Graduate Algebra, Fall 2014 Lecture 32

Andrei Jorza

2014-11-14

3 Modules

3.1 Basics

Definition 1. A module over a ring R is an abelian group M together with a binary scalar multiplication $R \times M \to M$ such that r(m+n) = rm + rn, (r+s)m = rm + sm, r(sm) = (rs)m and 1m = m.

Example 2. 1. Any vector space over a field F is a module over F.

- 2. Any ideal I of a ring R is a module over R.
- 3. If I is an ideal of R then R/I is a module over R.
- 4. Any abelian group is a Z-module.
- 5. A more exotic example. $R = \mathbb{R}[X]$ and $M = C^{\infty}(\mathbb{R}, \mathbb{R})$. Define $P(X) \cdot f$ as the function $(P(X) \cdot f)(x) = (P(\partial/\partial_x)f)(x)$. Then M is an R-module.
- 6. R[X] is an *R*-module for all rings *R*.

Definition 3 (Direct sums). Suppose $\{M_i\}_{i \in S}$ is a collection of *R*-modules where *S* is some indexing set. Define $\bigoplus_{i \in S} M_i$ as the set of tuples $\{\bigoplus m_i | m_i \in M_i\}$ such that all but finitely many of the m_i are 0. Then $\bigoplus M_i$ is an *R*-module with component-wise addition and scalar multiplication.

Definition 4 (Free modules). A free *R*-module is any module of the form $\bigoplus_{i \in S} R$ where *S* is any indexing set. Finitely generated free modules are of the form R^n .

Example 5. 1. Free abelian groups are free Z-modules.

2. Every module over a field, being a vector space, is free.

Definition 6. A homomorphism of *R*-modules is a map $f: M \to N$ which is a homomorphism of underlying abelian groups such that f(rm) = rf(m). Write $\operatorname{Hom}_R(M, N)$ for the abelian group of homomorphisms. Since one can multiply a homomorphism by an element of *R*, the abelian group $\operatorname{Hom}_R(M, N)$ also has the structure of an *R*-module.

Example 7. 1. $\operatorname{Hom}_R(R, M) \cong M$

- 2. If G and H are abelian groups then $\operatorname{Hom}(G, H)$ is the same as $\operatorname{Hom}_{\mathbb{Z}}(G, H)$ as \mathbb{Z} -modules.
- 3. Hom_{\mathbb{Z}}($\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$) $\cong \mathbb{Z}/(n/(m, n))\mathbb{Z}$.

Definition 8. A submodule $M \subset N$ is a subgroup of N such that $rm \in M$ for all $m \in M$ and $r \in R$.

Definition 9. If $M \subset N$ is a submodule then N/M as abelian group carries the structure of *R*-module, called the quotient module.

Definition 10. If $f: S \to R$ is a ring homomorphism and M is an R module then f^*M is the S-module M with scalar multiplication $s \cdot m := f(s)m$.

Example 11. Suppose M is an R-module and $r \in R$. Consider the ring homomorphism $e : R[X] \to R$ sending P(X) to P(r). What is e^*M ? It is the same underlying abelian group M but with scalar multiplication $P(X) \cdot m$ given by P(r)m.

3.2 Isomorphism theorems

Proposition 12. If $f: M \to N$ is an *R*-module hom then

- 1. ker $f \subset M$ is a submodule
- 2. Im $f \subset N$ is a submodule
- 3. Im $f \cong M / \ker f$

Also define coker f := N / Im f is the quotient module.

Proposition 13. Let $N, M \subset L$ be *R*-modules.

- 1. $M \cap N$ is an *R*-module.
- 2. $M + N = \{m + n | m \in M, n \in N\}$ is an *R*-module.
- 3. $(M+N)/N \cong N/M \cap N$.

Proposition 14. Let $N \subset M \subset L$ be *R*-modules.

- 1. M/N is a submodule of L/N.
- 2. $(L/N)/(M/N) \cong L/M$.

3.3 Noetherian rings and modules

Definition 15. An *R*-module *M* satisfies the ascending chain condition (ACC) resp. the descending chain condition (DCC) if for every increasing chain of submodules $M_1 \subset M_2 \subset \ldots \subset M$ (resp. descending chain of submodules $M \supset M_1 \supset M_2 \supset \ldots$) the chain becomes stationary, i.e., $M_n = M_{n+1} = \ldots$ for *n* large enough. Modules *M* satisfying ACC are called **Noetherian** and modules *M* satisfying DCC are called **Artinian**.

- **Example 16.** 1. Every ideal of \mathbb{Z} is Noetherian since $(m) \subset (n)$ implies $n \mid m$. No ideal of \mathbb{Z} is Artinian: indeed $(n) \supseteq (n^2) \supseteq \ldots$
 - 2. Ideals of $\mathbb{Z}/n\mathbb{Z}$ are both Noetherian and Artinian.
 - 3. Ideals in PIDs are Noetherian (see the proof of UFD for PID).
 - 4. In $\mathbb{Z}[X_1, \ldots]$ the ideal (X_1, \ldots) is not Noetherian.