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3 Modules

3.6 Operations on modules I (continued)

3.6.3 Localization (continued)

Proposition 1. Let f : M → N be an R-module homomorphism. Then f injective is a local property and
in fact f is injective iff fp is injective iff fm is injective.

Proof. From the exactness of localization proposition above we deduce that if f is injective then all local-
izations are. Suppose fm is injective for all m. Let K = ker f so 0 → K → M → N is exact. But then
0→ Km →Mm → Nm is exact so Km = 0 for all m which implies K = 0 by the previous proposition.

Proposition 2. Whether a ring is reduced is a local property: a ring R is reduced iff Rp is reduced for all
prime ideals p.

Proof. Homework 10.

3.7 Functors and exactness

Definition 3. A functor of modules is an assignment attaching M 7→ F (M) attaching to a module M over
a ring R another module F (M) over some ring S such that if f : M → N is an R-module homomorphism then
there exists an S-module homomorphism F (f) : F (M) → F (N) (the covariant case) or F (f) : F (N) →
F (M) (the contravariant case).

Example 4. Fix an R-module P . Then F (M) = HomR(M,P ) and G(M) = HomR(P,M) are R-modules.
Moreover, setting F (f) = f∗ and G(f) = f∗ gives that F is a contravariant functor while G is a covariant
functor.

Example 5. Suppose V is an R-vector space. Fixing a basis (ei) of V over R, we may allow finite linear
combinations of (ei) with C-coefficients to obtain a C-vector space. Let F (V ) be this C-vector space. I claim
that F is a covariant functor. Suppose f : V →W is a R-vector space homomorphism, given by f(

∑
riei) =∑

i,j ai,jriej (ri ∈ R and the matrix entries ai,j ∈ R). Define the homomorphism F (f) : F (V ) → F (W ) by
F (f)(

∑
ciei) =

∑
ai,jciej (ci ∈ C and ai,j ∈ R ⊂ C).

Definition 6. A covariant functor F is left-exact (resp. right-exact) if for any sequence 0 → M
f−→

N
g−→ P → 0 of R-modules exactness in the middle and on the left (resp. on the right) implies exactness in

the middle and on the left (resp. on the right).
For a contravariant function G the definition is similar except on wants the sequence after applying G to

be exact on the left/right if the original is exact on the left/right.

Example 7. The main proposition about HomR says that M 7→ HomR(M,P ) and M 7→ HomR(P,M) are
right-exact.

1



3.8 Operations on modules II

3.8.1 Tensor products

Proposition 8. Let M and N be two R-modules. Let

C =
⊕

(m,n)∈M×N

R(m,n)

be the R-module generated by all pairs (m,n) ∈M ×N .
Let D ⊂ C be the R-submodule generated by the elements (m + rm′, n) − (m,n) − r(m′, n) and (m,n +

rn′)− (m,n)− r(m,n′) for m,m′ ∈M , n, n′ ∈ N and r ∈ R.
Denote by M ⊗R N be quotient R-module C/D and let m ⊗ n the image of (m,n) in M ⊗R N . The

module M ⊗R N is the tensor product.

1. The map π : M ×N →M ⊗R N sending (m,n) 7→ m⊗ n is bilinear.

2. If P is an R-module and f : M ×N → P is a bilinear map then there exists a unique homomorphism
g : M ⊗R N → P such that f = g ◦ π.

Proof. (1): Easy to check.
(2): If f is bilinear then we get a homomorphism F : C → P defined by F (

∑
ri(mi, ni)) =

∑
rif(mi, ni).

Then D ⊂ kerF and so F factors through C/D = M ⊗R N from, e.g., the first isomorphism theorem for
groups.

Remark 1. 1. From the definition, if r ∈ R and m⊗ n ∈M ⊗R N then (rm)⊗ n = m⊗ (rn).

2. Elements m⊗ n ∈M ⊗RN are called pure tensors. The general element of M ⊗RN however is of the
form ∑

ri(mi ⊗ ni)

Example 9. 1. Suppose m,n are coprime. Then Z/mZ⊗Z Z/nZ = 0. Indeed, n ∈ (Z/mZ)× so x⊗ y =
(nn−1x)⊗ y = (n−1x)⊗ (ny) = (n−1x)⊗ 0 = 0.

2. R ⊗R M ∼= M . Consider the map m 7→ m ⊗ 1. This is injective as m ⊗ 1 is never in the submodule
D. Moreover, if x =

∑
ri(si ⊗mi) ∈ R⊗R M then x = (

∑
risi)⊗m from the properties of ⊗ and so

R⊗R M is in the image of m 7→ m⊗ 1.

3. R[X]⊗R R[X] ∼= R[X,Y ].
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