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3 Modules

3.6 Operations on modules I (continued)

3.6.2 Homs (continued)

Proposition 1. Let R be a commutative ring.

1. Every free R-module is projective.

2. An R-module M is projective if and only if there exists an R-module N such that M ⊕ N is a free
R-module. (We say M is a direct summand of a free module.)

3. If R is an integral domain and M is projective then M is torsion-free, i.e., AnnR(m) = 0 for all
m ∈ M . (More generally, if R is not an integral domain and rm = 0 for m 6= 0 then r is a zero
divisor.)

4. If R is a PID then a finitely generated R-module M is projective if and only if it is torsion-free.

Proof. (1): We need to show that if F = ⊕i∈IR and g : M →→ N is surjective then g∗ : HomR(F,M) →
HomR(F,N) is also surjective. Suppose φ : F → N is a homomorphism. Let (gi)i∈I be a basis of F over R.
Since g is surjective there exist mi ∈M such that g(mi) = φ(gi). For f =

∑
figi ∈ F define ψ(f) =

∑
fimi.

This is well defined as there is no relation between the gi and is clearly a homomorphism. Moreover g◦ψ = φ
so g∗(ψ) = φ as desired.

(2): If M is projective, take a surjection g : F → M from a free module F . (E.g., F = ⊕m∈MR.)
Projectivity gives that g∗ : HomR(M,F ) → HomR(M,M) is surjective and so there exists s : M → F such
that g∗(s) = id, i.e., g ◦ s = id. Let N = ker g, a submodule of F . Then s is injective and so M ∼= Im s.
Finally, Im s ∩ ker g = 0 because otherwise their composition would not be the identity. For every f ∈ F we
have f − s(g(f)) ∈ ker g = N and so f ∈M +N . Thus F = M ⊕N .

Reciprocally, suppose M ⊕N = F is free. Let g : P → P ′ be surjective. Want that g∗ : HomR(M,P )→
HomR(M,P ′) is also surjective. Let f ′ : M → P ′ and define f ′ ⊕ 0 : F → P ′ sending N to 0. Since F is
projective, there exists h : F → P such that g ◦ h = g∗(h) = f ′ ⊕ 0. Define f : M → P by restriction from
F = M ⊕N to M . Then g∗(f) = f ′.

(3): If M is projective then M is a direct summand of a free module so it is torsion-free as any free
module over an integral domain is torsion-free.

(4): Homework.

Proposition 2. For an integral ring R a module M is said to be divisible if for m ∈M and r 6= 0 ∈ R there
exists m/r ∈M . (A divisible group is a divisible Z-module.)

1. If M is injective then it is divisible.
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2. If R is a PID and M is divisible then M is injective.

Example 3. Q and Q/Z are injective Z-modules.

3.6.3 Localization

Definition 4. Let R be a ring and S ⊂ R a multiplicatively closed subset. Define S−1M the equivalence
classes of fractions m/s with m ∈ M and s ∈ S under m/s = n/r iff for some t ∈ S, t(mr − ns) = 0.
Equivalently iff AnnR(mr − ns) ∩ S 6= ∅.

If f : M → N is an R-module hom then S−1f : S−1M → S−1N defined by f(m/s) = f(m)/s is
well-defined and gives an S−1R-module hom.

Proposition 5. Suppose M → N → P is exact. Then S−1M → S−1N → S−1P is exact. In particular,
S−1(M/N) ∼= S−1M/S−1N .

Proof. If gf = 0 then S−1gS−1f = 0 so ImS−1f ⊂ kerS−1g. If m/s ∈ kerS−1g then g(m)/s = 0 so
g(m)t = 0 for some t ∈ S. But then g(tm) = 0 so tm ∈ Im f which means m ∈ ImS−1f .

Definition 6. A property P of modules is said to be local if M has P iff Mp have P for all prime ideals p.

Proposition 7. Let M be an R-module. Then M = 0 is a local property and in fact M = 0 iff Mp = 0 iff
Mm = 0.

Proof. Suppose Mm = 0 for all m. Suppose 0 6= m ∈M and let I = AnnR(m). Then I 6= R is an ideal of R
and let m be a maximal ideal containing I. Let m/1 ∈Mm. Since Mm = 0 it follows that for some r ∈ R−m
have rm = 0 which cannot be since I ⊃ AnnR(m).
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