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3 Modules

3.3 Noetherian rings and modules (continued)

Theorem 1 (Hilbert basis theorem). If R is a Noetherian ring then R[X] is a Noetherian ring. Inductively,
R[X1, . . . , Xn] is a Noetherian ring for all n ≥ 0.

Proof. Let I be an ideal of R[X]. We want to show that I is finitely generated as an R[X]-module but we’ll
do something better: we’ll show that it is finitely generated as an R-module, i.e., there exist Mi ∈ R[X]
such that I = RM1 + · · · + RMn in which case R[X]M1 + · · · + R[X]Mn = R[X]I = I. We’ll do this as
follows: we will find a finitely generated R-module J containing I. Since R is a Noetherian ring and J is
finitely generated it follows that J is Noetherian. But then every R-submodule of J (including I) is finitely
generated over R and the conclusion follows.

For a polynomial P (X) = a0 + a1X + · · ·+ anX
n let i(P ) = an. Let i(I) = {i(P )|P ∈ I}. Then i(I) is

an ideal. For r ∈ R have ri(P ) = i(rP ). If degP ≤ degQ then i(P ) + i(Q) = i(PXdegQ−degP + Q) and so
i(I) is an ideal of R. R is a Noetherian ring so i(I) = (a1, . . . , an) is finitely generated and let Pi ∈ R[X]
such that i(Pi) = ai. Let r = max degPi.

We choose the R-module J generated by P1, . . . , Pn, 1, X, . . . ,Xr−1 so J =
∑

RPi +
∑r−1

i=0 RXi. Let’s
show that I ⊂ J .

Suppose P (X) ∈ I of the form P (X) = b0 + b1X + · · · + bmXm. We’ll show that P (X) ∈ J by
induction on m. If m < r the already P ∈ J . Suppose now that m ≥ r ≥ degPi for all i. Write
bm =

∑
uiai. Then P (X) −

∑
uiPi(X)Xm−degPi ∈ I has degree ≤ m − 1. By induction we deduce that

P (X)−
∑

uiPi(X)Xm−degPi ∈ J but then P (X) ∈ J as desired.
Thus I ⊂ J as an R-module and the argument from the beginning of the proof yields that I is finitely

generated as an R and thus also as an R[X]-module. We deduce that R[X] is a Noetherian ring.

3.4 Modules over PIDs

In this section we’ll prove the following theorem.

Theorem 2. If R is a PID and M is a finitely generated module over R then there exists r ≥ 0 and
x1, . . . , xn ∈ R such that

M ∼= Rr ⊕R/(x1)⊕ · · · ⊕R/(xn)

where x1 | . . . | xn.

Corollary 3. Specializing to R = Z and knowing that abelian groups are Z-modules we get the classification
of finitely generated abelian groups.
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3.4.1 Free modules

Definition 4. Suppose R is an integral domain and M is an R-module. The rank rankR(M) of M is the
largest number of R-linearly independent elements of M .

Lemma 5. Any n + 1 elements of Rn are linearly dependent and so rankR(Rn) = R.

Proof. Pick m1, . . . ,mn+1 ∈ Rn ⊂ (FracR)n which is a vector space. Thus vi are FracR-linearly dependent
and, clearing denominators, they are R-linearly dependent.

Proposition 6. If R is a PID and M is a submodule of the free module N of rank n. Then M is free of
rank m ≤ n .

Proof. By induction on rankR(N). For rank 1, every submodule of R is a necessarily principal ideal so it is
free of rank 1 or 0. Suppose we know it for rank n and want to show it for rank n+ 1. Let v1, . . . , vn+1 be a
basis of N ∼= Rn+1 and let f : N → R be the projection to Rvn+1. Then ker f is free of rank n and so every
submodule of ker f is free of rank ≤ n. Thus M ∩ ker f is free of rank m ≤ n and let u1, . . . , um be a basis
of M ∩ ker f .

To be continued.
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