
Graduate Algebra, Fall 2014

Lecture 35

Andrei Jorza

2014-11-21

3 Modules

3.4 Modules over PIDs (continued)

3.4.1 Free modules (continued)

We’ll use twice the following obvious result.

Lemma 1. Suppose M = M ′ ⊕M ′′ is an R-module and M ⊂ N is a submodule. Then N = (N ∩M ′) ⊕
(N ∩M ′′).

Proof. If f is projection to M ′′ and n ∈ N then f(n− f(n)) = 0 so n− f(n) ∈ N ∩M ′. But f(n) ∈ N ∩M ′′

and the result follows.

Proposition 2. If R is a PID and M is a submodule of the free module N of rank n. Then M is free of
rank m ≤ n .

Proof. By induction on rankR(N). For rank 1, every submodule of R is a necessarily principal ideal so it is
free of rank 1 or 0. Indeed the map R → (a) sending r to ra is an R-module isomorphism for any integral
domain.

Suppose we know it for rank n and want to show it for rank n+1. Let v1, . . . , vn+1 be a basis of N ∼= Rn+1

and let f : N → R be the projection to Rvn+1. Then ker f = Rn is free of rank n and so every submodule
of ker f is free of rank ≤ n. We get the commutative diagram of exact sequences

0 // Rn // Rn+1 // R // 0

0 // M ∩Rn //?�

OO

M //?�

OO

f(M) //
?�

OO

0

The map f yields Rn+1 ∼= Rn ⊕R and the previous lemma shows that M ∼= (M ∩Rn)⊕ f(M). Finally the
inductive hypothesis gives that M ∩Rn ⊂ Rn and f(M) are free and so M , their direct sum, is also free.

Corollary 3. If M is a submodule of N as above there exist a1 | . . . | am and a basis y1, . . . , yn of N such
that a1y1, . . . , amym is a basis of M .

Proof. Again we prove by induction. For n = 1 it is immediate. Suppose we know it for n− 1.
Examining the result we see that if M has basis aiyi then a1 is the gcd of all the basis elements of M

and thus of all the elements of M . Therefore we seek a1 this way.
For f ∈ HomR(M,R) the image f(M) ⊂ R is an principal ideal (af ). Consider the collection S =

{(af )|f ∈ HomR(M,R)}. The ring R is a PID and so is Noetherian which implies that every ascending
chain of ideals is stationary and thus has a maximum. Zorn’s lemma therefore implies that the set S has
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a maximum element (a1) = (af ) so f(M) = (a1) for some f ∈ HomR(M,R). Let’s in fact show that a1 is
then a gcd for all the elements of M .

Since (a1) = f(M) there exists m ∈M such that f(m) = a1. Pick any other g ∈ HomR(M,R). We first
show that a1 | g(m). If d = gcd(a1, g(m)) there exist r, s such that d = ra1 + sg(m) = rf(m) + sg(m). Take
h = rf + sg ∈ HomR(M,R). Note that h(m) = d so (a1) ⊂ (d) ⊂ h(M). But (a1) was maximal in S and
certainly h(M) is in S so (a1) = h(M) and therefore (a1) = (d) which implies that a1 | g(m) as desired.

Suppose v1, . . . , vn is a basis of Rn. Then m =
∑
αivi. Let gi be projection to the coefficient of vi. The

above shows that a1 | gi(m) = αi so αi = a1ci and so m =
∑
a1civi. Write y1 =

∑
civi in which case

m = a1y1. Then a1 = f(m) = a1f(y1) so f(y1) = 1.
I claim that Rn ∼= ker f ⊕ Ry1. Suppose x ∈ Rn. Then f(x − f(x)y1) = 0 as f(y1) = 1 and so

x − f(x)y1 ∈ ker f . Moreover, for the same reason, ker f ∩ Ry1 = 0 and the conclusion follows. Now the
lemma shows that M ∼= (M ∩ ker f)⊕ (M ∩Ry1).

Note that if x = ay1 for some x ∈ M then f(x) = a is divisible by a1 and so M ∩ Ry1 = a1y1. By the
inductive hypothesis we can find a basis y2, . . . , yn of ker f and a2 | . . . | am such that a2y2, . . . , amym is a
basis of M ∩ kerf . Thus aiyi is a basis of M .

It suffices to check that a1 | a2. If g is projection to y2 in HomR(M,R) then g(M) = (a2) which must be
contained in (a1). (If not take the gcd and the argument from the above yields a contradiction.)
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