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3 Modules

3.4 Modules over PIDs (continued)
3.4.2 Finitely generated modules

Proof of the theorem. Suppose M is a finitely generated module. Then there exists an R-module homo-
morphism f: R"™ — M. Then ker f C R" is a submodule and so, by the previous proposition, ker f = R™.
Moreover, we can find a basis R” = ®Ry; and a1 | ... | a,, € R such that a1y1, ..., amym is a basis of ker f,
ie., ker f = ®Ra;y;.

Thus we get the exact sequence 0 — R™ —— R" Sy M = 0 and so M = cokeri = R"/R™ =

®Ry;/ ® Ra;y; = R"™ & P R/(a;) as desired. 0
Proposition 1. Suppose R is a PID and M a finitely generated module of the form R" ®& @ R/(a;) such
that ay | ... | an. Then Anng(M) = (a,) and Anng(M) is called the characteristic ideal of M.

Proof. Very easy. O

3.5 Nakayama’s lemma

Recall that if M and N are R-modules then Homp(M, N) has the structure of an R-module. If, more-
over, M = N then Endgr(M) := Hompr(M, M) in fact has the structure of a ring. Indeed, we can define
“multiplication” of endomorphisms as composition. The ring R < Endg(M) via r +— rid.

Proposition 2 (Nakayama’s lemma). Let M be a finitely generated R-module and I an ideal of R.
1. If f: M — M is an R-module homomorphism such that f(M) C IM then f satisfies an equation
4 an af" N4 +ag=0
where a; € I. The equation is taken in the ring Endg(M).
2. If IM = M then there exists x € 1 + I such that xtM = 0.

8. If I is an ideal contained in the Jacobson radical of R and M is finitely generated such that M = IM
then M = 0.

Proof. (1): Let M =" Rm;. Then f(m;) € IM = )" Im; so we write f(m;) =" a; jm; with a; ; € I. Let
A = (a;,j) in which case we have f — AI, acts trivially on > Rm;. This implies that det(f — Al,) =0 and
this determinant, expanded, yields the desired equation.

(2): Apply the first part to f = id and take x = 1 + > a;. Then f¥ = fo fo---of = id and
ap € R C Endg (M) is in fact apid so the result follows.

(3): Pick 1+ 2 € 1+ I such that (1 + )M = 0. Since z € I C J(R) it follows that 1 + = is a unit and
soM=(1+x)"'(1+2)M =0. O



Example 3. Take R = Z and M finitely generated over Z in which case the next section shows that
M=~ R &@Z/(n;). If I = (m) then IM = M iff (m,[[n;) =1 and » = 0. Finding z € Z such that
xM = 0 is equivalent to [nq,...,ng] | ¢ so the previous result implies that there exists x =1 (mod m) such
that [nq,...,ng] | * which is clear from the fact that [nq,...,ng] € (Z/mZ)*.

Problem 4. On the homework you will use Nakayama’s lemma to show that if I is an ideal in a Noetherian
ring then NI™ = 0 which has topological implications on completed rings.

3.6 Operations on modules I

3.6.1 Annihilators

Definition 5. Let M be an R-module. Then Anung(M) = {r € R|rM = 0} is the annihilator of M.
Example 6. 1. If I is an ideal Anng(R/I) = 1.

2. If R is an integral domain and I is an ideal then Anng(I) = 0.

Lemma 7. Anng(M + N) = Aung(M) N Anng(N).

3.6.2 Homs
Proposition 8. R is a commutative ring.

1. If f : M — M’ is a homomorphism then get homomorphism f* : Hompg(M', N) — Hompr (M, N) and
f« : Homg(N, M) — Hompg(N, M’).

2. The sequence of R-modules M’ T M L M”50 s exact if and only if for every R-module N the
sequence

0 — Homp(M", N) 5 Homp(M, N) L Homp(M', N)

15 exact.

3. The sequence of R-modules 0 — N’ Sy N L5 N is exact if and only if for every R-module M the
sequence

0 — Homp (M, N') L5 Homp (M, N) 2 Homp(M, N
s exact.

Proof. (1): f*(¢) = ¢o f and f.(¢) = f o ¢ are R-module homomorphisms.

(2): Suppose the initial sequence is exact. First, we show that ¢* is injective. If g*(¢) = 0 then ¢pog =0
but g is surjective so ¢ = 0 as desired. Suppose now that ¢ € ker f*, we want ¢ € Img*. So f*(¢) =0
so ¢o f = 0. But then Im f C ker¢ and so kerg = Im f C ker ¢ which implies that ¢ factors through
M/ ker g = M" by exactness. Thus ¢ € Im g* as desired.

Now suppose the resulting sequence is exact for all N. If g is not surjective take N = coker g in which
case if m : M" — coker g is the natural projection map then 7 # 0 and ¢g*(7) = 0 yielding a contradiction.
Take N = coker f and 7 : M — coker f the natural projection. Then f*(7) =0 and so 7 = g*(¢) for some
¥ M — coker f, i.e., T = 1 o g. But this implies that ker g C kerm = Im f as desired.

(3): Similar to (2). O

Definition 9. The R-module P is injective if injectivity of f implies surjectivity of f*. It is projective
if surjectivity of g implies surjectivity of g..

Example 10. Consider 0 — Z X5 7 7/27 — 0. Let M = Z/2Z. Then f is injective but f* :
Hom(Z,Z/27Z) = Z/27 — Z/27 = Hom(Z,7Z/2Z) is visibly the 0 map so M is not injective. Moreover
g* : Hom(Z/2Z,7) — Hom(Z/2Z,Z/27Z) is in fact g, : 0 — Z/2Z which is not surjective. (We used that
there exist not homomorphisms from Z/27Z to Z.) Thus M is also not projective.



