Graduate Algebra, Fall 2014 Lecture 8

Andrei Jorza

2014-09-12

1 Group Theory

1.13 Free groups and presentations

(continued)

Definition 1. A group G is finitely generated if $G = \langle g_1, \ldots, g_n \rangle$ for finitely many elements.

Example 2. 1. Every finite group is finitely generated.

- 2. \mathbb{Z} is finitely generated.
- 3. \mathbb{Q} is not finitely generated as if $X = \{p_i/q_i\}$ then $\langle X \rangle \subset (\prod q_i)^{-1}\mathbb{Z}$.
- 4. Let G be the group $\langle \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \rangle \subset GL(2, \mathbb{R})$. The the subgroup of matrices with 1-s on the diagonal is not finitely generated.
- 5. A free abelian group is a group $\cong \mathbb{Z}^n$ where *n* is the rank of the group. We will later use results about modules over PIDs to obtain:
 - (a) Every subgroup of a free abelian group of rank n is a free abelian group of rank $m \leq n$.
 - (b) Every subgroup of a finitely generated abelian group is finitely generated.

1.14 Abelian groups

When we study modules over PIDs we will prove the following theorem:

Theorem 3. If G is a finitely generated abelian group then there exist unique integers $r \ge 0$ (called the rank of G) and $n_i \ge 2$ such that $n_{i+1} \mid n_i$ for all i and

$$G \cong \mathbb{Z}^r \times \prod (\mathbb{Z}/n_i\mathbb{Z})$$

For now let's study $\mathbb{Z}/n\mathbb{Z}$.

Proposition 4 (Chinese Remainder Theorem). Suppose n_i are pairwise coprime integers. Then

$$\mathbb{Z}/\prod n_i\mathbb{Z}\cong \prod \mathbb{Z}/n_i\mathbb{Z}$$

and

$$(\mathbb{Z}/\prod n_i\mathbb{Z})^{\times} \cong \prod (\mathbb{Z}/n_i\mathbb{Z})^{\times}$$

In particular, if $n = \prod p_i^{a_i}$ is the prime decomposition of n then

$$\mathbb{Z}/n\mathbb{Z} \cong \prod \mathbb{Z}/p_i^{a_i}\mathbb{Z} \text{ and } (\mathbb{Z}/n\mathbb{Z}) \cong \prod (\mathbb{Z}/p_i^{a_i}\mathbb{Z})^{\times}$$

Proof. By induction it suffices to show that $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ for coprime m and n. Consider the natural map $\mathbb{Z}/mn \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ given by $x \mapsto (x \mod m, x \mod n)$. This is an injective homomorphism since (m, n) = 1 and so [m, n] = mn.

We now show surjectivity. Suppose $a, b \in \mathbb{Z}$. Pick $p, q \in \mathbb{Z}$ such that pm + qn = 1. Then x = aqn + bpmsatisfies $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ so the map is surjective.

The second part follows from the fact that $\operatorname{Aut}(G \times H) \cong \operatorname{Aut}(G) \times \operatorname{Aut}(H)$ for G and H of coprime orders.

The theorem tells us that the abelian group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ can be written as a direct product of cyclic groups. What are these groups?

Lemma 5. Let p be a prime number and $m, n \ge 0$ two integers. Write $m = \sum m_i p^i$ and $n = \sum n_i p^i$ in base p. Then

$$\binom{m}{n} \equiv \prod \binom{m_i}{n_i} \pmod{p}$$

Proof. For p prime if $i \neq 0, p$ we have $p \mid {p \choose i} = p(p-1)\cdots(p-i+1)/i!$. Thus $(X+Y)^p \equiv X^p + Y^p \pmod{p}$. The quantity $\binom{m}{n}$ is the coefficient of X^n in $(1+X)^m \mod p$. We will prove by induction that if a, b < pthen

$$\binom{mp+a}{np+b} \equiv \binom{m}{n} \binom{a}{b} \pmod{p}$$

which is equivalent to showing that the coefficient of X^{np+b} in $(1+X)^{mp+a} = (1+X^p)^m (1+X)^a$ is $\binom{m}{p}\binom{a}{b}$. Since a < p the monomial X^{np+b} appears only once in $(1+X^p)^m(1+X)^a$, namely as $(X^p)^n X^b$ and the comparison of coefficients is immediate.

1. If p is any prime then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic $\cong \mathbb{Z}/(p-1)\mathbb{Z}$. **Proposition 6.**

- 2. If p is an odd prime and n > 2 then $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic $\cong \mathbb{Z}/p^{n-1}(p-1)\mathbb{Z}$.
- 3. If n > 2 then $(\mathbb{Z}/2^n\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}$.

Proof. First part. Let $q \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ be an element of maximal order, which has to divide p-1. If h is another element such that $\operatorname{ord}(h) \nmid \operatorname{ord}(g)$ then $\operatorname{ord}(gh) = [\operatorname{ord}(g), \operatorname{ord}(h)]$ (Pset 3) has larger order than g contradicting the choice of g. Thus the order of every element of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ divides the order of g. Denote $n = \operatorname{ord}(g)$. Then every element of $\mathbb{Z}/p\mathbb{Z}$ except 0 satisfies $X^n - 1 = 0$ and so every element of $\mathbb{Z}/p\mathbb{Z}$ satisfies $X^{n+1} - X = 0.$

The Euclidean algorithm for polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$ (where every nonzero element is invertible) implies that for every $h \in \mathbb{Z}/p\mathbb{Z}$, $X - h \mid X^{n+1} - X$ and so $\prod (X - h) \mid X^{n+1} - X$. Comparing degrees we deduce that $n+1 \ge p$ and so g has order p-1. Thus $(\mathbb{Z}/p\mathbb{Z})^{\times} = \langle g \rangle$ is cyclic $\cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Second part. Let's prove by induction that $(1+p)^{p^{n-1}} \equiv 1+p^n \pmod{p^{n+1}}$. The base case is n=1which is trivial. Next, suppose $(1+p)^{p^{n-1}} = 1 + p^n + ap^{n+1}$. Then

$$(1+p)^{p^{n}} = (1+p^{n}+ap^{n+1})^{p}$$

$$\equiv (1+p^{n})^{p} \pmod{p^{n+2}}$$

$$\equiv 1+p^{n+1} \pmod{p^{n+2}}$$

In the second line we used that $\binom{p}{i}p^{i(n+1)}$ is divisible by p^{n+2} if $i \geq 1$ and in the last line that $\binom{p}{i}p^{in}$ is divisible by p^{n+2} for $i \ge 2$.

We conclude that the order of 1 + p in $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is p^{n-1} . Finally, since p^{n-1} and p-1 are coprime the

order of g(1+p) is $p^{n-1}(p-1)$ and so $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic $\cong \langle g(1+p) \rangle \cong \mathbb{Z}/p^{n-1}(p-1)\mathbb{Z}$. Third part: As above we prove by induction that if $n \ge 2$ then $3^{2^{n-1}} \equiv 1 + 2^{n+1} \pmod{2^{n+2}}$ (note the difference in exponents). Thus 3 has order 2^{n-2} in $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$. Moreover, $-1 \notin \langle 3 \rangle$ as if $-1 \equiv 3^k$ $(\text{mod } 2^n)$ then $3^{2k} \equiv 1$ and so $k = 2^{n-3}$ but $3^{2^{n-3}} \equiv 1 + 2^{n-1} \pmod{2^n}$ which is not $-1 \pmod{2^n}$ as $n \ge 2$.

Thus $\langle -1, 3 \rangle$ is a group, larger than $\langle 3 \rangle$ which has index 2 in $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ and thus $(\mathbb{Z}/2^n\mathbb{Z})^{\times} = \langle -1, 3 \rangle \cong \langle -1 \rangle \times \langle 3 \rangle$.

What about non-finitely generated abelian groups?

Definition 7. Let G be an abelian group. Multiplication by n is a homomorphism on G and we denote G[n] its kernel. Denote $G[p^{\infty}] = \bigcup G[p^n]$ and $\operatorname{Tor}(G) = \bigcup_{n \in \mathbb{Z}} G[n]$.

Lemma 8. If G is abelian then Tor(G) is a subgroup of G.

Proof. If ng = 0 and mh = 0 then mn(g+h) = 0.

Example 9. 1. $G = \mathbb{Q}/\mathbb{Z}$ is not finitely generated. If $n \in \mathbb{Z}$ then $G[n] = \frac{1}{n}\mathbb{Z}/\mathbb{Z}$.

- 2. $\mathbb{Q}/\mathbb{Z}[p^{\infty}] = \mathbb{Z}[1/p] = \{\frac{m}{n}|n=p^k\}.$
- 3. Tor(\mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z} .
- 4. $\operatorname{Tor}(\mathbb{Q}) = 0.$

Proposition 10. If G is abelian then $G/\operatorname{Tor}(G)$ is torsion-free.

Proof. Suppose $ng \in \text{Tor}(G)$. Then mng = 0 for some m and so $g \in \text{Tor}(G)$.

1.15 Group actions

Definition 11. A group action of a group G on a set X is any homomorphism from G to the group of permutations of X. I.e., to each $g \in G$ one associates a map $x \mapsto gx$ on X such that if $g, h \in G$ then (gh)x = g(hx) and 1x = x for all $x \in X$.

Example 12. 1. The trivial action: G acts on X trivially, sending every g to the identity map.

- 2. The left regular action of G on itself is $g \mapsto (x \mapsto gx)$. The right regular action is $g \mapsto (x \mapsto xg)$.
- 3. Let S be a set and X the set of functions $G \to S$. Then G acts on X by (gf)(x) = f(xg), also called the right regular action.
- 4. The conjugation action. G acts on itself sending g to the inner homomorphism $h \mapsto ghg^{-1}$. The conjugation action gives an action of G on any normal subgroup of G.
- 5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action on X. Indeed, if H is a subgroup then gHg^{-1} is also a subgroup. The left and right regular actions of G on itself also give actions on X.
- 6. The group S_n acts on \mathbb{C}^n by permuting coordinates.
- 7. For $R = \mathbb{Z}/p\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ the group $\mathrm{GL}(n, R)$ acts on \mathbb{R}^n by left matrix multiplication.
- 8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G/H by $g \mapsto (xH \mapsto gxH)$. Similarly the right regular action of G on itself gives an action of G on $H \setminus G$.
- 9. The group $\operatorname{GL}(2, R)$ acts on \mathbb{P}^1_R as follows: the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts by sending $z \in \mathbb{R} \cup \infty$ to $\frac{az+b}{cz+d} \in \mathbb{R} \cup \infty$.
- 10. The group GL(n, R) acts on the set of k-dimensional sub-vector space of R^n by left matrix multiplication.
- 11. Let $k \ge 0$ and V_k be the set of polynomials $P(X, Y) \in \mathbb{C}[X]$ homogeneous of degree k. Then $\operatorname{GL}(2, \mathbb{C})$ acts on V_k as follows: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} P(X, Y) = P(aX + bY, cX + dY)$. This is called the k-th symmetric representation.