Graduate Algebra, Fall 2014 Lecture 33

Andrei Jorza

2014-11-17

3 Modules

Complexes of modules and exact sequences

Definition 1. A complex of *R*-modules is a collection of *R*-modules (M_i) indexes by $i \in \mathbb{Z}$ together with *R*-module homomorphisms $f_i : M_i \to M_{i+1}$ such that $f_{i+1} \circ f_i = 0$.

- **Example 2.** 1. Let $f: M \to N$ be an *R*-module homomorphism and let $\pi: N \to N/M$ be the projection map. Then $M \xrightarrow{f} N \xrightarrow{\pi} N/M$ is a complex.
 - 2. More generally, if $f: M \to N$ and $g: N \to L$ such that $g \circ f = 0$ then $0 \to M \xrightarrow{f} N \xrightarrow{g} L \to 0$ is a complex.

Definition 3. A complex $\ldots \to M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \to \ldots$ is **exact** at M_i if ker $f_i = \text{Im } f_{i-1}$. A complex is said to be an **exact sequence** if it is exact at every module in the sequence.

Example 4. 1. The complex $M \to N \to N/M$ is exact at N since $\ker(N \to N/M) = M = \operatorname{Im}(M \to N)$.

- 2. $0 \to M \xrightarrow{f} N$ is exact at M iff f is injective.
- 3. $M \xrightarrow{f} N \to 0$ is exact at N iff f is surjective.

Definition 5. A short exact sequence is an exact sequence of the form $0 \to M \to N \to L \to 0$. The first isomorphism theorem can be rephrased as $L \cong N/M$.

3.3 Noetherian rings and modules (continued)

Definition 6. A ring *R* is **Noetherian** if every ideal is Noetherian.

Example 7. 1. PIDs are Noetherian.

2. $\mathbb{Z}[X_1, X_2, \ldots]$ is not Noetherian since the ideal (X_1, \ldots) is not finitely generated.

Proposition 8. An R module M is Noetherian iff every submodule of M is finitely generated.

Proof. Suppose every submodule is finitely generated. Let $M_1 \subset \ldots$ be an ascending chain and $N = \bigcup M_i$. Since N is finitely generated, its generators are in some big M_n and so the chain is stationary.

Let N be a submodule of M and S the set of finitely generated submodules of N. Then S is not empty since $0 \in S$. Also, every ascending chain in S has a max since the chain is stationary. Thus by Zorn's lemma S has a maximal finitely generated submodule N' of N. If $N \neq N'$ choose $n \in N - N'$ in which case $N' \subseteq N' + nR \subset N$ is a larger finitely generated submodule, contradicting the choice of N'. Thus N = N'is also finitely generated. **Definition 9.** A short exact sequence of *R*-modules is $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$ such that *f* and *g* are *R*-module homomorphisms, *f* is injective, *g* is surjective and Im $f = \ker g$.

Example 10. If $f: M \to N$ is injective then $0 \to M \to N \to N/f(M) \to 0$ is short exact.

Proposition 11. Let $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$ be an exact sequence of *R*-modules. Then *N* is Noetherian (resp. Artinian) iff both *M* and *P* are.

Proof. Only the Noetherian part: Suppose that N is Noetherian and M_i is an ascending chain in M. Then $f(M_i)$ is an ascending chain in N and thus is stationary. Since f is injective, M_i has to be stationary. If P_i is an ascending chain in P then $g^{-1}(P_i)$ is an ascending chain in N and thus is stationary. By surjectivity of g, it follows that $g(g^{-1}(P_i)) = P_i$ and so P_i is stationary.

Now suppose that M and P are Noetherian. Let N_i be an ascending chain. Then $f^{-1}(N_i)$ is stationary, say with limit A, and $g(N_i)$ is stationary, say with limit B. But $0 \to f^{-1}(N_i) \to N_i \to g(N_i) \to 0$ is exact so for i large $0 \to A \to N_i \to B \to 0$ is exact. Then N_i is stationary by the third isomorphism theorem. (Indeed, $N_{i+1}/N_i \cong (N_{i+1}/A)/(N_i/A) \cong B/B = 0.$)

Proposition 12. If R is a Noetherian ring the M is Noetherian iff it is finitely generated.

Proof. If Noetherian then every submodule, and so M itself, is finitely generated.

Suppose finitely generated. Then there exists a surjection $\mathbb{R}^n \to M$.

The free module R is Noetherian because its submodules are ideals and R is a Noetherian ring. By induction $0 \to R \to R^n \to R^{n-1} \to 0$ so R^n is Noetherian. The previous proposition then gives M is Noetherian.