Graduate Algebra, Fall 2014
 Lecture 31

Andrei Jorza

2014-11-12

2 Rings

2.6 Special types of rings (continued)

2.6.3 UFD (continued)

Theorem 1. Every PID is a UFD.
Proof. Continued from last time.
By the proposition every factorization into irreducibles is unique, so let's show that such factorizations always exist. Suppose $x \in R$. Let $\left(a_{1}\right)$ be a maximal ideal containing x. Then $x \in\left(a_{1}\right)$ and $x=a_{1} x_{1}$. If x_{1} is a unit, then x has a factorization. Otherwise, applying the same method get $x_{1}=a_{2} x_{2}$. After n steps $x=a_{1} \ldots a_{n} x_{n}$. If x_{n} is a unit then x has a factorization. Otherwise if x_{n} is never a unit, get a chain of ideals $I_{n}=\left(x_{n}\right)$ such that $I_{1} \subset I_{2} \subset \ldots$ Let $I=\cup I_{n}$. Since each I_{n} is an ideal, if $x \in I$ and $r \in R$ then $x \in I_{n}$ for some n and $r x \in I_{n} \subset I$ and if $x, y \in I$ then $x, y \in I_{n}$ for some large n and so $x+y \in I_{n} \subset I$. Thus I is an ideal and since R is principal, $I=(a)$ for some $a \in R$. But then $a \in I$ is in some I_{n} and so $\left(x_{n}\right)=(a)=\left(x_{n+1}\right)$. This contradicts the fact that $\left(x_{n}\right)=\left(a_{n+1}\right)\left(x_{n+1}\right)$ with a_{n+1} not a unit. Thus x must have a factorization and by the previous proposition such a factorization is unique.

Example 2. Any Euclidean domain is a UFD.

1. \mathbb{Z}
2. $F[X]$
3. $F \llbracket X \rrbracket$
4. $\mathbb{Z}[i]$
5. $\mathbb{Z}\left[\zeta_{3}\right]$
6. $\mathbb{Z}[\sqrt{2}]$

Example 3. The ring $\mathbb{Z}[\sqrt{-5}]$ is not UFD since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ and each of these is irreducible.

Definition 4. If R is an integral domain then $\operatorname{Frac} R=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in R, y \neq 0\right\}$ up to usual equivalences for fractions, is a field, called the fraction field of R. We'll come back to this construction when we talk about localization later.

Lemma 5 (Gauss' Lemma). Suppose R is a UFD with fraction field F. Suppose $f(X) \in R[X]$ is of the form $f(X)=g(X) h(X)$ with $g(X), h(X) \in F[X]$. Then there exists $a \in F-0$ such that $G(X)=a g(X)$ and $H(X)=a^{-1} h(X)$ are in $R[X]$ with $f(X)=G(X) H(X)$.

Proof. A polynomial $A(X) \in R[X]$ is said to be primitive if $a^{-1} A(X) \in R[X]$ implies $a \in R^{\times}$. In other words the coefficients have no nontrivial common denominator.

Clearing denominators, $a g(X)=G(X)$ and $b h(x)=H(X)$ for some $a, b \in R$ giving $a b f(X)=G(X) H(X)$. Write $a b=\prod p_{i}$ as a product of irreducibles/primes in the UFD R. We know from homework 8 that $\left(p_{1}\right)[X]$ is a prime ideal of $R[X]$ and so $G(X) H(X)=0$ in $R[X] /\left(p_{1}\right)[X]$ which is an integral domain. Thus either $G(X)$ or $H(X)$ is in $\left(p_{1}\right)[X]$ and so one of $p_{1}^{-1} G(X)$ and $p_{1}^{-1} H(X)$ is in $R[X]$, let's say the former. Then $\prod_{i>1} p_{i} f(X)=\left(p_{i}^{-1} G(X)\right) H(X)=G^{\prime}(X) H(X)$. Repeating the argument gives $f(X)=G(X) H(X)$ as desired.

Proposition 6. R is a UFD iff $R[X]$ is a UFD, but $R[X]$ is a PID iff R is a field.
Proof. One direction is trivial. Suppose R is a UFD and $f(X) \in R[X]$. Then $f=P_{1} \cdots P_{n}$ uniquely in $F[X]$ where $F=\operatorname{Frac} R$. By Gauss' lemma we may take $P_{i} \in R[X]$ to get $f(X)=a Q_{1} \cdots Q_{n}$ where $a \in R$ and Q_{i} have coefficients with gcd 1. Each Q_{i} is irreducible and $a \in R$ has a unique factorization $\prod a_{i}$ into irreducibles. Reciprocally, any other factorization in $F[X]$ is of the form $P_{1} \ldots P_{n}$ where $P_{i}(X)=f_{i} Q_{i}(X)$ with $f_{i} \in F$. Thus any other factorization over $R[X]$ is of the form $\prod b_{i} \prod c_{i} Q_{i}(X)$ and since the coefficients of Q_{i} have gcd 1 it follows that $c_{i} Q_{i}$ is irreducible iff c_{i} is a unit in R. Thus $\prod a_{i}=\prod b_{i} \prod c_{i}$ and since R is a UFD, we get the desired unique factorization.

Example 7. In class I worked out the following example: If $n \in \mathbb{Z}_{\geq 1}$ then the number of $(x, y) \in \mathbb{Z}^{2}$ such that $n=x^{2}+y^{2}$ is

$$
4\left(d_{+}(n)-d_{-}(n)\right)
$$

where $d_{ \pm}(n)$ is the number of divisors of n which are $\equiv \pm 1(\bmod 4)$.
This relied on the fact that $n=x^{2}+y^{2}=(x+i y)(x-i y)$ in $\mathbb{Z}[i]$ which is a UFD. Here is a summary:

1. If $x=y z$ in $\mathbb{Z}[i]$ then $|x|^{2}=|y|^{2}|z|^{2}$ and $|x|^{2},|y|^{2},|z|^{2} \in \mathbb{Z}$. Thus if $|x|^{2}$ is an integer prime p then $x \in \mathbb{Z}[i]$ must be irreducible.
2. $2=-i(1+i)^{2}$ and $1+i$ is irreducible by the criterion.
3. If $p \equiv 3(\bmod 4)$ is an integer prime and $p \mid x^{2}+y^{2}$ then $p \mid x, y$. Otherwise we'd get, e.g., if $p \nmid y$, that $-1 \equiv(x / y)^{2}(\bmod p)$ and raising to $(p-1) / 2$ gives a contradiction. Thus p must be a prime of $\mathbb{Z}[i]$ as well since otherwise you'd get $p=x y$ so $p^{2}=|x|^{2}|y|^{2}$ and since x, y not units we'd get that $|x|^{2}=|y|^{2}=p$. But if $x=m+n i$ then $|x|^{2}=m^{2}+n^{2}=p$ and this cannot be by the above.
4. If $p \equiv 1(\bmod 4)$ is an integer prime. Then \mathbb{F}_{p}^{\times}is cyclic of order $p-1$, divisible by 4 , so there is $a \in \mathbb{F}_{p}^{\times}$ of order 4. Then $p \mid a^{2}+1=(a+i)(a-i)$. If p we a prime of $\mathbb{Z}[i]$ then $p \mid a+i$ or $p \mid a-i$ which cannot be as $p \nmid \pm 1$. Thus p factors into irreducibles and if $p=x y$ then $|x|^{2}=|y|^{2}=1$ in which case x, y are irreducibles. If $x=a+b i$ then $|x|^{2}=a^{2}+b^{2}=p$ so $y=\bar{x}=a-b i$. For such p write $p=\left(a_{p}+i b_{p}\right)\left(a_{p}-i b_{p}\right)$ as a product of irreducibles.
5. The units of $\mathbb{Z}[i]$ are $\{ \pm 1, \pm i\}$. Indeed, as on the homework, $z \in \mathbb{Z}[i]$ is a unit iff $|z|=1$ and simply solving yields the unit.
6. Decompose n in \mathbb{Z} as $n=2^{a} \prod_{p \equiv 1(\bmod 4)} p^{n_{p}} \prod_{q \equiv 3(\bmod 4)} q^{m_{q}}$. If $n=x^{2}+y^{2}$ then $q \equiv 3(\bmod 4)$ must divide both x and y. Divide out by q^{2} and repeat to obtain that $n=x^{2}+y^{2}$ implies that each m_{q} must be even. Now $n=(x+i y)(x-i y)$ has prime decomposition in $\mathbb{Z}[i]$ (up to units):

$$
(1+i)^{2 a} \prod\left(a_{p}+i b_{p}\right)^{n_{p}}\left(a_{p}-i b_{p}\right)^{n_{p}} \prod q^{m_{q}}
$$

and necessarily $x+i y$ must be a product of some of these prime factors (again up to units):

$$
z=x+i y=(1+i)^{b} \prod\left(a_{p}+i b_{p}\right)^{u_{p}}\left(a_{p}-i b_{p}\right)^{v_{p}} \prod q^{r_{q}}
$$

But given that $z \bar{z}=n$ we deduce that $b=a, u_{p}+v_{p}=n_{p}$ and $r_{q}=m_{q} / 2$ so (up to units)

$$
x+i y=(1+i)^{a} \prod\left(a_{p}+i b_{p}\right)^{u_{p}}\left(a_{p}-i b_{p}\right)^{n_{p}-u_{p}} \prod q^{m_{q} / 2}
$$

and, up to units, the only choices are $0 \leq u_{p} \leq n_{p}$.
The total number of $x+i y$ is therefore

$$
4 \prod\left(n_{p}+1\right)
$$

where 4 is the number of units.
7. A divisor $d \mid n$ is odd iff it is of the form $\prod_{p} p^{k_{p}} \prod q^{l_{q}}$ with $k_{p} \leq n_{p}$ and $l_{p} \leq m_{q}$. Moreover, $d \equiv(-1)^{\sum l_{q}}(\bmod 4)$. Thus

$$
\begin{aligned}
d_{+}(n)-d_{-}(n) & =\sum_{2 \nmid d \mid n}(d \bmod 4) \\
& =\sum_{k_{p}, l_{q}}(-1)^{\sum l_{q}} \\
& =\sum_{k_{p}} \sum_{l_{q}}(-1)^{\sum l_{q}} \\
& =\prod\left(n_{p}+1\right) \prod \sum_{q} \sum_{l_{q}=0}^{m_{q}}(-1)^{l_{q}} \\
& =\prod\left(n_{p}+1\right)
\end{aligned}
$$

since each m_{q} is even and therefore the sums are all 1 in the second to last row.
Putting everything together yields the desired result.

