Graduate Algebra, Fall 2014
 Lecture 9

Andrei Jorza

2014-09-15

1 Group Theory

1.15 Group actions

Definition 1. A group action of a group G on a set X is any homomorphism from G to the group of permutations of X. I.e., to each $g \in G$ one associates a map $x \mapsto g x$ on X such that if $g, h \in G$ then $(g h) x=g(h x))$ and $1 x=x$ for all $x \in X$.

Example 2. 1. The trivial action: G acts on X trivially, sending every g to the identity map.
2. The left regular action of G on itself is $g \mapsto(x \mapsto g x)$. The right regular action is $g \mapsto(x \mapsto x g)$.
3. Let S be a set and X the set of functions $G \rightarrow S$. Then G acts on X by $(g f)(x)=f(x g)$, also called the right regular action.
4. The conjugation action. G acts on itself sending g to the inner homomorphism $h \mapsto g h g^{-1}$. The conjugation action gives an action of G on any normal subgroup of G.
5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action on X. Indeed, if H is a subgroup then $g H^{-1}$ is also a subgroup. The left and right regular actions of G on itself also give actions on X.
6. The group S_{n} acts on \mathbb{C}^{n} by permuting coordinates.
7. For $R=\mathbb{Z} / p \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ the group $\mathrm{GL}(n, R)$ acts on R^{n} by left matrix multiplication.
8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G / H by $g \mapsto(x H \mapsto g x H)$. Similarly the right regular action of G on itself gives an action of G on $H \backslash G$.
9. The group $\mathrm{GL}(2, R)$ acts on \mathbb{P}_{R}^{1} as follows: the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts by sending $z \in \mathbb{R} \cup \infty$ to $\frac{a z+b}{c z+d} \in$ $R \cup \infty$.
10. The group GL (n, R) acts on the set of k-dimensional sub-vector space of R^{n} by left matrix multiplication.
11. Let $k \geq 0$ and V_{k} be the set of polynomials $P(X, Y) \in \mathbb{C}[X]$ homogeneous of degree k. Then GL $(2, \mathbb{C})$ acts on V_{k} as follows: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) P(X, Y)=P(a X+b Y, c X+d Y)$. This is called the k-th symmetric representation.

Definition 3. Suppose G acts on X. The orbit of $x \in X$ is the set $O(x)=\{g x \mid g \in G\}$.

Remark 1. Two orbits are either disjoint or coincide and the space X becomes a disjoint union of orbits of G acting on X.

Example 4. 1. The group $G=\mathbb{R} / \mathbb{Z}$ acts on \mathbb{C} sending x to rotation by $x: x \mapsto\left(z \mapsto z e^{2 \pi i x}\right)$. This is a group action. Suppose $z \in \mathbb{C}$. Then the orbit of z contains all $z e^{2 \pi i x}$ for all x and so $O(z)=\{w \in$ $\mathbb{C}||z|=|w|\}$ is a circle of radius $|z|$. Two such circles are either disjoint or coincide and of course \mathbb{C} is a union of all these concentric circles.
(a) If a group G acts by conjugation on itself, the orbits are called conjugacy classes.
(b) The group GL $(2, \mathbb{C})$ acts on the space X of 2×2 matrices with complex coordinates by conjugation: $g \mapsto\left(X \mapsto g X g^{-1}\right)$. What are the orbits? The Jordan canonical form of a 2×2 matrix A is a matrix B of the form $\left(\begin{array}{ll}\alpha & \\ & \beta\end{array}\right)$ for $\alpha, \beta \in \mathbb{C}$ or $\left(\begin{array}{ll}\alpha & 1 \\ & \alpha\end{array}\right)$ for $\alpha \in \mathbb{C}$ such that $A=S B S^{-1}$ for some $S \in \mathrm{GL}(2, \mathbb{C})$. Thus every orbit on G on X, i.e., every conjugacy class, contains a matrix of this special form. Moreover, the only way for one orbit (conjugacy class) to contain two matrices of this special form is if the two matrices are $\left(\begin{array}{ll}\alpha & \\ & \beta\end{array}\right)$ and $\left(\begin{array}{ll}\beta & \\ & \alpha\end{array}\right)$. We thus get a complete enumeration of all the conjugacy classes of $\mathrm{GL}(2, \mathbb{C})$ acting on X.

Definition 5. Suppose G acts on X and $x \in X$. The stabilizer of x in G is the set $\operatorname{Stab}_{G}(x)=\{g \in$ $G \mid g x=x\}$. It is a subgroup of G.

Example 6. 1. In the \mathbb{R} / \mathbb{Z} acting on \mathbb{C} by rotation there are two stabilizers: \mathbb{R} / \mathbb{Z} when $z=0$ and 0 if $z \neq 0$.
2. Suppose G acts by conjugation on itself. What is $\operatorname{Stab}_{G}(g)$? It is $\{h \in G \mid h \cdot g=g\}$ in other words $h g h^{-1}=g$ or $h g=g h$. This is called the centralizer of g in G, often denoted $C_{G}(g)$.
3. Suppose S_{n} acts on \mathbb{C}^{n} by $\sigma \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. Then $\operatorname{Stab}_{G}\left(x_{1}, \ldots, x_{n}\right)=\{\sigma \in$ $\left.S_{n} \mid \sigma(i)=i\right\}$. For example, $\operatorname{Stab}_{S_{3}}((1,1,0))=\langle(12)\rangle$.

Theorem 7 (Class equation). Let G be a finite group acting on a finite set X.

1. $X=\sqcup O_{i}$ where the O_{i} are the orbits of G on X.
2. If $x \in X$ then $|O(x)|=\left[G: \operatorname{Stab}_{G}(x)\right]$.
3. In each orbit of G acting on X choose an element x_{i}. Then

$$
|X|=\sum\left[G: \operatorname{Stab}_{G}\left(x_{i}\right)\right]
$$

4. In each conjugacy class in G with more than one element select an element g_{i}. Then

$$
|G|=|Z(G)|+\sum\left[G: C_{G}\left(g_{i}\right)\right]
$$

Corollary 8. Let G be a finite group such that $|G|=p^{m}$ for $m>0$. Then $Z(G) \neq 1$.
Proof. From the class equation $|G|=|Z(G)|+\sum\left[G: C_{G}\left(g_{i}\right)\right]$ where $\left[G: C_{G}\left(g_{i}\right)\right] \neq 1$. But then $\left[G: C_{G}\left(g_{i}\right)\right] \mid$ $|G|=p^{m}$ and so must be a power of p. We deduce that $|Z(G)|$ is divisible by p and thus is not 1 .

Proposition 9. If $|G|=p^{2}$ then G is abelian.
Proof. From the corollary $Z(G)$ is nontrivial and so $|Z(G)|=p$ or p^{2}. If p^{2} then G is abelian. If p then $G / Z(G)$ has p elements and thus is cyclic. But then the homework implies that G must be abelian to begin with and so this case cannot happen.

