Graduate Algebra, Fall 2014
 Lecture 38

Andrei Jorza

2014-12-03

3 Modules

3.6 Operations on modules I (continued)

3.6.3 Localization (continued)

Proposition 1. Let $f: M \rightarrow N$ be an R-module homomorphism. Then f injective is a local property and in fact f is injective iff $f_{\mathfrak{p}}$ is injective iff $f_{\mathfrak{m}}$ is injective.

Proof. From the exactness of localization proposition above we deduce that if f is injective then all localizations are. Suppose $f_{\mathfrak{m}}$ is injective for all \mathfrak{m}. Let $K=\operatorname{ker} f$ so $0 \rightarrow K \rightarrow M \rightarrow N$ is exact. But then $0 \rightarrow K_{\mathfrak{m}} \rightarrow M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is exact so $K_{\mathfrak{m}}=0$ for all \mathfrak{m} which implies $K=0$ by the previous proposition.

Proposition 2. Whether a ring is reduced is a local property: a ring R is reduced iff $R_{\mathfrak{p}}$ is reduced for all prime ideals \mathfrak{p}.
Proof. Homework 10.

3.7 Functors and exactness

Definition 3. A functor of modules is an assignment attaching $M \mapsto F(M)$ attaching to a module M over a ring R another module $F(M)$ over some ring S such that if $f: M \rightarrow N$ is an R-module homomorphism then there exists an S-module homomorphism $F(f): F(M) \rightarrow F(N)$ (the covariant case) or $F(f): F(N) \rightarrow$ $F(M)$ (the contravariant case).
Example 4. Fix an R-module P. Then $F(M)=\operatorname{Hom}_{R}(M, P)$ and $G(M)=\operatorname{Hom}_{R}(P, M)$ are R-modules. Moreover, setting $F(f)=f^{*}$ and $G(f)=f_{*}$ gives that F is a contravariant functor while G is a covariant functor.

Example 5. Suppose V is an \mathbb{R}-vector space. Fixing a basis $\left(e_{i}\right)$ of V over \mathbb{R}, we may allow finite linear combinations of $\left(e_{i}\right)$ with \mathbb{C}-coefficients to obtain a \mathbb{C}-vector space. Let $F(V)$ be this \mathbb{C}-vector space. I claim that F is a covariant functor. Suppose $f: V \rightarrow W$ is a \mathbb{R}-vector space homomorphism, given by $f\left(\sum r_{i} e_{i}\right)=$ $\sum_{i, j} a_{i, j} r_{i} e_{j}\left(r_{i} \in \mathbb{R}\right.$ and the matrix entries $\left.a_{i, j} \in \mathbb{R}\right)$. Define the homomorphism $F(f): F(V) \rightarrow F(W)$ by $F(f)\left(\sum c_{i} e_{i}\right)=\sum a_{i, j} c_{i} e_{j}\left(c_{i} \in \mathbb{C}\right.$ and $\left.a_{i, j} \in \mathbb{R} \subset \mathbb{C}\right)$.

Definition 6. A covariant functor F is left-exact (resp. right-exact) if for any sequence $0 \rightarrow M \xrightarrow{f}$ $N \xrightarrow{g} P \rightarrow 0$ of R-modules exactness in the middle and on the left (resp. on the right) implies exactness in the middle and on the left (resp. on the right).

For a contravariant function G the definition is similar except on wants the sequence after applying G to be exact on the left/right if the original is exact on the left/right.

Example 7. The main proposition about Hom_{R} says that $M \mapsto \operatorname{Hom}_{R}(M, P)$ and $M \mapsto \operatorname{Hom}_{R}(P, M)$ are right-exact.

3.8 Operations on modules II

3.8.1 Tensor products

Proposition 8. Let M and N be two R-modules. Let

$$
C=\bigoplus_{(m, n) \in M \times N} R(m, n)
$$

be the R-module generated by all pairs $(m, n) \in M \times N$.
Let $D \subset C$ be the R-submodule generated by the elements $\left(m+r m^{\prime}, n\right)-(m, n)-r\left(m^{\prime}, n\right)$ and $(m, n+$ $\left.r n^{\prime}\right)-(m, n)-r\left(m, n^{\prime}\right)$ for $m, m^{\prime} \in M, n, n^{\prime} \in N$ and $r \in R$.

Denote by $M \otimes_{R} N$ be quotient R-module C / D and let $m \otimes n$ the image of (m, n) in $M \otimes_{R} N$. The module $M \otimes_{R} N$ is the tensor product.

1. The map $\pi: M \times N \rightarrow M \otimes_{R} N$ sending $(m, n) \mapsto m \otimes n$ is bilinear.
2. If P is an R-module and $f: M \times N \rightarrow P$ is a bilinear map then there exists a unique homomorphism $g: M \otimes_{R} N \rightarrow P$ such that $f=g \circ \pi$.

Proof. (1): Easy to check.
(2): If f is bilinear then we get a homomorphism $F: C \rightarrow P$ defined by $F\left(\sum r_{i}\left(m_{i}, n_{i}\right)\right)=\sum r_{i} f\left(m_{i}, n_{i}\right)$. Then $D \subset \operatorname{ker} F$ and so F factors through $C / D=M \otimes_{R} N$ from, e.g., the first isomorphism theorem for groups.

Remark 1. 1. From the definition, if $r \in R$ and $m \otimes n \in M \otimes_{R} N$ then $(r m) \otimes n=m \otimes(r n)$.
2. Elements $m \otimes n \in M \otimes_{R} N$ are called pure tensors. The general element of $M \otimes_{R} N$ however is of the form

$$
\sum r_{i}\left(m_{i} \otimes n_{i}\right)
$$

Example 9. 1. Suppose m, n are coprime. Then $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} \mathbb{Z} / n \mathbb{Z}=0$. Indeed, $n \in(\mathbb{Z} / m \mathbb{Z})^{\times}$so $x \otimes y=$ $\left(n n^{-1} x\right) \otimes y=\left(n^{-1} x\right) \otimes(n y)=\left(n^{-1} x\right) \otimes 0=0$.
2. $R \otimes_{R} M \cong M$. Consider the map $m \mapsto m \otimes 1$. This is injective as $m \otimes 1$ is never in the submodule D. Moreover, if $x=\sum r_{i}\left(s_{i} \otimes m_{i}\right) \in R \otimes_{R} M$ then $x=\left(\sum r_{i} s_{i}\right) \otimes m$ from the properties of \otimes and so $R \otimes_{R} M$ is in the image of $m \mapsto m \otimes 1$.
3. $R[X] \otimes_{R} R[X] \cong R[X, Y]$.

