Graduate Algebra, Fall 2014 Lecture 37

Andrei Jorza

2014-12-01

3 Modules

3.6 Operations on modules I (continued)

3.6.2 Homs (continued)

Proposition 1. Let R be a commutative ring.

- 1. Every free R-module is projective.
- 2. An R-module M is projective if and only if there exists an R-module N such that $M \oplus N$ is a free R-module. (We say M is a direct summand of a free module.)
- 3. If R is an integral domain and M is projective then M is torsion-free, i.e., $\operatorname{Ann}_R(m) = 0$ for all $m \in M$. (More generally, if R is not an integral domain and rm = 0 for $m \neq 0$ then r is a zero divisor.)
- 4. If R is a PID then a finitely generated R-module M is projective if and only if it is torsion-free.

Proof. (1): We need to show that if $F = \bigoplus_{i \in I} R$ and $g: M \to N$ is surjective then $g_*: \operatorname{Hom}_R(F, M) \to \operatorname{Hom}_R(F, N)$ is also surjective. Suppose $\phi: F \to N$ is a homomorphism. Let $(g_i)_{i \in I}$ be a basis of F over R. Since g is surjective there exist $m_i \in M$ such that $g(m_i) = \phi(g_i)$. For $f = \sum f_i g_i \in F$ define $\psi(f) = \sum f_i m_i$. This is well defined as there is no relation between the g_i and is clearly a homomorphism. Moreover $g \circ \psi = \phi$ so $g_*(\psi) = \phi$ as desired.

(2): If M is projective, take a surjection $g: F \to M$ from a free module F. (E.g., $F = \bigoplus_{m \in M} R$.) Projectivity gives that $g_* : \operatorname{Hom}_R(M, F) \to \operatorname{Hom}_R(M, M)$ is surjective and so there exists $s: M \to F$ such that $g_*(s) = \operatorname{id}$, i.e., $g \circ s = \operatorname{id}$. Let $N = \ker g$, a submodule of F. Then s is injective and so $M \cong \operatorname{Im} s$. Finally, $\operatorname{Im} s \cap \ker g = 0$ because otherwise their composition would not be the identity. For every $f \in F$ we have $f - s(g(f)) \in \ker g = N$ and so $f \in M + N$. Thus $F = M \oplus N$.

Reciprocally, suppose $M \oplus N = F$ is free. Let $g: P \to P'$ be surjective. Want that $g_* : \operatorname{Hom}_R(M, P) \to \operatorname{Hom}_R(M, P')$ is also surjective. Let $f': M \to P'$ and define $f' \oplus 0 : F \to P'$ sending N to 0. Since F is projective, there exists $h: F \to P$ such that $g \circ h = g_*(h) = f' \oplus 0$. Define $f: M \to P$ by restriction from $F = M \oplus N$ to M. Then $g_*(f) = f'$.

(3): If M is projective then M is a direct summand of a free module so it is torsion-free as any free module over an integral domain is torsion-free.

(4): Homework.

Proposition 2. For an integral ring R a module M is said to be divisible if for $m \in M$ and $r \neq 0 \in R$ there exists $m/r \in M$. (A divisible group is a divisible \mathbb{Z} -module.)

1. If M is injective then it is divisible.

2. If R is a PID and M is divisible then M is injective.

Example 3. \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective \mathbb{Z} -modules.

3.6.3 Localization

Definition 4. Let R be a ring and $S \subset R$ a multiplicatively closed subset. Define $S^{-1}M$ the equivalence classes of fractions m/s with $m \in M$ and $s \in S$ under m/s = n/r iff for some $t \in S$, t(mr - ns) = 0. Equivalently iff $\operatorname{Ann}_R(mr - ns) \cap S \neq \emptyset$.

If $f: M \to N$ is an *R*-module hom then $S^{-1}f: S^{-1}M \to S^{-1}N$ defined by f(m/s) = f(m)/s is well-defined and gives an $S^{-1}R$ -module hom.

Proposition 5. Suppose $M \to N \to P$ is exact. Then $S^{-1}M \to S^{-1}N \to S^{-1}P$ is exact. In particular, $S^{-1}(M/N) \cong S^{-1}M/S^{-1}N$.

Proof. If gf = 0 then $S^{-1}gS^{-1}f = 0$ so $\operatorname{Im} S^{-1}f \subset \ker S^{-1}g$. If $m/s \in \ker S^{-1}g$ then g(m)/s = 0 so g(m)t = 0 for some $t \in S$. But then g(tm) = 0 so $tm \in \operatorname{Im} f$ which means $m \in \operatorname{Im} S^{-1}f$.

Definition 6. A property \mathcal{P} of modules is said to be **local** if M has \mathcal{P} iff $M_{\mathfrak{p}}$ have \mathcal{P} for all prime ideals \mathfrak{p} .

Proposition 7. Let M be an R-module. Then M = 0 is a local property and in fact M = 0 iff $M_{\mathfrak{p}} = 0$ iff $M_{\mathfrak{m}} = 0$.

Proof. Suppose $M_{\mathfrak{m}} = 0$ for all \mathfrak{m} . Suppose $0 \neq m \in M$ and let $I = \operatorname{Ann}_{R}(m)$. Then $I \neq R$ is an ideal of R and let \mathfrak{m} be a maximal ideal containing I. Let $m/1 \in M_{\mathfrak{m}}$. Since $M_{\mathfrak{m}} = 0$ it follows that for some $r \in R - \mathfrak{m}$ have rm = 0 which cannot be since $I \supset \operatorname{Ann}_{R}(m)$.