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1 Group Theory

1.11 Automorphisms

Example 1. Have

1. Aut(Z) ∼= {±1}.

2. Aut(Z/nZ) ∼= (Z/nZ)×.

Proof. In both cases f ∈ Aut(G) implies f(k) = kf(1). For f to be surjective there must exist k such that
kf(1) = 1 and so f(1) = ±1 in the first case and f(1) ∈ (Z/nZ)× in the second case. If kf(1) = 1 for some
k then f is in fact an automorphism with inverse f−1 taking 1 to k. Note that the map taking f to f(1) is
a homomorphism: indeed, f(g(1)) = g(1)f(1) so we get the desired isomorphisms.

Example 2. Aut(S3) ∼= S3.

Proof. Already Inn(S3) ∼= S3/Z(S3) ∼= S3. Also, S3 = 〈(12), (123)〉 and (12) can go to one of the three
transpositions and (123) to one of the two 3-cycles. Thus the total number of automorphisms is at most
6 = | Inn(S3)| and so Aut(S3) = Inn(S3) ∼= S3.

Proposition 3. Suppose G and H are finite groups with coprime orders. Then Aut(G ×H) ∼= Aut(G) ×
Aut(H).

Proof. Suppose f ∈ Aut(G ×H). Then restricting to G × 1 and 1 ×H we get injections fG : G → G ×H
and fH : H → G × H. Suppose g ∈ G has order n. Then fG(a) = u × v where v ∈ H. Since an = 1
it follows that un = 1 in G and vn = 1 in H and so ord(v) | n, |H| so ord(v) = 1 so v = 1. Thus we get
fG : G → G an injection which must then be a bijection. Get fG ∈ Aut(G) and similarly fH ∈ Aut(H).
Finally, if f ∈ Aut(G) and g ∈ Aut(H) then f ×g ∈ Aut(G×H) and so we get the desired isomorphism.

Example 4. Let p and q be two primes. Then

Aut(Z/pZ× Z/qZ) ∼=

{
(Z/pZ)× × (Z/qZ)× p 6= q

GL(2,Z/pZ) p = q

Proof. The case p 6= q follows from the previous proposition. When p = q the group G = (Z/pZ)2 is a
two-dimensional vector space over Fp = Z/pZ and every group automorphism of G is also a vector space
automorphism. Finally, vector space automorphisms are given by invertible matrices.
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1.12 Semidirect products

Proposition 5. If H,N CG such that H ∩N = 1 and G = HN then G ∼= H ×N .

Proof. Homework 3.

Proposition 6. Let H,N be two groups and let φ : H → Aut(N) be a homomorphism. Consider the set
G = H ×N together with the binary operation (g, n) · (h,m) = (gh, nφg(m)). Then

1. G is a group.

2. N CG.

3. H ∩N = 1.

4. G = HN .

The group G is said to be the semidirect product G = N oφ H or simply N oH.

Proof. The binary operation is associative because φ is a homomorphism, (1, 1) is a unit element and the
inverse of (n, h) is (φh−1(n−1), h−1). The other statements are straightforward.

Proposition 7. Let G be a group, H a subgroup and N a normal subgroup such that G = NH and H∩N = 1.
Then for h ∈ H get φ(h) ∈ Aut(N) given by φ(h, n) = hnh−1 and G ∼= N oφ H.

Proof. Since G = NH every g ∈ G is g = nh for some h ∈ H,n ∈ N . Since H ∩ N = 1 this expression is
unique. Finally, if g = nh and g′ = n′h′ then gg′ = nhn′h′ = nhn′h−1hh′ = nφ(h, n′)hh′.

Example 8. 1. D2n
∼= (Z/nZ) o (Z/2Z) where φ : Z/2Z→ Aut(Z/nZ) takes 0 to id and 1 to x 7→ −x.

2. If (n, ϕ(m)) = 1 then Z/mZ o Z/nZ ∼= Z/mZ × Z/nZ. Indeed, otherwise we need a homomorphism
Z/nZ→ Aut(Z/mZ) ∼= (Z/mZ)× and the order n element 1 in the LHS will have order dividing both
n and the cardinality ϕ(m) of the automorphism group. Thus is has order 1 and so φ is the trivial
homomorphism.

3. Sn ∼= An o Z/2Z.

4. The identity morphism (Z/nZ)× → Aut(Z/nZ) sending a to the multiplication by a automorphism
yields the semidirect product

Z/nZ o (Z/nZ)× ∼= {
(
a b
0 1

)
|a ∈ (Z/nZ)×, b ∈ Z/nZ}
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