Graduate Algebra, Fall 2014 Lecture 37

Andrei Jorza

2014-12-01

3 Modules

3.6 Operations on modules I (continued)

3.6.2 Homs (continued)

Proposition 1. Let R be a commutative ring.

1. Every free R-module is projective.
2. An R-module M is projective if and only if there exists an R-module N such that $M \oplus N$ is a free R-module. (We say M is a direct summand of a free module.)
3. If R is an integral domain and M is projective then M is torsion-free, i.e., $\operatorname{Ann}_{R}(m)=0$ for all $m \in M$. (More generally, if R is not an integral domain and $r m=0$ for $m \neq 0$ then r is a zero divisor.)
4. If R is a PID then a finitely generated R-module M is projective if and only if it torsion-free.

Proof. (1): We need to show that if $F=\oplus_{i \in I} R$ and $g: M \rightarrow N$ is surjective then $g_{*}: \operatorname{Hom}_{R}(F, M) \rightarrow$ $\operatorname{Hom}_{R}(F, N)$ is also surjective. Suppose $\phi: F \rightarrow N$ is a homomorphism. Let $\left(g_{i}\right)_{i \in I}$ be a basis of F over R. Since g is surjective there exist $m_{i} \in M$ such that $g\left(m_{i}\right)=\phi\left(g_{i}\right)$. For $f=\sum f_{i} g_{i} \in F$ define $\psi(f)=\sum f_{i} m_{i}$. This is well defined as there is no relation between the g_{i} and is clearly a homomorphism. Moreover $g \circ \psi=\phi$ so $g_{*}(\psi)=\phi$ as desired.
(2): If M is projective, take a surjection $g: F \rightarrow M$ from a free module F. (E.g., $F=\oplus_{m \in M} R$.) Projectivity gives that $g_{*}: \operatorname{Hom}_{R}(M, F) \rightarrow \operatorname{Hom}_{R}(M, M)$ is surjective and so there exists $s: M \rightarrow F$ such that $g_{*}(s)=$ id, i.e., $g \circ s=$ id. Let $N=\operatorname{ker} g$, a submodule of F. Then s is injective and so $M \cong \operatorname{Im} s$. Finally, $\operatorname{Im} s \cap$ ker $g=0$ because otherwise their composition would not be the identity. For every $f \in F$ we have $f-s(g(f)) \in \operatorname{ker} g=N$ and so $f \in M+N$. Thus $F=M \oplus N$.

Reciprocally, suppose $M \oplus N=F$ is free. Let $g: P \rightarrow P^{\prime}$ be surjective. Want that $g_{*}: \operatorname{Hom}_{R}(M, P) \rightarrow$ $\operatorname{Hom}_{R}\left(M, P^{\prime}\right)$ is also surjective. Let $f^{\prime}: M \rightarrow P^{\prime}$ and define $f^{\prime} \oplus 0: F \rightarrow P^{\prime}$ sending N to 0 . Since F is projective, there exists $h: F \rightarrow P$ such that $g \circ h=g_{*}(h)=f^{\prime} \oplus 0$. Define $f: M \rightarrow P$ by restriction from $F=M \oplus N$ to M. Then $g_{*}(f)=f^{\prime}$.
(3): If M is projective then M is a direct summand of a free module so it is torsion-free as any free module over an integral domain is torsion-free.
(4): Homework.

Proposition 2. For an integral ring R a module M is said to be divisible if for $m \in M$ and $r \neq 0 \in R$ there exists $m / r \in M$. (A divisible group is a divisible \mathbb{Z}-module.)

1. If M is injective then it is divisible.
2. If R is a PID and M is divisible then M is injective.

Example 3. \mathbb{Q} and \mathbb{Q} / \mathbb{Z} are injective \mathbb{Z}-modules.

3.6.3 Localization

Definition 4. Let R be a ring and $S \subset R$ a multiplicatively closed subset. Define $S^{-1} M$ the equivalence classes of fractions m / s with $m \in M$ and $s \in S$ under $m / s=n / r$ iff for some $t \in S, t(m r-n s)=0$. Equivalently iff $\mathrm{Ann}_{R}(m r-n s) \cap S \neq \emptyset$.

If $f: M \rightarrow N$ is an R-module hom then $S^{-1} f: S^{-1} M \rightarrow S^{-1} N$ defined by $f(m / s)=f(m) / s$ is well-defined and gives an $S^{-1} R$-module hom.

Proposition 5. Suppose $M \rightarrow N \rightarrow P$ is exact. Then $S^{-1} M \rightarrow S^{-1} N \rightarrow S^{-1} P$ is exact. In particular, $S^{-1}(M / N) \cong S^{-1} M / S^{-1} N$.

Proof. If $g f=0$ then $S^{-1} g S^{-1} f=0$ so $\operatorname{Im} S^{-1} f \subset \operatorname{ker} S^{-1} g$. If $m / s \in \operatorname{ker} S^{-1} g$ then $g(m) / s=0$ so $g(m) t=0$ for some $t \in S$. But then $g(t m)=0$ so $t m \in \operatorname{Im} f$ which means $m \in \operatorname{Im} S^{-1} f$.

Definition 6. A property \mathcal{P} of modules is said to be local if M has \mathcal{P} iff $M_{\mathfrak{p}}$ have \mathcal{P} for all prime ideals \mathfrak{p}.
Proposition 7. Let M be an R-module. Then $M=0$ is a local property and in fact $M=0$ iff $M_{\mathfrak{p}}=0$ iff $M_{\mathfrak{m}}=0$.

Proof. Suppose $M_{\mathfrak{m}}=0$ for all \mathfrak{m}. Suppose $0 \neq m \in M$ and let $I=\operatorname{Ann}_{R}(m)$. Then $I \neq R$ is an ideal of R and let \mathfrak{m} be a maximal ideal containing I. Let $m / 1 \in M_{\mathfrak{m}}$. Since $M_{\mathfrak{m}}=0$ it follows that for some $r \in R-\mathfrak{m}$ have $r m=0$ which cannot be since $I \supset \operatorname{Ann}_{R}(m)$.

