Graduate Algebra, Fall 2014
 Lecture 7

Andrei Jorza

2014-09-09

1 Group Theory

1.13 Free groups and presentations

Definition 1. 1. A free group generated by a set S is the smallest group F_{S} containing the symbols $\left\{x, x^{-1} \mid x \in S\right\}$. Such a group exists and can be described in terms of words with letters in S.
2. The free group is said to have rank n, or be finitely generated by n generators, in which case it is denoted by F_{n}, if $|S|=n$.
Theorem 2. Every subgroup of a free group is free. [This can be proven using algebraic topology, realizing free groups as homotopy groups of bouquets of circles whose covering spaces are infinite trees on which free groups act; then one proves that every group acting freely on a tree must be free.]
Definition 3. A presentation of a group G is a pair (S, R) and a homomorphism $f: F_{S} \rightarrow G$ such that ker f is the normal closure in F_{S} of the set R. The presentation is said to be finite if S and R are finite sets. Then we write $G \cong\langle a \in S| b=1$ for $b \in R\rangle$.
Example 4. 1. $\mathbb{Z} \cong\langle a\rangle$.
2. $\mathbb{Z} / n \mathbb{Z}=\left\langle a \mid a^{n}=1\right\rangle$.
3. $\mathbb{Z} \times \mathbb{Z} \cong\langle a, b \mid[a, b]=1\rangle$.
4. $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z} \cong\left\langle a, b \mid a^{n}=b^{m}=[a, b]=1\right\rangle$.
5. $D_{2 n} \cong\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle$.

Remark 1. Finite presentations are extremely useful for studying homomorphisms of groups. Two important applications: finding $\operatorname{Aut}(G)$ and constructing representations. Both of these are examples of constructing homomorphisms $f: G \rightarrow H$ for some group H ($H=G$ for automorphisms, $H=\operatorname{GL}(n, \mathbb{C})$ for representations). Suppose G is finitely presented as $G \cong\left\langle a_{1}, \ldots, a_{n} \mid f_{1}\left(a_{i}\right)=\ldots f_{k}\left(a_{i}\right)=1\right\rangle$. Then there exists a homomorphism $f: G \rightarrow H$ sending a_{i} to $b_{i} \in H$ if and only if $f_{j}\left(b_{i}\right)=1$.
Example 5. Let's compute $\operatorname{Aut}\left(D_{2 n}\right) \cong\left\langle a, b \mid a^{n}=b^{2}=b a b a=1\right\rangle$. A function f on $D_{2 n}$ yields a homomorphism $f: D_{2 n} \rightarrow D_{2 n}$ iff $f(a)^{n}=f(b)^{2}=f(a) f(b) f(a) f(b)=1$ and this is moreover an automorphism iff $f(a)$ has order $n, f(b)$ has order 2 and $f(a) f(b)$ has order 2. As a set $D_{2 n}=\left\{1, \ldots, a^{n-1}, b, b a, \ldots, b a^{n-1}\right\}$ and $\operatorname{ord}\left(a^{k}\right)=n /(k, n)$ while ord $\left(b a^{k}\right)=2$. Thus the conditions on orders implies that $f(a)=a^{k}$ for some $(k, n)=1$ and $f(b)=b a^{r}$ or $f(b)=a^{n / 2}$. The latter case is not good as $f(b) f(a)$ would then not have order 2 and so $f(a)=a^{k}, f(b)=b a^{r}$. Any such choice is good and we denote such an automorphism $f_{k, r}$. The $\operatorname{group} \operatorname{Aut}\left(D_{2 n}\right)=\left\{f_{k, r}\right\}$ under composition satisfies $f_{k, r} \circ f_{l, s}=f_{k l, r+s k}$ and so we get

$$
\operatorname{Aut}\left(D_{2 n}\right) \cong \mathbb{Z} / n \mathbb{Z} \rtimes(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

from our example, consisting of matrices $\left(\begin{array}{cc}k & r \\ 0 & 1\end{array}\right)$.

Proposition 6. Let G be a group. $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$ and the quotient group $\operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the group of outer automorphisms.

Proof. Check that if $f \in \operatorname{Aut}(G)$ then $f \circ \phi_{g} \circ f^{-1}=\phi_{f(g)}$ where $\phi_{g}(x)=g x g^{-1}$.
Example 7. 1. $\operatorname{Out}\left(S_{3}\right) \cong 1$.
2. $Z\left(D_{2 n}\right)$ is trivial if n is odd, and $\left\{1, R^{n / 2}\right\}$ if n is even so $\left|\operatorname{Out}\left(D_{2 n}\right)\right|$ has $\varphi(n) / 2$ elements if n is odd and $\varphi(n)$ if n is even.
3. If G is abelian then $\operatorname{Out}(G) \cong \operatorname{Aut}(G)$.

1.14 Abelian groups

Proposition 8. 1. If p is any prime then $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic $\cong \mathbb{Z} /(p-1) \mathbb{Z}$.
2. If p is an odd prime and $n \geq 2$ then $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic $\cong \mathbb{Z} / p^{n-1}(p-1) \mathbb{Z}$.
3. If $n \geq 2$ then $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n-2} \mathbb{Z}$.

Proof. First part. Let $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$be an element of maximal order, which has to divide $p-1$. If h is another element such that $\operatorname{ord}(h) \nmid \operatorname{ord}(g)$ then $\operatorname{ord}(g h)=[\operatorname{ord}(g), \operatorname{ord}(h)]$ (Pset 3) has larger order than g contradicting the choice of g. Thus the order of every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$divides the order of g. Denote $n=\operatorname{ord}(g)$. Then every element of $\mathbb{Z} / p \mathbb{Z}$ except 0 satisfies $X^{n}-1=0$ and so every element of $\mathbb{Z} / p \mathbb{Z}$ satisfies $X^{n+1}-X=0$.

The Euclidean algorithm for polynomials with coefficients in $\mathbb{Z} / p \mathbb{Z}$ (where every nonzero element is invertible) implies that for every $h \in \mathbb{Z} / p \mathbb{Z}, X-h \mid X^{n+1}-X$ and so $\prod(X-h) \mid X^{n+1}-X$. Comparing degrees we deduce that $n+1 \geq p$ and so g has order $p-1$. Thus $(\mathbb{Z} / p \mathbb{Z})^{\times}=\langle g\rangle$ is cyclic $\cong \mathbb{Z} /(p-1) \mathbb{Z}$.

Second part. Let's prove by induction that $(1+p)^{p^{n-1}} \equiv 1+p^{n}\left(\bmod p^{n+1}\right)$. The base case is $n=1$ which is trivial. Next, suppose $(1+p)^{p^{n-1}}=1+p^{n}+a p^{n+1}$. Then

$$
\begin{aligned}
(1+p)^{p^{n}} & =\left(1+p^{n}+a p^{n+1}\right)^{p} \\
& \equiv\left(1+p^{n}\right)^{p} \quad\left(\bmod p^{n+2}\right) \\
& \equiv 1+p^{n+1} \quad\left(\bmod p^{n+2}\right)
\end{aligned}
$$

In the second line we used that $\binom{p}{i} p^{i(n+1)}$ is divisible by p^{n+2} if $i \geq 1$ and in the last line that $\binom{p}{i} p^{i n}$ is divisible by p^{n+2} for $i \geq 2$.

We conclude that the order of $1+p$ in $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is p^{n-1}. Finally, since p^{n-1} and $p-1$ are coprime the order of $g(1+p)$ is $p^{n-1}(p-1)$ and so $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic $\cong\langle g(1+p)\rangle \cong \mathbb{Z} / p^{n-1}(p-1) \mathbb{Z}$.

Third part: As above we prove by induction that if $n \geq 2$ then $3^{2^{n-1}} \equiv 1+2^{n+1}\left(\bmod 2^{n+2}\right)($ note the difference in exponents). Thus 3 has order 2^{n-2} in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$. Moreover, $-1 \notin\langle 3\rangle$ as if $-1 \equiv 3^{k}$ $\left(\bmod 2^{n}\right)$ then $3^{2 k} \equiv 1$ and so $k=2^{n-3}$ but $3^{2^{n-3}} \equiv 1+2^{n-1}\left(\bmod 2^{n}\right)$ which is not $-1\left(\bmod 2^{n}\right)$ as $n \geq 2$. Thus $\langle-1,3\rangle$ is a group, larger than $\langle 3\rangle$ which has index 2 in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$and thus $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}=\langle-1,3\rangle \cong$ $\langle-1\rangle \times\langle 3\rangle$.

