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1 Group Theory

1.15 Group actions

Definition 1. A group action of a group G on a set X is any homomorphism from G to the group of
permutations of X. I.e., to each g ∈ G one associates a map x 7→ gx on X such that if g, h ∈ G then
(gh)x = g(hx)) and 1x = x for all x ∈ X.

Example 2. 1. The trivial action: G acts on X trivially, sending every g to the identity map.

2. The left regular action of G on itself is g 7→ (x 7→ gx). The right regular action is g 7→ (x 7→ xg).

3. Let S be a set and X the set of functions G→ S. Then G acts on X by (gf)(x) = f(xg), also called
the right regular action.

4. The conjugation action. G acts on itself sending g to the inner homomorphism h 7→ ghg−1. The
conjugation action gives an action of G on any normal subgroup of G.

5. If X is the set of subgroups of G then the conjugation action of G on itself yields a conjugation action
on X. Indeed, if H is a subgroup then gHg−1 is also a subgroup. The left and right regular actions of
G on itself also give actions on X.

6. The group Sn acts on Cn by permuting coordinates.

7. For R = Z/pZ,Q,R,C the group GL(n,R) acts on Rn by left matrix multiplication.

8. If H is a subgroup of G then the left regular action of G on itself gives the action of G on G/H by
g 7→ (xH 7→ gxH). Similarly the right regular action of G on itself gives an action of G on H\G.

9. The group GL(2, R) acts on P1
R as follows: the matrix

(
a b
c d

)
acts by sending z ∈ R ∪∞ to az+b

cz+d ∈

R ∪∞.

10. The group GL(n,R) acts on the set of k-dimensional sub-vector space of Rn by left matrix multiplica-
tion.

11. Let k ≥ 0 and Vk be the set of polynomials P (X,Y ) ∈ C[X] homogeneous of degree k. Then GL(2,C)

acts on Vk as follows:

(
a b
c d

)
P (X,Y ) = P (aX + bY, cX + dY ). This is called the k-th symmetric

representation.

Definition 3. Suppose G acts on X. The orbit of x ∈ X is the set O(x) = {gx|g ∈ G}.
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Remark 1. Two orbits are either disjoint or coincide and the space X becomes a disjoint union of orbits of
G acting on X.

Example 4. 1. The group G = R/Z acts on C sending x to rotation by x: x 7→ (z 7→ ze2πix). This is
a group action. Suppose z ∈ C. Then the orbit of z contains all ze2πix for all x and so O(z) = {w ∈
C||z| = |w|} is a circle of radius |z|. Two such circles are either disjoint or coincide and of course C is
a union of all these concentric circles.

(a) If a group G acts by conjugation on itself, the orbits are called conjugacy classes.

(b) The group GL(2,C) acts on the spaceX of 2×2 matrices with complex coordinates by conjugation:
g 7→ (X 7→ gXg−1). What are the orbits? The Jordan canonical form of a 2 × 2 matrix A is

a matrix B of the form

(
α

β

)
for α, β ∈ C or

(
α 1

α

)
for α ∈ C such that A = SBS−1 for

some S ∈ GL(2,C). Thus every orbit on G on X, i.e., every conjugacy class, contains a matrix of
this special form. Moreover, the only way for one orbit (conjugacy class) to contain two matrices

of this special form is if the two matrices are

(
α

β

)
and

(
β

α

)
. We thus get a complete

enumeration of all the conjugacy classes of GL(2,C) acting on X.

Definition 5. Suppose G acts on X and x ∈ X. The stabilizer of x in G is the set StabG(x) = {g ∈
G|gx = x}. It is a subgroup of G.

Example 6. 1. In the R/Z acting on C by rotation there are two stabilizers: R/Z when z = 0 and 0 if
z 6= 0.

2. Suppose G acts by conjugation on itself. What is StabG(g)? It is {h ∈ G|h · g = g} in other words
hgh−1 = g or hg = gh. This is called the centralizer of g in G, often denoted CG(g).

3. Suppose Sn acts on Cn by σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)). Then StabG(x1, . . . , xn) = {σ ∈
Sn|σ(i) = i}. For example, StabS3

((1, 1, 0)) = 〈(12)〉.

Theorem 7 (Class equation). Let G be a finite group acting on a finite set X.

1. X = tOi where the Oi are the orbits of G on X.

2. If x ∈ X then |O(x)| = [G : StabG(x)].

3. In each orbit of G acting on X choose an element xi. Then

|X| =
∑

[G : StabG(xi)]

4. In each conjugacy class in G with more than one element select an element gi. Then

|G| = |Z(G)|+
∑

[G : CG(gi)]

Corollary 8. Let G be a finite group such that |G| = pm for m > 0. Then Z(G) 6= 1.

Proof. From the class equation |G| = |Z(G)|+
∑

[G : CG(gi)] where [G : CG(gi)] 6= 1. But then [G : CG(gi)] |
|G| = pm and so must be a power of p. We deduce that |Z(G)| is divisible by p and thus is not 1.

Proposition 9. If |G| = p2 then G is abelian.

Proof. From the corollary Z(G) is nontrivial and so |Z(G)| = p or p2. If p2 then G is abelian. If p then
G/Z(G) has p elements and thus is cyclic. But then the homework implies that G must be abelian to begin
with and so this case cannot happen.
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