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3 Modules

3.4 Modules over PIDs (continued)

3.4.2 Finitely generated modules

Proof of the theorem. Suppose M is a finitely generated module. Then there exists an R-module homo-
morphism f : Rn →→M . Then ker f ⊂ Rn is a submodule and so, by the previous proposition, ker f ∼= Rm.
Moreover, we can find a basis Rn = ⊕Ryi and a1 | . . . | am ∈ R such that a1y1, . . . , amym is a basis of ker f ,
i.e., ker f = ⊕Raiyi.

Thus we get the exact sequence 0 → Rm i−→ Rn f−→ M → 0 and so M ∼= coker i = Rn/Rm =
⊕Ryi/⊕Raiyi ∼= Rn−m ⊕

⊕
R/(ai) as desired.

Proposition 1. Suppose R is a PID and M a finitely generated module of the form Rr ⊕
⊕
R/(ai) such

that a1 | . . . | an. Then AnnR(M) = (an) and AnnR(M) is called the characteristic ideal of M .

Proof. Very easy.

3.5 Nakayama’s lemma

Recall that if M and N are R-modules then HomR(M,N) has the structure of an R-module. If, more-
over, M = N then EndR(M) := HomR(M,M) in fact has the structure of a ring. Indeed, we can define
“multiplication” of endomorphisms as composition. The ring R ↪→ EndR(M) via r 7→ r id.

Proposition 2 (Nakayama’s lemma). Let M be a finitely generated R-module and I an ideal of R.

1. If f : M →M is an R-module homomorphism such that f(M) ⊂ IM then f satisfies an equation

fn + an−1f
n−1 + · · ·+ a0 = 0

where ai ∈ I. The equation is taken in the ring EndR(M).

2. If IM = M then there exists x ∈ 1 + I such that xM = 0.

3. If I is an ideal contained in the Jacobson radical of R and M is finitely generated such that M = IM
then M = 0.

Proof. (1): Let M =
∑
Rmi. Then f(mi) ∈ IM =

∑
Imi so we write f(mi) =

∑
ai,jmj with ai,j ∈ I. Let

A = (ai,j) in which case we have f −AIn acts trivially on
∑
Rmi. This implies that det(f −AIn) = 0 and

this determinant, expanded, yields the desired equation.
(2): Apply the first part to f = id and take x = 1 +

∑
ai. Then fk = f ◦ f ◦ · · · ◦ f = id and

a0 ∈ R ⊂ EndR(M) is in fact a0 id so the result follows.
(3): Pick 1 + x ∈ 1 + I such that (1 + x)M = 0. Since x ∈ I ⊂ J(R) it follows that 1 + x is a unit and

so M = (1 + x)−1(1 + x)M = 0.
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Example 3. Take R = Z and M finitely generated over Z in which case the next section shows that
M ∼= Rr ⊕

⊕
Z/(ni). If I = (m) then IM = M iff (m,

∏
ni) = 1 and r = 0. Finding x ∈ Z such that

xM = 0 is equivalent to [n1, . . . , nk] | x so the previous result implies that there exists x ≡ 1 (mod m) such
that [n1, . . . , nk] | x which is clear from the fact that [n1, . . . , nk] ∈ (Z/mZ)×.

Problem 4. On the homework you will use Nakayama’s lemma to show that if I is an ideal in a Noetherian
ring then ∩In = 0 which has topological implications on completed rings.

3.6 Operations on modules I

3.6.1 Annihilators

Definition 5. Let M be an R-module. Then AnnR(M) = {r ∈ R|rM = 0} is the annihilator of M .

Example 6. 1. If I is an ideal AnnR(R/I) = I.

2. If R is an integral domain and I is an ideal then AnnR(I) = 0.

Lemma 7. AnnR(M +N) = AnnR(M) ∩AnnR(N).

3.6.2 Homs

Proposition 8. R is a commutative ring.

1. If f : M → M ′ is a homomorphism then get homomorphism f∗ : HomR(M ′, N) → HomR(M,N) and
f∗ : HomR(N,M)→ HomR(N,M ′).

2. The sequence of R-modules M ′
f−→ M

g−→ M ′′ → 0 is exact if and only if for every R-module N the
sequence

0→ HomR(M ′′, N)
g∗

−→ HomR(M,N)
f∗

−→ HomR(M ′, N)

is exact.

3. The sequence of R-modules 0 → N ′
f−→ N

g−→ N ′′ is exact if and only if for every R-module M the
sequence

0→ HomR(M,N ′)
f∗−→ HomR(M,N)

g∗−→ HomR(M,N ′′)

is exact.

Proof. (1): f∗(φ) = φ ◦ f and f∗(φ) = f ◦ φ are R-module homomorphisms.
(2): Suppose the initial sequence is exact. First, we show that g∗ is injective. If g∗(φ) = 0 then φ ◦ g = 0

but g is surjective so φ = 0 as desired. Suppose now that φ ∈ ker f∗, we want φ ∈ Im g∗. So f∗(φ) = 0
so φ ◦ f = 0. But then Im f ⊂ kerφ and so ker g = Im f ⊂ kerφ which implies that φ factors through
M/ ker g ∼= M ′′ by exactness. Thus φ ∈ Im g∗ as desired.

Now suppose the resulting sequence is exact for all N . If g is not surjective take N = coker g in which
case if π : M ′′ → coker g is the natural projection map then π 6= 0 and g∗(π) = 0 yielding a contradiction.
Take N = coker f and π : M → coker f the natural projection. Then f∗(π) = 0 and so π = g∗(ψ) for some
ψ : M ′′ → coker f , i.e., π = ψ ◦ g. But this implies that ker g ⊂ kerπ = Im f as desired.

(3): Similar to (2).

Definition 9. The R-module P is injective if injectivity of f implies surjectivity of f∗. It is projective
if surjectivity of g implies surjectivity of g∗.

Example 10. Consider 0 → Z ×2−→ Z → Z/2Z → 0. Let M = Z/2Z. Then f is injective but f∗ :
Hom(Z,Z/2Z) ∼= Z/2Z → Z/2Z ∼= Hom(Z,Z/2Z) is visibly the 0 map so M is not injective. Moreover
g∗ : Hom(Z/2Z,Z) → Hom(Z/2Z,Z/2Z) is in fact g∗ : 0 → Z/2Z which is not surjective. (We used that
there exist not homomorphisms from Z/2Z to Z.) Thus M is also not projective.
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