Graduate Algebra, Fall 2014
 Lecture 8

Andrei Jorza

2014-09-12

1 Group Theory

1.13 Free groups and presentations

(continued)
Definition 1. A group G is finitely generated if $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ for finitely many elements.
Example 2. 1. Every finite group is finitely generated.
2. \mathbb{Z} is finitely generated.
3. \mathbb{Q} is not finitely generated as if $X=\left\{p_{i} / q_{i}\right\}$ then $\langle X\rangle \subset\left(\prod q_{i}\right)^{-1} \mathbb{Z}$.
4. Let G be the group $\left\langle\left(\begin{array}{ll}2 & \\ & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)\right\rangle \subset \mathrm{GL}(2, \mathbb{R})$. The the subgroup of matrices with 1 -s on the diagonal is not finitely generated.
5. A free abelian group is a group $\cong \mathbb{Z}^{n}$ where n is the rank of the group. We will later use results about modules over PIDs to obtain:
(a) Every subgroup of a free abelian group of rank n is a free abelian group of rank $m \leq n$.
(b) Every subgroup of a finitely generated abelian group is finitely generated.

1.14 Abelian groups

When we study modules over PIDs we will prove the following theorem:
Theorem 3. If G is a finitely generated abelian group then there exist unique integers $r \geq 0$ (called the rank of $G)$ and $n_{i} \geq 2$ such that $n_{i+1} \mid n_{i}$ for all i and

$$
G \cong \mathbb{Z}^{r} \times \prod\left(\mathbb{Z} / n_{i} \mathbb{Z}\right)
$$

For now let's study $\mathbb{Z} / n \mathbb{Z}$.
Proposition 4 (Chinese Remainder Theorem). Suppose n_{i} are pairwise coprime integers. Then

$$
\mathbb{Z} / \prod n_{i} \mathbb{Z} \cong \prod \mathbb{Z} / n_{i} \mathbb{Z}
$$

and

$$
\left(\mathbb{Z} / \prod n_{i} \mathbb{Z}\right)^{\times} \cong \prod\left(\mathbb{Z} / n_{i} \mathbb{Z}\right)^{\times}
$$

In particular, if $n=\prod p_{i}^{a_{i}}$ is the prime decomposition of n then

$$
\mathbb{Z} / n \mathbb{Z} \cong \prod \mathbb{Z} / p_{i}^{a_{i}} \mathbb{Z} \text { and }(\mathbb{Z} / n \mathbb{Z}) \cong \prod\left(\mathbb{Z} / p_{i}^{a_{i}} \mathbb{Z}\right)^{\times}
$$

Proof. By induction it suffices to show that $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ for coprime m and n. Consider the natural map $\mathbb{Z} / m n \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ given by $x \mapsto(x \bmod m, x \bmod n)$. This is an injective homomorphism since $(m, n)=1$ and so $[m, n]=m n$.

We now show surjectivity. Suppose $a, b \in \mathbb{Z}$. Pick $p, q \in \mathbb{Z}$ such that $p m+q n=1$. Then $x=a q n+b p m$ satisfies $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$ so the map is surjective.

The second part follows from the fact that $\operatorname{Aut}(G \times H) \cong \operatorname{Aut}(G) \times \operatorname{Aut}(H)$ for G and H of coprime orders.

The theorem tells us that the abelian group $(\mathbb{Z} / n \mathbb{Z})^{\times}$can be written as a direct product of cyclic groups. What are these groups?

Lemma 5. Let p be a prime number and $m, n \geq 0$ two integers. Write $m=\sum m_{i} p^{i}$ and $n=\sum n_{i} p^{i}$ in base p. Then

$$
\binom{m}{n} \equiv \prod\binom{m_{i}}{n_{i}} \quad(\bmod p)
$$

Proof. For p prime if $i \neq 0, p$ we have $p \left\lvert\,\binom{ p}{i}=p(p-1) \cdots(p-i+1) / i\right.$!. Thus $(X+Y)^{p} \equiv X^{p}+Y^{p}(\bmod p)$. The quantity $\binom{m}{n}$ is the coefficient of X^{n} in $(1+X)^{m} \bmod p$. We will prove by induction that if $a, b<p$ then

$$
\binom{m p+a}{n p+b} \equiv\binom{m}{n}\binom{a}{b} \quad(\bmod p)
$$

which is equivalent to showing that the coefficient of $X^{n p+b}$ in $(1+X)^{m p+a}=\left(1+X^{p}\right)^{m}(1+X)^{a}$ is $\binom{m}{n}\binom{a}{b}$. Since $a<p$ the monomial $X^{n p+b}$ appears only once in $\left(1+X^{p}\right)^{m}(1+X)^{a}$, namely as $\left(X^{p}\right)^{n} X^{b}$ and the comparison of coefficients is immediate.

Proposition 6. 1. If p is any prime then $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic $\cong \mathbb{Z} /(p-1) \mathbb{Z}$.
2. If p is an odd prime and $n \geq 2$ then $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic $\cong \mathbb{Z} / p^{n-1}(p-1) \mathbb{Z}$.
3. If $n \geq 2$ then $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{n-2} \mathbb{Z}$.

Proof. First part. Let $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$be an element of maximal order, which has to divide $p-1$. If h is another element such that $\operatorname{ord}(h) \nmid \operatorname{ord}(g)$ then $\operatorname{ord}(g h)=[\operatorname{ord}(g), \operatorname{ord}(h)]$ (Pset 3) has larger order than g contradicting the choice of g. Thus the order of every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$divides the order of g. Denote $n=\operatorname{ord}(g)$. Then every element of $\mathbb{Z} / p \mathbb{Z}$ except 0 satisfies $X^{n}-1=0$ and so every element of $\mathbb{Z} / p \mathbb{Z}$ satisfies $X^{n+1}-X=0$.

The Euclidean algorithm for polynomials with coefficients in $\mathbb{Z} / p \mathbb{Z}$ (where every nonzero element is invertible) implies that for every $h \in \mathbb{Z} / p \mathbb{Z}, X-h \mid X^{n+1}-X$ and so $\prod(X-h) \mid X^{n+1}-X$. Comparing degrees we deduce that $n+1 \geq p$ and so g has order $p-1$. Thus $(\mathbb{Z} / p \mathbb{Z})^{\times}=\langle g\rangle$ is cyclic $\cong \mathbb{Z} /(p-1) \mathbb{Z}$.

Second part. Let's prove by induction that $(1+p)^{p^{n-1}} \equiv 1+p^{n}\left(\bmod p^{n+1}\right)$. The base case is $n=1$ which is trivial. Next, suppose $(1+p)^{p^{n-1}}=1+p^{n}+a p^{n+1}$. Then

$$
\begin{aligned}
(1+p)^{p^{n}} & =\left(1+p^{n}+a p^{n+1}\right)^{p} \\
& \equiv\left(1+p^{n}\right)^{p} \quad\left(\bmod p^{n+2}\right) \\
& \equiv 1+p^{n+1} \quad\left(\bmod p^{n+2}\right)
\end{aligned}
$$

In the second line we used that $\binom{p}{i} p^{i(n+1)}$ is divisible by p^{n+2} if $i \geq 1$ and in the last line that $\binom{p}{i} p^{i n}$ is divisible by p^{n+2} for $i \geq 2$.

We conclude that the order of $1+p$ in $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is p^{n-1}. Finally, since p^{n-1} and $p-1$ are coprime the order of $g(1+p)$ is $p^{n-1}(p-1)$ and so $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic $\cong\langle g(1+p)\rangle \cong \mathbb{Z} / p^{n-1}(p-1) \mathbb{Z}$.

Third part: As above we prove by induction that if $n \geq 2$ then $3^{2^{n-1}} \equiv 1+2^{n+1}\left(\bmod 2^{n+2}\right)$ (note the difference in exponents). Thus 3 has order 2^{n-2} in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$. Moreover, $-1 \notin\langle 3\rangle$ as if $-1 \equiv 3^{k}$ $\left(\bmod 2^{n}\right)$ then $3^{2 k} \equiv 1$ and so $k=2^{n-3}$ but $3^{2^{n-3}} \equiv 1+2^{n-1}\left(\bmod 2^{n}\right)$ which is not $-1\left(\bmod 2^{n}\right)$ as $n \geq 2$.

Thus $\langle-1,3\rangle$ is a group, larger than $\langle 3\rangle$ which has index 2 in $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$and thus $\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}=\langle-1,3\rangle \cong$ $\langle-1\rangle \times\langle 3\rangle$.

What about non-finitely generated abelian groups?
Definition 7. Let G be an abelian group. Multiplication by n is a homomorphism on G and we denote $G[n]$ its kernel. Denote $G\left[p^{\infty}\right]=\cup G\left[p^{n}\right]$ and $\operatorname{Tor}(G)=\cup_{n \in \mathbb{Z}} G[n]$.
Lemma 8. If G is abelian then $\operatorname{Tor}(G)$ is a subgroup of G.
Proof. If $n g=0$ and $m h=0$ then $m n(g+h)=0$.
Example 9. 1. $G=\mathbb{Q} / \mathbb{Z}$ is not finitely generated. If $n \in \mathbb{Z}$ then $G[n]=\frac{1}{n} \mathbb{Z} / \mathbb{Z}$.
2. $\mathbb{Q} / \mathbb{Z}\left[p^{\infty}\right]=\mathbb{Z}[1 / p]=\left\{\left.\frac{m}{n} \right\rvert\, n=p^{k}\right\}$.
3. $\operatorname{Tor}(\mathbb{Q} / \mathbb{Z})=\mathbb{Q} / \mathbb{Z}$.
4. $\operatorname{Tor}(\mathbb{Q})=0$.

Proposition 10. If G is abelian then $G / \operatorname{Tor}(G)$ is torsion-free.
Proof. Suppose $n g \in \operatorname{Tor}(G)$. Then $m n g=0$ for some m and so $g \in \operatorname{Tor}(G)$.

1.15 Group actions

Definition 11. A group action of a group G on a set X is any homomorphism from G to the group of permutations of X. I.e., to each $g \in G$ one associates a map $x \mapsto g x$ on X such that if $g, h \in G$ then $(g h) x=g(h x))$ and $1 x=x$ for all $x \in X$.
Example 12. 1. The trivial action: G acts on X trivially, sending every g to the identity map.
2. The left regular action of G on itself is $g \mapsto(x \mapsto g x)$. The right regular action is $g \mapsto(x \mapsto x g)$.
3. Let S be a set and X the set of functions $G \rightarrow S$. Then G acts on X by $(g f)(x)=f(x g)$, also called the right regular action.
4. The conjugation action. G acts on itself sending g to the inner homomorphism $h \mapsto g h g^{-1}$. The conjugation action gives an action of G on any normal subgroup of G.
5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action on X. Indeed, if H is a subgroup then $g \mathrm{Hg}^{-1}$ is also a subgroup. The left and right regular actions of G on itself also give actions on X.
6. The group S_{n} acts on \mathbb{C}^{n} by permuting coordinates.
7. For $R=\mathbb{Z} / p \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ the group $\mathrm{GL}(n, R)$ acts on R^{n} by left matrix multiplication.
8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G / H by $g \mapsto(x H \mapsto g x H)$. Similarly the right regular action of G on itself gives an action of G on $H \backslash G$.
9. The group GL $(2, R)$ acts on \mathbb{P}_{R}^{1} as follows: the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts by sending $z \in \mathbb{R} \cup \infty$ to $\frac{a z+b}{c z+d} \in$ $R \cup \infty$.
10. The group $\mathrm{GL}(n, R)$ acts on the set of k-dimensional sub-vector space of R^{n} by left matrix multiplication.
11. Let $k \geq 0$ and V_{k} be the set of polynomials $P(X, Y) \in \mathbb{C}[X]$ homogeneous of degree k. Then GL $(2, \mathbb{C})$ acts on V_{k} as follows: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) P(X, Y)=P(a X+b Y, c X+d Y)$. This is called the k-th symmetric representation.

