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1 Group Theory

1.11 Automorphisms
Example 1. Have

1. Aut(Z) = {£1).
2. Auwt(Z/nZ) = (Z/nZ)*.

Proof. In both cases f € Aut(G) implies f(k) = kf(1). For f to be surjective there must exist k such that
kf(1) =1 and so f(1) = £1 in the first case and f(1) € (Z/nZ)* in the second case. If kf(1) = 1 for some
k then f is in fact an automorphism with inverse f~! taking 1 to k. Note that the map taking f to f(1) is
a homomorphism: indeed, f(g(1)) = g(1)f(1) so we get the desired isomorphisms. O

Example 2. Aut(S3) & Ss.

Proof. Already Inn(Ss) & S3/Z(S5) = S5. Also, S5 = ((12),(123)) and (12) can go to one of the three
transpositions and (123) to one of the two 3-cycles. Thus the total number of automorphisms is at most
6 = |Inn(S3)| and so Aut(S3) = Inn(Ss) = Ss. O

Proposition 3. Suppose G and H are finite groups with coprime orders. Then Aut(G x H) = Aut(G) x
Aut(H).

Proof. Suppose f € Aut(G x H). Then restricting to G x 1 and 1 x H we get injections fg: G — G x H
and fi : H — G x H. Suppose g € G has order n. Then fg(a) = u X v where v € H. Since a™ =1
it follows that ™ = 1 in G and v™ = 1 in H and so ord(v) | n,|H| so ord(v) = 1 so v = 1. Thus we get
fe : G = G an injection which must then be a bijection. Get fg € Aut(G) and similarly fg € Aut(H).
Finally, if f € Aut(G) and g € Aut(H) then f x g € Aut(G x H) and so we get the desired isomorphism. [

Example 4. Let p and g be two primes. Then

Z.]pZ)* x (Z]qZ)*
GL(2,Z/p7) p=
Proof. The case p # ¢ follows from the previous proposition. When p = ¢ the group G = (Z/pZ)? is a
two-dimensional vector space over F,, = Z/pZ and every group automorphism of G is also a vector space
automorphism. Finally, vector space automorphisms are given by invertible matrices. O



1.12 Semidirect products
Proposition 5. If H) N <G such that HNN =1 and G=HN then G= H x N.

Proof. Homework 3. O

Proposition 6. Let H, N be two groups and let ¢ : H — Aut(N) be a homomorphism. Consider the set
G = H X N together with the binary operation (g,n) - (h,m) = (gh,ng4(m)). Then

1. G is a group.

2. N<G.

3. HNN =1.

4. G=HN.

The group G is said to be the semidirect product G = N x4 H or simply N x H.

Proof. The binary operation is associative because ¢ is a homomorphism, (1,1) is a unit element and the
inverse of (n,h) is (¢p-1(n~1),h™1). The other statements are straightforward. O

Proposition 7. Let G be a group, H a subgroup and N a normal subgroup such that G = NH and HNN = 1.
Then for h € H get ¢(h) € Aut(N) given by ¢p(h,n) = hnh™ and G = N x4 H.

Proof. Since G = NH every g € G is g = nh for some h € H,n € N. Since H N N = 1 this expression is
unique. Finally, if g = nh and ¢’ = n’h’ then gg’ = nhn’h’ = nhn’h=*hh’ = n¢(h,n’')hh'. O

Example 8. 1. Dy, = (Z/nZ) x (Z/27) where ¢ : /27 — Aut(Z/nZ) takes 0 to id and 1 to z — —z.

2. If (n,o(m)) = 1 then Z/mZ x Z/nZ = Z/mZ x Z/nZ. Indeed, otherwise we need a homomorphism
Z/nZ — Aut(Z/mZ) = (Z/mZ)* and the order n element 1 in the LHS will have order dividing both
n and the cardinality ¢(m) of the automorphism group. Thus is has order 1 and so ¢ is the trivial
homomorphism.

3. Sp = A, xZ)27.

4. The identity morphism (Z/nZ)* — Aut(Z/nZ) sending a to the multiplication by a automorphism
yields the semidirect product

Z/nZ x (Z/nZ)* = {(3 i’) la € (Z/nZ)*,b € Z./nZ}



