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2 Rings

2.6 Special types of rings (continued)

2.6.3 UFD (continued)

Theorem 1. Every PID is a UFD.

Proof. Continued from last time.
By the proposition every factorization into irreducibles is unique, so let’s show that such factorizations

always exist. Suppose x ∈ R. Let (a1) be a maximal ideal containing x. Then x ∈ (a1) and x = a1x1. If
x1 is a unit, then x has a factorization. Otherwise, applying the same method get x1 = a2x2. After n steps
x = a1 . . . anxn. If xn is a unit then x has a factorization. Otherwise if xn is never a unit, get a chain of
ideals In = (xn) such that I1 ⊂ I2 ⊂ . . .. Let I = ∪In. Since each In is an ideal, if x ∈ I and r ∈ R then
x ∈ In for some n and rx ∈ In ⊂ I and if x, y ∈ I then x, y ∈ In for some large n and so x + y ∈ In ⊂ I.
Thus I is an ideal and since R is principal, I = (a) for some a ∈ R. But then a ∈ I is in some In and so
(xn) = (a) = (xn+1). This contradicts the fact that (xn) = (an+1)(xn+1) with an+1 not a unit. Thus x must
have a factorization and by the previous proposition such a factorization is unique.

Example 2. Any Euclidean domain is a UFD.

1. Z

2. F [X]

3. F [[X]]

4. Z[i]

5. Z[ζ3]

6. Z[
√

2]

Example 3. The ring Z[
√
−5] is not UFD since 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5) and each of these is

irreducible.

Definition 4. If R is an integral domain then FracR = {xy |x, y ∈ R, y 6= 0} up to usual equivalences for
fractions, is a field, called the fraction field of R. We’ll come back to this construction when we talk about
localization later.

Lemma 5 (Gauss’ Lemma). Suppose R is a UFD with fraction field F . Suppose f(X) ∈ R[X] is of the
form f(X) = g(X)h(X) with g(X), h(X) ∈ F [X]. Then there exists a ∈ F − 0 such that G(X) = ag(X) and
H(X) = a−1h(X) are in R[X] with f(X) = G(X)H(X).
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Proof. A polynomial A(X) ∈ R[X] is said to be primitive if a−1A(X) ∈ R[X] implies a ∈ R×. In other
words the coefficients have no nontrivial common denominator.

Clearing denominators, ag(X) = G(X) and bh(x) = H(X) for some a, b ∈ R giving abf(X) = G(X)H(X).
Write ab =

∏
pi as a product of irreducibles/primes in the UFD R. We know from homework 8 that (p1)[X]

is a prime ideal of R[X] and so G(X)H(X) = 0 in R[X]/(p1)[X] which is an integral domain. Thus either
G(X) or H(X) is in (p1)[X] and so one of p−11 G(X) and p−11 H(X) is in R[X], let’s say the former. Then∏

i>1 pif(X) = (p−1i G(X))H(X) = G′(X)H(X). Repeating the argument gives f(X) = G(X)H(X) as
desired.

Proposition 6. R is a UFD iff R[X] is a UFD, but R[X] is a PID iff R is a field.

Proof. One direction is trivial. Suppose R is a UFD and f(X) ∈ R[X]. Then f = P1 · · ·Pn uniquely in
F [X] where F = FracR. By Gauss’ lemma we may take Pi ∈ R[X] to get f(X) = aQ1 · · ·Qn where a ∈ R
and Qi have coefficients with gcd 1. Each Qi is irreducible and a ∈ R has a unique factorization

∏
ai into

irreducibles. Reciprocally, any other factorization in F [X] is of the form P1 . . . Pn where Pi(X) = fiQi(X)
with fi ∈ F . Thus any other factorization over R[X] is of the form

∏
bi
∏
ciQi(X) and since the coefficients

of Qi have gcd 1 it follows that ciQi is irreducible iff ci is a unit in R. Thus
∏
ai =

∏
bi
∏
ci and since R is

a UFD, we get the desired unique factorization.

Example 7. In class I worked out the following example: If n ∈ Z≥1 then the number of (x, y) ∈ Z2 such
that n = x2 + y2 is

4(d+(n)− d−(n))

where d±(n) is the number of divisors of n which are ≡ ±1 (mod 4).
This relied on the fact that n = x2 + y2 = (x+ iy)(x− iy) in Z[i] which is a UFD. Here is a summary:

1. If x = yz in Z[i] then |x|2 = |y|2|z|2 and |x|2, |y|2, |z|2 ∈ Z. Thus if |x|2 is an integer prime p then
x ∈ Z[i] must be irreducible.

2. 2 = −i(1 + i)2 and 1 + i is irreducible by the criterion.

3. If p ≡ 3 (mod 4) is an integer prime and p | x2 + y2 then p | x, y. Otherwise we’d get, e.g., if p - y,
that −1 ≡ (x/y)2 (mod p) and raising to (p − 1)/2 gives a contradiction. Thus p must be a prime of
Z[i] as well since otherwise you’d get p = xy so p2 = |x|2|y|2 and since x, y not units we’d get that
|x|2 = |y|2 = p. But if x = m+ ni then |x|2 = m2 + n2 = p and this cannot be by the above.

4. If p ≡ 1 (mod 4) is an integer prime. Then F×p is cyclic of order p−1, divisible by 4, so there is a ∈ F×p
of order 4. Then p | a2 + 1 = (a + i)(a − i). If p we a prime of Z[i] then p | a + i or p | a − i which
cannot be as p - ±1. Thus p factors into irreducibles and if p = xy then |x|2 = |y|2 = 1 in which
case x, y are irreducibles. If x = a + bi then |x|2 = a2 + b2 = p so y = x = a − bi. For such p write
p = (ap + ibp)(ap − ibp) as a product of irreducibles.

5. The units of Z[i] are {±1,±i}. Indeed, as on the homework, z ∈ Z[i] is a unit iff |z| = 1 and simply
solving yields the unit.

6. Decompose n in Z as n = 2a
∏

p≡1 (mod 4) p
np

∏
q≡3 (mod 4) q

mq . If n = x2 + y2 then q ≡ 3 (mod 4)

must divide both x and y. Divide out by q2 and repeat to obtain that n = x2 + y2 implies that each
mq must be even. Now n = (x+ iy)(x− iy) has prime decomposition in Z[i] (up to units):

(1 + i)2a
∏

(ap + ibp)np(ap − ibp)np

∏
qmq

and necessarily x+ iy must be a product of some of these prime factors (again up to units):

z = x+ iy = (1 + i)b
∏

(ap + ibp)up(ap − ibp)vp
∏

qrq
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But given that zz = n we deduce that b = a, up + vp = np and rq = mq/2 so (up to units)

x+ iy = (1 + i)a
∏

(ap + ibp)up(ap − ibp)np−up

∏
qmq/2

and, up to units, the only choices are 0 ≤ up ≤ np.

The total number of x+ iy is therefore

4
∏

(np + 1)

where 4 is the number of units.

7. A divisor d | n is odd iff it is of the form
∏

p p
kp

∏
qlq with kp ≤ np and lp ≤ mq. Moreover,

d ≡ (−1)
∑

lq (mod 4). Thus

d+(n)− d−(n) =
∑
2-d|n

(d mod 4)

=
∑
kp,lq

(−1)
∑

lq

=
∑
kp

∑
lq

(−1)
∑

lq

=
∏

(np + 1)
∏
q

mq∑
lq=0

(−1)lq

=
∏

(np + 1)

since each mq is even and therefore the sums are all 1 in the second to last row.

Putting everything together yields the desired result.
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