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3 Modules

3.4 Modules over PIDs (continued)
3.4.1 Free modules (continued)

We'll use twice the following obvious result.

Lemma 1. Suppose M = M' & M" is an R-module and M C N is a submodule. Then N = (NN M') ®
(NNM").

Proof. If f is projection to M"” and n € N then f(n— f(n)) =0son— f(n) € NNM'. But f(n) e NnM"
and the result follows. O

Proposition 2. If R is a PID and M 1is a submodule of the free module N of rank n. Then M is free of
rank m <n .

Proof. By induction on rankpg (V). For rank 1, every submodule of R is a necessarily principal ideal so it is
free of rank 1 or 0. Indeed the map R — (a) sending r to ra is an R-module isomorphism for any integral
domain.

Suppose we know it for rank n and want to show it for rank n+1. Let vq,...,v,41 be a basis of N = Rn+1
and let f : N — R be the projection to Rv,11. Then ker f = R™ is free of rank n and so every submodule
of ker f is free of rank < n. We get the commutative diagram of exact sequences

0 R" Rn+1 R 0
0— > MAR" M FOM) 0

The map f yields R"*! =2 R" @ R and the previous lemma shows that M = (M N R") & f(M). Finally the
inductive hypothesis gives that M N R™ C R"™ and f(M) are free and so M, their direct sum, is also free. [

Corollary 3. If M is a submodule of N as above there exist ay | ... | am and a basis y1,...,yn of N such
that a1y, ..., GmYm 1S a basis of M.

Proof. Again we prove by induction. For n = 1 it is immediate. Suppose we know it for n — 1.

Examining the result we see that if M has basis a;y; then a; is the ged of all the basis elements of M
and thus of all the elements of M. Therefore we seek a1 this way.

For f € Hompg(M, R) the image f(M) C R is an principal ideal (ay). Consider the collection S =
{(af)|f € Hompg(M,R)}. The ring R is a PID and so is Noetherian which implies that every ascending
chain of ideals is stationary and thus has a maximum. Zorn’s lemma therefore implies that the set S has



a maximum element (a1) = (ay) so f(M) = (a1) for some f € Homg(M, R). Let’s in fact show that a; is
then a ged for all the elements of M.

Since (a1) = f(M) there exists m € M such that f(m) = a;. Pick any other ¢ € Homg(M, R). We first
show that ay | g(m). If d = ged(aq, g(m)) there exist r, s such that d = ra; + sg(m) = rf(m) + sg(m). Take
h=rf+ sg € Homgr(M, R). Note that h(m) = d so (a1) C (d) C h(M). But (a;) was maximal in S and
certainly h(M) is in S so (a1) = h(M) and therefore (a1) = (d) which implies that a; | g(m) as desired.

Suppose vy, ..., U, is a basis of R™. Then m = > a;v;. Let g; be projection to the coefficient of v;. The
above shows that a; | gi(m) = a; so a; = ay¢; and so m = > ayc;v;. Write y3 = Y ¢;u; in which case
m = ayy;. Then a; = f(m) =a1f(y1) so f(y1) = 1.

I claim that R™ 2 ker f ® Ry;. Suppose € R™. Then f(z — f(x)y1) = 0 as f(y1) = 1 and so
x — f(x)y; € ker f. Moreover, for the same reason, ker f N Ry; = 0 and the conclusion follows. Now the
lemma shows that M = (M Nker f) & (M N Ryy).

Note that if = ay; for some z € M then f(z) = a is divisible by a1 and so M N Ry; = a1y;. By the
inductive hypothesis we can find a basis ya,...,y, of ker f and as | ... | a,, such that asys,...,amym is a
basis of M N kerf. Thus a;y; is a basis of M.

It suffices to check that ay | az. If g is projection to y2 in Homp(M, R) then g(M) = (az) which must be
contained in (a1). (If not take the ged and the argument from the above yields a contradiction.) O



