% (mod 4). Thus

dy(n) —d_(n)= Y _(d mod 4)

2td|n

- Y (s
kp,lq

— ZZ(_l)Elq
kp Ly

= [T+ DI
q lg=0
= H(”p +1)

since each m, is even and therefore the sums are all 1 in the second to last row.

Putting everything together yields the desired result.



