Graduate Algebra, Fall 2014 Lecture 9

Andrei Jorza

2014-09-15

1 Group Theory

1.15 Group actions

Definition 1. A group action of a group G on a set X is any homomorphism from G to the group of permutations of X. I.e., to each $g \in G$ one associates a map $x \mapsto gx$ on X such that if $g, h \in G$ then (gh)x = g(hx) and 1x = x for all $x \in X$.

Example 2. 1. The trivial action: G acts on X trivially, sending every g to the identity map.

- 2. The left regular action of G on itself is $g \mapsto (x \mapsto gx)$. The right regular action is $g \mapsto (x \mapsto xg)$.
- 3. Let S be a set and X the set of functions $G \to S$. Then G acts on X by (gf)(x) = f(xg), also called the right regular action.
- 4. The conjugation action. G acts on itself sending g to the inner homomorphism $h \mapsto ghg^{-1}$. The conjugation action gives an action of G on any normal subgroup of G.
- 5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action on X. Indeed, if H is a subgroup then gHg^{-1} is also a subgroup. The left and right regular actions of G on itself also give actions on X.
- 6. The group S_n acts on \mathbb{C}^n by permuting coordinates.
- 7. For $R = \mathbb{Z}/p\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ the group $\operatorname{GL}(n, R)$ acts on R^n by left matrix multiplication.
- 8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G/H by $g \mapsto (xH \mapsto gxH)$. Similarly the right regular action of G on itself gives an action of G on $H \setminus G$.
- 9. The group $\operatorname{GL}(2, R)$ acts on \mathbb{P}^1_R as follows: the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ acts by sending $z \in \mathbb{R} \cup \infty$ to $\frac{az+b}{cz+d} \in \mathbb{R} \cup \infty$.
- 10. The group $\operatorname{GL}(n, R)$ acts on the set of k-dimensional sub-vector space of \mathbb{R}^n by left matrix multiplication.
- 11. Let $k \ge 0$ and V_k be the set of polynomials $P(X, Y) \in \mathbb{C}[X]$ homogeneous of degree k. Then $\operatorname{GL}(2, \mathbb{C})$ acts on V_k as follows: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} P(X, Y) = P(aX + bY, cX + dY)$. This is called the k-th symmetric representation.

Definition 3. Suppose G acts on X. The **orbit** of $x \in X$ is the set $O(x) = \{gx | g \in G\}$.

Remark 1. Two orbits are either disjoint or coincide and the space X becomes a disjoint union of orbits of G acting on X.

- **Example 4.** 1. The group $G = \mathbb{R}/\mathbb{Z}$ acts on \mathbb{C} sending x to rotation by $x: x \mapsto (z \mapsto ze^{2\pi ix})$. This is a group action. Suppose $z \in \mathbb{C}$. Then the orbit of z contains all $ze^{2\pi ix}$ for all x and so $O(z) = \{w \in \mathbb{C} | |z| = |w|\}$ is a circle of radius |z|. Two such circles are either disjoint or coincide and of course \mathbb{C} is a union of all these concentric circles.
 - (a) If a group G acts by conjugation on itself, the orbits are called **conjugacy classes**.
 - (b) The group $\operatorname{GL}(2, \mathbb{C})$ acts on the space X of 2×2 matrices with complex coordinates by conjugation: $g \mapsto (X \mapsto gXg^{-1})$. What are the orbits? The Jordan canonical form of a 2×2 matrix A is a matrix B of the form $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ for $\alpha, \beta \in \mathbb{C}$ or $\begin{pmatrix} \alpha & 1 \\ \alpha \end{pmatrix}$ for $\alpha \in \mathbb{C}$ such that $A = SBS^{-1}$ for some $S \in \operatorname{GL}(2, \mathbb{C})$. Thus every orbit on G on X, i.e., every conjugacy class, contains a matrix of this special form. Moreover, the only way for one orbit (conjugacy class) to contain two matrices of this special form is if the two matrices are $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ and $\begin{pmatrix} \beta \\ \alpha \end{pmatrix}$. We thus get a complete enumeration of all the conjugacy classes of $\operatorname{GL}(2, \mathbb{C})$ acting on X.

Definition 5. Suppose G acts on X and $x \in X$. The stabilizer of x in G is the set $\operatorname{Stab}_G(x) = \{g \in G | gx = x\}$. It is a subgroup of G.

- **Example 6.** 1. In the \mathbb{R}/\mathbb{Z} acting on \mathbb{C} by rotation there are two stabilizers: \mathbb{R}/\mathbb{Z} when z = 0 and 0 if $z \neq 0$.
 - 2. Suppose G acts by conjugation on itself. What is $\operatorname{Stab}_G(g)$? It is $\{h \in G | h \cdot g = g\}$ in other words $hgh^{-1} = g$ or hg = gh. This is called the **centralizer** of g in G, often denoted $C_G(g)$.
 - 3. Suppose S_n acts on \mathbb{C}^n by $\sigma \cdot (x_1, \ldots, x_n) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. Then $\operatorname{Stab}_G(x_1, \ldots, x_n) = \{\sigma \in S_n | \sigma(i) = i \}$. For example, $\operatorname{Stab}_{S_3}((1, 1, 0)) = \langle (12) \rangle$.

Theorem 7 (Class equation). Let G be a finite group acting on a finite set X.

- 1. $X = \sqcup O_i$ where the O_i are the orbits of G on X.
- 2. If $x \in X$ then $|O(x)| = [G : \operatorname{Stab}_G(x)]$.
- 3. In each orbit of G acting on X choose an element x_i . Then

$$|X| = \sum [G : \operatorname{Stab}_G(x_i)]$$

4. In each conjugacy class in G with more than one element select an element g_i . Then

$$|G| = |Z(G)| + \sum [G : C_G(g_i)]$$

Corollary 8. Let G be a finite group such that $|G| = p^m$ for m > 0. Then $Z(G) \neq 1$.

Proof. From the class equation $|G| = |Z(G)| + \sum [G : C_G(g_i)]$ where $[G : C_G(g_i)] \neq 1$. But then $[G : C_G(g_i)] |$ $|G| = p^m$ and so must be a power of p. We deduce that |Z(G)| is divisible by p and thus is not 1.

Proposition 9. If $|G| = p^2$ then G is abelian.

Proof. From the corollary Z(G) is nontrivial and so |Z(G)| = p or p^2 . If p^2 then G is abelian. If p then G/Z(G) has p elements and thus is cyclic. But then the homework implies that G must be abelian to begin with and so this case cannot happen.