Graduate Algebra, Fall 2014 Lecture 35

Andrei Jorza

2014-11-21

3 Modules

3.4 Modules over PIDs (continued)

3.4.1 Free modules (continued)

We'll use twice the following obvious result.

Lemma 1. Suppose $M = M' \oplus M''$ is an *R*-module and $M \subset N$ is a submodule. Then $N = (N \cap M') \oplus (N \cap M'')$.

Proof. If f is projection to M'' and $n \in N$ then f(n - f(n)) = 0 so $n - f(n) \in N \cap M'$. But $f(n) \in N \cap M''$ and the result follows.

Proposition 2. If R is a PID and M is a submodule of the free module N of rank n. Then M is free of rank $m \leq n$.

Proof. By induction on rank_R(N). For rank 1, every submodule of R is a necessarily principal ideal so it is free of rank 1 or 0. Indeed the map $R \to (a)$ sending r to ra is an R-module isomorphism for any integral domain.

Suppose we know it for rank n and want to show it for rank n+1. Let v_1, \ldots, v_{n+1} be a basis of $N \cong \mathbb{R}^{n+1}$ and let $f: N \to \mathbb{R}$ be the projection to $\mathbb{R}v_{n+1}$. Then ker $f = \mathbb{R}^n$ is free of rank n and so every submodule of ker f is free of rank $\leq n$. We get the commutative diagram of exact sequences

The map f yields $R^{n+1} \cong R^n \oplus R$ and the previous lemma shows that $M \cong (M \cap R^n) \oplus f(M)$. Finally the inductive hypothesis gives that $M \cap R^n \subset R^n$ and f(M) are free and so M, their direct sum, is also free. \Box

Corollary 3. If M is a submodule of N as above there exist $a_1 \mid \ldots \mid a_m$ and a basis y_1, \ldots, y_n of N such that a_1y_1, \ldots, a_my_m is a basis of M.

Proof. Again we prove by induction. For n = 1 it is immediate. Suppose we know it for n - 1.

Examining the result we see that if M has basis $a_i y_i$ then a_1 is the gcd of all the basis elements of M and thus of all the elements of M. Therefore we seek a_1 this way.

For $f \in \text{Hom}_R(M, R)$ the image $f(M) \subset R$ is an principal ideal (a_f) . Consider the collection $S = \{(a_f) | f \in \text{Hom}_R(M, R)\}$. The ring R is a PID and so is Noetherian which implies that every ascending chain of ideals is stationary and thus has a maximum. Zorn's lemma therefore implies that the set S has

a maximum element $(a_1) = (a_f)$ so $f(M) = (a_1)$ for some $f \in \text{Hom}_R(M, R)$. Let's in fact show that a_1 is then a gcd for all the elements of M.

Since $(a_1) = f(M)$ there exists $m \in M$ such that $f(m) = a_1$. Pick any other $g \in \text{Hom}_R(M, R)$. We first show that $a_1 \mid g(m)$. If $d = \text{gcd}(a_1, g(m))$ there exist r, s such that $d = ra_1 + sg(m) = rf(m) + sg(m)$. Take $h = rf + sg \in \text{Hom}_R(M, R)$. Note that h(m) = d so $(a_1) \subset (d) \subset h(M)$. But (a_1) was maximal in S and certainly h(M) is in S so $(a_1) = h(M)$ and therefore $(a_1) = (d)$ which implies that $a_1 \mid g(m)$ as desired.

Suppose v_1, \ldots, v_n is a basis of \mathbb{R}^n . Then $m = \sum \alpha_i v_i$. Let g_i be projection to the coefficient of v_i . The above shows that $a_1 \mid g_i(m) = \alpha_i$ so $\alpha_i = a_1 c_i$ and so $m = \sum a_1 c_i v_i$. Write $y_1 = \sum c_i v_i$ in which case $m = a_1 y_1$. Then $a_1 = f(m) = a_1 f(y_1)$ so $f(y_1) = 1$.

I claim that $R^n \cong \ker f \oplus Ry_1$. Suppose $x \in R^n$. Then $f(x - f(x)y_1) = 0$ as $f(y_1) = 1$ and so $x - f(x)y_1 \in \ker f$. Moreover, for the same reason, $\ker f \cap Ry_1 = 0$ and the conclusion follows. Now the lemma shows that $M \cong (M \cap \ker f) \oplus (M \cap Ry_1)$.

Note that if $x = ay_1$ for some $x \in M$ then f(x) = a is divisible by a_1 and so $M \cap Ry_1 = a_1y_1$. By the inductive hypothesis we can find a basis y_2, \ldots, y_n of ker f and $a_2 \mid \ldots \mid a_m$ such that a_2y_2, \ldots, a_my_m is a basis of $M \cap kerf$. Thus a_iy_i is a basis of M.

It suffices to check that $a_1 \mid a_2$. If g is projection to y_2 in $\text{Hom}_R(M, R)$ then $g(M) = (a_2)$ which must be contained in (a_1) . (If not take the gcd and the argument from the above yields a contradiction.)