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1 Group Theory

1.13 Free groups and presentations

Definition 1. 1. A free group generated by a set S is the smallest group FS containing the symbols
{x, x−1|x ∈ S}. Such a group exists and can be described in terms of words with letters in S.

2. The free group is said to have rank n, or be finitely generated by n generators, in which case it is
denoted by Fn, if |S| = n.

Theorem 2. Every subgroup of a free group is free. [This can be proven using algebraic topology, realizing
free groups as homotopy groups of bouquets of circles whose covering spaces are infinite trees on which free
groups act; then one proves that every group acting freely on a tree must be free.]

Definition 3. A presentation of a group G is a pair (S,R) and a homomorphism f : FS → G such that
ker f is the normal closure in FS of the set R. The presentation is said to be finite if S and R are finite sets.
Then we write G ∼= 〈a ∈ S|b = 1 for b ∈ R〉.
Example 4. 1. Z ∼= 〈a〉.

2. Z/nZ = 〈a|an = 1〉.

3. Z× Z ∼= 〈a, b|[a, b] = 1〉.

4. Z/nZ× Z/mZ ∼= 〈a, b|an = bm = [a, b] = 1〉.

5. D2n
∼= 〈a, b|an = b2 = 1, bab = a−1〉.

Remark 1. Finite presentations are extremely useful for studying homomorphisms of groups. Two important
applications: finding Aut(G) and constructing representations. Both of these are examples of constructing
homomorphisms f : G → H for some group H (H = G for automorphisms, H = GL(n,C) for represen-
tations). Suppose G is finitely presented as G ∼= 〈a1, . . . , an|f1(ai) = . . . fk(ai) = 1〉. Then there exists a
homomorphism f : G→ H sending ai to bi ∈ H if and only if fj(bi) = 1.

Example 5. Let’s compute Aut(D2n) ∼= 〈a, b|an = b2 = baba = 1〉. A function f on D2n yields a homomor-
phism f : D2n → D2n iff f(a)n = f(b)2 = f(a)f(b)f(a)f(b) = 1 and this is moreover an automorphism iff
f(a) has order n, f(b) has order 2 and f(a)f(b) has order 2. As a set D2n = {1, . . . , an−1, b, ba, . . . , ban−1}
and ord(ak) = n/(k, n) while ord(bak) = 2. Thus the conditions on orders implies that f(a) = ak for some
(k, n) = 1 and f(b) = bar or f(b) = an/2. The latter case is not good as f(b)f(a) would then not have order
2 and so f(a) = ak, f(b) = bar. Any such choice is good and we denote such an automorphism fk,r. The
group Aut(D2n) = {fk,r} under composition satisfies fk,r ◦ fl,s = fkl,r+sk and so we get

Aut(D2n) ∼= Z/nZ o (Z/nZ)×

from our example, consisting of matrices

(
k r
0 1

)
.
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Proposition 6. Let G be a group. Inn(G) C Aut(G) and the quotient group Out(G) = Aut(G)/ Inn(G) is
called the group of outer automorphisms.

Proof. Check that if f ∈ Aut(G) then f ◦ φg ◦ f−1 = φf(g) where φg(x) = gxg−1.

Example 7. 1. Out(S3) ∼= 1.

2. Z(D2n) is trivial if n is odd, and {1, Rn/2} if n is even so |Out(D2n)| has ϕ(n)/2 elements if n is odd
and ϕ(n) if n is even.

3. If G is abelian then Out(G) ∼= Aut(G).

1.14 Abelian groups

Proposition 8. 1. If p is any prime then (Z/pZ)× is cyclic ∼= Z/(p− 1)Z.

2. If p is an odd prime and n ≥ 2 then (Z/pnZ)× is cyclic ∼= Z/pn−1(p− 1)Z.

3. If n ≥ 2 then (Z/2nZ)× ∼= Z/2Z× Z/2n−2Z.

Proof. First part. Let g ∈ (Z/pZ)× be an element of maximal order, which has to divide p − 1. If h is
another element such that ord(h) - ord(g) then ord(gh) = [ord(g), ord(h)] (Pset 3) has larger order than g
contradicting the choice of g. Thus the order of every element of (Z/pZ)× divides the order of g. Denote
n = ord(g). Then every element of Z/pZ except 0 satisfies Xn−1 = 0 and so every element of Z/pZ satisfies
Xn+1 −X = 0.

The Euclidean algorithm for polynomials with coefficients in Z/pZ (where every nonzero element is
invertible) implies that for every h ∈ Z/pZ, X − h | Xn+1 −X and so

∏
(X − h) | Xn+1 −X. Comparing

degrees we deduce that n+ 1 ≥ p and so g has order p− 1. Thus (Z/pZ)× = 〈g〉 is cyclic ∼= Z/(p− 1)Z.

Second part. Let’s prove by induction that (1 + p)p
n−1 ≡ 1 + pn (mod pn+1). The base case is n = 1

which is trivial. Next, suppose (1 + p)p
n−1

= 1 + pn + apn+1. Then

(1 + p)p
n

= (1 + pn + apn+1)p

≡ (1 + pn)p (mod pn+2)

≡ 1 + pn+1 (mod pn+2)

In the second line we used that
(
p
i

)
pi(n+1) is divisible by pn+2 if i ≥ 1 and in the last line that

(
p
i

)
pin is

divisible by pn+2 for i ≥ 2.
We conclude that the order of 1 + p in (Z/pnZ)× is pn−1. Finally, since pn−1 and p− 1 are coprime the

order of g(1 + p) is pn−1(p− 1) and so (Z/pnZ)× is cyclic ∼= 〈g(1 + p)〉 ∼= Z/pn−1(p− 1)Z.

Third part: As above we prove by induction that if n ≥ 2 then 32
n−1 ≡ 1 + 2n+1 (mod 2n+2) (note

the difference in exponents). Thus 3 has order 2n−2 in (Z/2nZ)×. Moreover, −1 /∈ 〈3〉 as if −1 ≡ 3k

(mod 2n) then 32k ≡ 1 and so k = 2n−3 but 32
n−3 ≡ 1 + 2n−1 (mod 2n) which is not −1 (mod 2n) as n ≥ 2.

Thus 〈−1, 3〉 is a group, larger than 〈3〉 which has index 2 in (Z/2nZ)× and thus (Z/2nZ)× = 〈−1, 3〉 ∼=
〈−1〉 × 〈3〉.
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