Graduate Algebra, Fall 2014 Lecture 38

Andrei Jorza

2014-12-03

3 Modules

3.6 Operations on modules I (continued)

3.6.3 Localization (continued)

Proposition 1. Let $f: M \to N$ be an *R*-module homomorphism. Then f injective is a local property and in fact f is injective iff $f_{\mathfrak{p}}$ is injective iff $f_{\mathfrak{m}}$ is injective.

Proof. From the exactness of localization proposition above we deduce that if f is injective then all localizations are. Suppose $f_{\mathfrak{m}}$ is injective for all \mathfrak{m} . Let $K = \ker f$ so $0 \to K \to M \to N$ is exact. But then $0 \to K_{\mathfrak{m}} \to M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is exact so $K_{\mathfrak{m}} = 0$ for all \mathfrak{m} which implies K = 0 by the previous proposition. \Box

Proposition 2. Whether a ring is reduced is a local property: a ring R is reduced iff $R_{\mathfrak{p}}$ is reduced for all prime ideals \mathfrak{p} .

Proof. Homework 10.

3.7 Functors and exactness

Definition 3. A functor of modules is an assignment attaching $M \mapsto F(M)$ attaching to a module M over a ring R another module F(M) over some ring S such that if $f: M \to N$ is an R-module homomorphism then there exists an S-module homomorphism $F(f): F(M) \to F(N)$ (the **covariant** case) or $F(f): F(N) \to$ F(M) (the **contravariant** case).

Example 4. Fix an *R*-module *P*. Then $F(M) = \text{Hom}_R(M, P)$ and $G(M) = \text{Hom}_R(P, M)$ are *R*-modules. Moreover, setting $F(f) = f^*$ and $G(f) = f_*$ gives that *F* is a contravariant functor while *G* is a covariant functor.

Example 5. Suppose V is an \mathbb{R} -vector space. Fixing a basis (e_i) of V over \mathbb{R} , we may allow finite linear combinations of (e_i) with \mathbb{C} -coefficients to obtain a \mathbb{C} -vector space. Let F(V) be this \mathbb{C} -vector space. I claim that F is a covariant functor. Suppose $f: V \to W$ is a \mathbb{R} -vector space homomorphism, given by $f(\sum r_i e_i) = \sum_{i,j} a_{i,j} r_i e_j$ $(r_i \in \mathbb{R}$ and the matrix entries $a_{i,j} \in \mathbb{R}$). Define the homomorphism $F(f): F(V) \to F(W)$ by $F(f)(\sum c_i e_i) = \sum a_{i,j} c_i e_j$ $(c_i \in \mathbb{C} \text{ and } a_{i,j} \in \mathbb{R} \subset \mathbb{C})$.

Definition 6. A covariant functor F is **left-exact** (resp. **right-exact**) if for any sequence $0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$ of R-modules exactness in the middle and on the left (resp. on the right) implies exactness in the middle and on the left (resp. on the right).

For a contravariant function G the definition is similar except on wants the sequence after applying G to be exact on the left/right if the original is exact on the left/right.

Example 7. The main proposition about Hom_R says that $M \mapsto \operatorname{Hom}_R(M, P)$ and $M \mapsto \operatorname{Hom}_R(P, M)$ are right-exact.

3.8 Operations on modules II

3.8.1 Tensor products

Proposition 8. Let M and N be two R-modules. Let

$$C = \bigoplus_{(m,n) \in M \times N} R(m,n)$$

be the R-module generated by all pairs $(m, n) \in M \times N$.

Let $D \subset C$ be the R-submodule generated by the elements (m + rm', n) - (m, n) - r(m', n) and (m, n + rn') - (m, n) - r(m, n') for $m, m' \in M$, $n, n' \in N$ and $r \in R$.

Denote by $M \otimes_R N$ be quotient *R*-module C/D and let $m \otimes n$ the image of (m, n) in $M \otimes_R N$. The module $M \otimes_R N$ is the **tensor product**.

- 1. The map $\pi: M \times N \to M \otimes_R N$ sending $(m, n) \mapsto m \otimes n$ is bilinear.
- 2. If P is an R-module and $f: M \times N \to P$ is a bilinear map then there exists a unique homomorphism $g: M \otimes_R N \to P$ such that $f = g \circ \pi$.

Proof. (1): Easy to check.

(2): If f is bilinear then we get a homomorphism $F: C \to P$ defined by $F(\sum r_i(m_i, n_i)) = \sum r_i f(m_i, n_i)$. Then $D \subset \ker F$ and so F factors through $C/D = M \otimes_R N$ from, e.g., the first isomorphism theorem for groups.

Remark 1. 1. From the definition, if $r \in R$ and $m \otimes n \in M \otimes_R N$ then $(rm) \otimes n = m \otimes (rn)$.

2. Elements $m \otimes n \in M \otimes_R N$ are called pure tensors. The general element of $M \otimes_R N$ however is of the form

$$\sum r_i(m_i \otimes n_i)$$

- **Example 9.** 1. Suppose m, n are coprime. Then $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$. Indeed, $n \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ so $x \otimes y = (nn^{-1}x) \otimes y = (n^{-1}x) \otimes (ny) = (n^{-1}x) \otimes 0 = 0$.
 - 2. $R \otimes_R M \cong M$. Consider the map $m \mapsto m \otimes 1$. This is injective as $m \otimes 1$ is never in the submodule D. Moreover, if $x = \sum r_i(s_i \otimes m_i) \in R \otimes_R M$ then $x = (\sum r_i s_i) \otimes m$ from the properties of \otimes and so $R \otimes_R M$ is in the image of $m \mapsto m \otimes 1$.
 - 3. $R[X] \otimes_R R[X] \cong R[X, Y].$