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1 Group Theory

1.13 Free groups and presentations

(continued)

Definition 1. A group G is finitely generated if G = 〈g1, . . . , gn〉 for finitely many elements.

Example 2. 1. Every finite group is finitely generated.

2. Z is finitely generated.

3. Q is not finitely generated as if X = {pi/qi} then 〈X〉 ⊂ (
∏

qi)
−1Z.

4. Let G be the group 〈
(

2
1

)
,

(
1 1

1

)
〉 ⊂ GL(2,R). The the subgroup of matrices with 1-s on the

diagonal is not finitely generated.

5. A free abelian group is a group ∼= Zn where n is the rank of the group. We will later use results about
modules over PIDs to obtain:

(a) Every subgroup of a free abelian group of rank n is a free abelian group of rank m ≤ n.

(b) Every subgroup of a finitely generated abelian group is finitely generated.

1.14 Abelian groups

When we study modules over PIDs we will prove the following theorem:

Theorem 3. If G is a finitely generated abelian group then there exist unique integers r ≥ 0 (called the rank
of G) and ni ≥ 2 such that ni+1 | ni for all i and

G ∼= Zr ×
∏

(Z/niZ)

For now let’s study Z/nZ.

Proposition 4 (Chinese Remainder Theorem). Suppose ni are pairwise coprime integers. Then

Z/
∏

niZ ∼=
∏

Z/niZ

and
(Z/

∏
niZ)× ∼=

∏
(Z/niZ)×

In particular, if n =
∏

pai
i is the prime decomposition of n then

Z/nZ ∼=
∏

Z/pai
i Z and (Z/nZ) ∼=

∏
(Z/pai

i Z)×
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Proof. By induction it suffices to show that Z/mnZ ∼= Z/mZ×Z/nZ for coprime m and n. Consider the nat-
ural map Z/mn→ Z/mZ× Z/nZ given by x 7→ (x mod m,x mod n). This is an injective homomorphism
since (m,n) = 1 and so [m,n] = mn.

We now show surjectivity. Suppose a, b ∈ Z. Pick p, q ∈ Z such that pm + qn = 1. Then x = aqn + bpm
satisfies x ≡ a (mod m) and x ≡ b (mod n) so the map is surjective.

The second part follows from the fact that Aut(G × H) ∼= Aut(G) × Aut(H) for G and H of coprime
orders.

The theorem tells us that the abelian group (Z/nZ)× can be written as a direct product of cyclic groups.
What are these groups?

Lemma 5. Let p be a prime number and m,n ≥ 0 two integers. Write m =
∑

mip
i and n =

∑
nip

i in
base p. Then (

m

n

)
≡
∏(

mi

ni

)
(mod p)

Proof. For p prime if i 6= 0, p we have p |
(
p
i

)
= p(p−1) · · · (p− i+1)/i!. Thus (X +Y )p ≡ Xp +Y p (mod p).

The quantity
(
m
n

)
is the coefficient of Xn in (1 + X)m mod p. We will prove by induction that if a, b < p

then (
mp + a

np + b

)
≡
(
m

n

)(
a

b

)
(mod p)

which is equivalent to showing that the coefficient of Xnp+b in (1 +X)mp+a = (1 +Xp)m(1 +X)a is
(
m
n

)(
a
b

)
.

Since a < p the monomial Xnp+b appears only once in (1 + Xp)m(1 + X)a, namely as (Xp)nXb and the
comparison of coefficients is immediate.

Proposition 6. 1. If p is any prime then (Z/pZ)× is cyclic ∼= Z/(p− 1)Z.

2. If p is an odd prime and n ≥ 2 then (Z/pnZ)× is cyclic ∼= Z/pn−1(p− 1)Z.

3. If n ≥ 2 then (Z/2nZ)× ∼= Z/2Z× Z/2n−2Z.

Proof. First part. Let g ∈ (Z/pZ)× be an element of maximal order, which has to divide p − 1. If h is
another element such that ord(h) - ord(g) then ord(gh) = [ord(g), ord(h)] (Pset 3) has larger order than g
contradicting the choice of g. Thus the order of every element of (Z/pZ)× divides the order of g. Denote
n = ord(g). Then every element of Z/pZ except 0 satisfies Xn−1 = 0 and so every element of Z/pZ satisfies
Xn+1 −X = 0.

The Euclidean algorithm for polynomials with coefficients in Z/pZ (where every nonzero element is
invertible) implies that for every h ∈ Z/pZ, X − h | Xn+1 −X and so

∏
(X − h) | Xn+1 −X. Comparing

degrees we deduce that n + 1 ≥ p and so g has order p− 1. Thus (Z/pZ)× = 〈g〉 is cyclic ∼= Z/(p− 1)Z.

Second part. Let’s prove by induction that (1 + p)p
n−1 ≡ 1 + pn (mod pn+1). The base case is n = 1

which is trivial. Next, suppose (1 + p)p
n−1

= 1 + pn + apn+1. Then

(1 + p)p
n

= (1 + pn + apn+1)p

≡ (1 + pn)p (mod pn+2)

≡ 1 + pn+1 (mod pn+2)

In the second line we used that
(
p
i

)
pi(n+1) is divisible by pn+2 if i ≥ 1 and in the last line that

(
p
i

)
pin is

divisible by pn+2 for i ≥ 2.
We conclude that the order of 1 + p in (Z/pnZ)× is pn−1. Finally, since pn−1 and p− 1 are coprime the

order of g(1 + p) is pn−1(p− 1) and so (Z/pnZ)× is cyclic ∼= 〈g(1 + p)〉 ∼= Z/pn−1(p− 1)Z.

Third part: As above we prove by induction that if n ≥ 2 then 32
n−1 ≡ 1 + 2n+1 (mod 2n+2) (note

the difference in exponents). Thus 3 has order 2n−2 in (Z/2nZ)×. Moreover, −1 /∈ 〈3〉 as if −1 ≡ 3k

(mod 2n) then 32k ≡ 1 and so k = 2n−3 but 32
n−3 ≡ 1 + 2n−1 (mod 2n) which is not −1 (mod 2n) as n ≥ 2.
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Thus 〈−1, 3〉 is a group, larger than 〈3〉 which has index 2 in (Z/2nZ)× and thus (Z/2nZ)× = 〈−1, 3〉 ∼=
〈−1〉 × 〈3〉.

What about non-finitely generated abelian groups?

Definition 7. Let G be an abelian group. Multiplication by n is a homomorphism on G and we denote
G[n] its kernel. Denote G[p∞] = ∪G[pn] and Tor(G) = ∪n∈ZG[n].

Lemma 8. If G is abelian then Tor(G) is a subgroup of G.

Proof. If ng = 0 and mh = 0 then mn(g + h) = 0.

Example 9. 1. G = Q/Z is not finitely generated. If n ∈ Z then G[n] = 1
nZ/Z.

2. Q/Z[p∞] = Z[1/p] = {mn |n = pk}.

3. Tor(Q/Z) = Q/Z.

4. Tor(Q) = 0.

Proposition 10. If G is abelian then G/Tor(G) is torsion-free.

Proof. Suppose ng ∈ Tor(G). Then mng = 0 for some m and so g ∈ Tor(G).

1.15 Group actions

Definition 11. A group action of a group G on a set X is any homomorphism from G to the group of
permutations of X. I.e., to each g ∈ G one associates a map x 7→ gx on X such that if g, h ∈ G then
(gh)x = g(hx)) and 1x = x for all x ∈ X.

Example 12. 1. The trivial action: G acts on X trivially, sending every g to the identity map.

2. The left regular action of G on itself is g 7→ (x 7→ gx). The right regular action is g 7→ (x 7→ xg).

3. Let S be a set and X the set of functions G→ S. Then G acts on X by (gf)(x) = f(xg), also called
the right regular action.

4. The conjugation action. G acts on itself sending g to the inner homomorphism h 7→ ghg−1. The
conjugation action gives an action of G on any normal subgroup of G.

5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action
on X. Indeed, if H is a subgroup then gHg−1 is also a subgroup. The left and right regular actions of
G on itself also give actions on X.

6. The group Sn acts on Cn by permuting coordinates.

7. For R = Z/pZ,Q,R,C the group GL(n,R) acts on Rn by left matrix multiplication.

8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G/H by
g 7→ (xH 7→ gxH). Similarly the right regular action of G on itself gives an action of G on H\G.

9. The group GL(2, R) acts on P1
R as follows: the matrix

(
a b
c d

)
acts by sending z ∈ R ∪∞ to az+b

cz+d ∈

R ∪∞.

10. The group GL(n,R) acts on the set of k-dimensional sub-vector space of Rn by left matrix multiplica-
tion.

11. Let k ≥ 0 and Vk be the set of polynomials P (X,Y ) ∈ C[X] homogeneous of degree k. Then GL(2,C)

acts on Vk as follows:

(
a b
c d

)
P (X,Y ) = P (aX + bY, cX + dY ). This is called the k-th symmetric

representation.
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