Graduate Algebra, Fall 2014 Lecture 6

Andrei Jorza

2014-09-05

1 Group Theory

1.11 Automorphisms

Example 1. Have

- 1. $\operatorname{Aut}(\mathbb{Z}) \cong \{\pm 1\}.$
- 2. $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. In both cases $f \in \operatorname{Aut}(G)$ implies f(k) = kf(1). For f to be surjective there must exist k such that kf(1) = 1 and so $f(1) = \pm 1$ in the first case and $f(1) \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ in the second case. If kf(1) = 1 for some k then f is in fact an automorphism with inverse f^{-1} taking 1 to k. Note that the map taking f to f(1) is a homomorphism: indeed, f(g(1)) = g(1)f(1) so we get the desired isomorphisms.

Example 2. $\operatorname{Aut}(S_3) \cong S_3$.

Proof. Already $\text{Inn}(S_3) \cong S_3/Z(S_3) \cong S_3$. Also, $S_3 = \langle (12), (123) \rangle$ and (12) can go to one of the three transpositions and (123) to one of the two 3-cycles. Thus the total number of automorphisms is at most $6 = |\text{Inn}(S_3)|$ and so $\text{Aut}(S_3) = \text{Inn}(S_3) \cong S_3$.

Proposition 3. Suppose G and H are finite groups with coprime orders. Then $\operatorname{Aut}(G \times H) \cong \operatorname{Aut}(G) \times \operatorname{Aut}(H)$.

Proof. Suppose $f \in \operatorname{Aut}(G \times H)$. Then restricting to $G \times 1$ and $1 \times H$ we get injections $f_G : G \to G \times H$ and $f_H : H \to G \times H$. Suppose $g \in G$ has order n. Then $f_G(a) = u \times v$ where $v \in H$. Since $a^n = 1$ it follows that $u^n = 1$ in G and $v^n = 1$ in H and so $\operatorname{ord}(v) \mid n, |H|$ so $\operatorname{ord}(v) = 1$ so v = 1. Thus we get $f_G : G \to G$ an injection which must then be a bijection. Get $f_G \in \operatorname{Aut}(G)$ and similarly $f_H \in \operatorname{Aut}(H)$. Finally, if $f \in \operatorname{Aut}(G)$ and $g \in \operatorname{Aut}(H)$ then $f \times g \in \operatorname{Aut}(G \times H)$ and so we get the desired isomorphism. \Box

Example 4. Let p and q be two primes. Then

$$\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) \cong \begin{cases} (\mathbb{Z}/p\mathbb{Z})^{\times} \times (\mathbb{Z}/q\mathbb{Z})^{\times} & p \neq q \\ \operatorname{GL}(2, \mathbb{Z}/p\mathbb{Z}) & p = q \end{cases}$$

Proof. The case $p \neq q$ follows from the previous proposition. When p = q the group $G = (\mathbb{Z}/p\mathbb{Z})^2$ is a two-dimensional vector space over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and every group automorphism of G is also a vector space automorphism. Finally, vector space automorphisms are given by invertible matrices.

1.12 Semidirect products

Proposition 5. If $H, N \triangleleft G$ such that $H \cap N = 1$ and G = HN then $G \cong H \times N$.

Proof. Homework 3.

Proposition 6. Let H, N be two groups and let $\phi : H \to \operatorname{Aut}(N)$ be a homomorphism. Consider the set $G = H \times N$ together with the binary operation $(g, n) \cdot (h, m) = (gh, n\phi_g(m))$. Then

- 1. G is a group.
- 2. $N \lhd G$.
- 3. $H \cap N = 1$.
- 4. G = HN.

The group G is said to be the semidirect product $G = N \rtimes_{\phi} H$ or simply $N \rtimes H$.

Proof. The binary operation is associative because ϕ is a homomorphism, (1,1) is a unit element and the inverse of (n,h) is $(\phi_{h^{-1}}(n^{-1}),h^{-1})$. The other statements are straightforward.

Proposition 7. Let G be a group, H a subgroup and N a normal subgroup such that G = NH and $H \cap N = 1$. Then for $h \in H$ get $\phi(h) \in Aut(N)$ given by $\phi(h, n) = hnh^{-1}$ and $G \cong N \rtimes_{\phi} H$.

Proof. Since G = NH every $g \in G$ is g = nh for some $h \in H, n \in N$. Since $H \cap N = 1$ this expression is unique. Finally, if g = nh and g' = n'h' then $gg' = nhn'h' = nhn'h^{-1}hh' = n\phi(h, n')hh'$.

Example 8. 1. $D_{2n} \cong (\mathbb{Z}/n\mathbb{Z}) \rtimes (\mathbb{Z}/2\mathbb{Z})$ where $\phi : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ takes 0 to id and 1 to $x \mapsto -x$.

- 2. If $(n, \varphi(m)) = 1$ then $\mathbb{Z}/m\mathbb{Z} \rtimes \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Indeed, otherwise we need a homomorphism $\mathbb{Z}/n\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times}$ and the order *n* element 1 in the LHS will have order dividing both *n* and the cardinality $\varphi(m)$ of the automorphism group. Thus is has order 1 and so ϕ is the trivial homomorphism.
- 3. $S_n \cong A_n \rtimes \mathbb{Z}/2\mathbb{Z}$.
- 4. The identity morphism $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ sending *a* to the multiplication by *a* automorphism yields the semidirect product

$$\mathbb{Z}/n\mathbb{Z} \rtimes (\mathbb{Z}/n\mathbb{Z})^{\times} \cong \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in (\mathbb{Z}/n\mathbb{Z})^{\times}, b \in \mathbb{Z}/n\mathbb{Z} \right\}$$