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1 Group Theory

1.9 Normal subgroups

Example 1. Specific examples.

1. The alternating group An = ker ε is a normal subgroup of Sn as ε is a homomorphism.

2. For R = Q,R or C, SL(n,R) C GL(n,R).

3. Recall that for any group G, Z(G)CG and G/Z(G) is a group, which we’ll identify later as the group
of inner automorphisms. If R = Z/pZ,Q,R or C then R×In = Z(GL(n,R)) and denote the quotient

PGL(n,R) = GL(n,R)/R×

The case of SL(n,R) is more subtle as the center is the set of n-th roots of unity in R, which depends on
what R is. For example Z(SL(2,R)) = ±I2 but Z(SL(3,R)) = I3 while Z(GL(3,C)) = {I3, ζ3I3, ζ23I3}.

4. But {
(
a b
0 c

)
} is not normal in GL(2, R). Indeed, if w =

(
0 1
1 0

)
then w

(
a b
0 c

)
w =

(
c 0
b a

)
.

5. But {
(

1 b
0 1

)
} is a normal subgroup of {

(
a b
0 c

)
}.

Remark 1. If H,K ⊂ G are subgroups such that K is normal in G then HK is a subgroup of G. Indeed,
KH = HK.

Interlude on the big picture in the theory of finite groups

We have seen that if G is a finite group and N is a normal subgroup then G/N is also a group. The idea is
to try to use the smaller groups G/N and N to understand G.

1. If G/N can be “realized” as a subgroup of G then G can be described explicitly as a semidirect product,
which we’ll study next time.

2. More generally there is a Jordan-Holder composition series theorem, to be thought of as a generalization
of the Jordan canonical form describing conjugacy classes of matrices.

A crucial component of these theorems is that various groups can be combined into bigger groups after
understanding their automorphism groups.

Definition 2. A finite group is simple if it has no proper normal subgroups.
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The preceding description of the classification of finite groups suggests that simple groups are the basic
building blocks.

The following huge theorem take decades and tens of thousands of pages to complete.

Theorem 3. All finite simple groups fit in one of the following four families:

1. Z/pZ for p prime.

2. An for n 6= 4.

3. finite groups of “Lie type” which are certain matrix groups with entries in Z/pZ.

4. 26 complicated exceptional groups about which I’ll say nothing more.

This should explain why most examples in class and homeworks are either finite abelian groups (for which
the building blocks are Z/pZ), symmetric groups or matrix groups; they really do form the basic building
blocks of the whole theory.

Three important questions in the theory of finite groups:

1. CLassify all simple groups.

2. Given a specific group, describe it “well” (perhaps in terms of simple groups).

3. Represent groups on a computer.

The main technical tool that allows us to tackle the first and second questions is the notion of groups
acting on sets. This is a very general notion that includes groups representations, but our initial main use
will be via the Sylow theorems.

For the third question, there are two avenues of study: representing groups as permutation groups, for
which we’ll study Sn and An; and representing groups as quotients of free groups by relations, which turns
out to be very important in representation theory as well.

1.10 The isomorphism theorems

Theorem 4. Suppose f : G→ H is a homomorphism.

1. Suppose N C G contained in ker f . Then f : G/N → H sending gN → f(g) is a well-defined homo-
morphism.

2. Then G/ ker f ∼= Im f .

Proof. Need to check that if gN = hN then f(g) = f(h), which follows from gh−1 ∈ N ⊂ ker f . Taking
N = ker f gives the second part as now the map f becomes injective.

Theorem 5. Suppose H,N ⊂ G are subgroups with N normal in G. Recall that HN is a subgroup of G.
Then HN/N ∼= H/H ∩N .

Proof. The map H → HN/N taking h to hN is surjective and has kernel H ∩N .

Theorem 6. If H,N CG and N ⊂ H then G/H ∼= (G/N)/(H/N).

Proof. Take f : G/N → G/H taking gN to gH. This has kernel H/N and is clearly surjective. The rest
follows from the first isomorphism theorem.

Example 7. 1. Sn/An
∼= Z/2Z.
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1.11 Automorphisms

Definition 8. End(G) is the set of homomorphisms f : G → G and Aut(G) is the set of isomorphisms
f : G→ G.

Proposition 9. If G is a group then End(G) is a monoid and Aut(G) is a group wrt composition.

Lemma 10. If f : G→ H is an injective homomorphism then ord(f(g)) = ord(g).

Proposition 11. Let G be a group.

1. f(x) = x−1 is a homomorphism iff G is abelian, in which case it is an automorphism.

2. If g ∈ G then fg(x) = gxg−1 is an automorphism, called an inner automorphism. The set of inner
automorphisms forms a subgroup Inn(G) ⊂ Aut(G).

3. Inn(G) ∼= G/Z(G).

Proof. The first part is clear. The second follows from the fact that fg ◦ fh = fgh. For the third part note
that fg = fh iff fgh−1 = id iff gh−1 ∈ Z(G) by definition of Z(G). Thus the map G→ Aut(G) sending g to
fg is a homomorphism with kernel Z(G).

3


