1 Basics

Definition 1. Let F be a field. A noncommutative ring A is said to be a finite dimensional F-algebra if $\dim_F A < \infty$ and it is equipped with a ring homomorphism $F \rightarrow Z(A)$ taking 1 to 1.

• By a finite dimensional module M over A we mean a finite dimensional left A-module.
• The algebra A is said to be simple if its only two-sided ideals are 0 and A.
• A is said to be a division algebra if $A - \{0\}$ is a group under multiplication in the algebra.
• A finite dimensional A-module M is simple if its only A-submodules are 0 and M.

Definition 2. If $(A, +, \times)$ is an F-algebra define the opposite F-algebra $(A, +, \times^{op})$ where the set is A, the addition $+$ is the same as in A but multiplication is $a \times^{op} b = b \times a$.

Lemma 3 (Schur). 1. If M and N are simple A-modules and $f \in \text{Hom}_A(M, N)$ then either $f = 0$ or f is an isomorphism.
2. If M is simple then $\text{End}_A(M)$ is a division algebra.

Proof. Note that $\ker f \subset M$ and $\text{Im } f \subset N$ so either $\ker f = 0$ or $\ker f = M$ and either $\text{Im } f = 0$ or $\text{Im } f = N$.

Lemma 4. Let M be a finite-dimensional A-module. The following are equivalent:
1. $M = N_1 \oplus \cdots \oplus N_r$ where N_i are simple.
2. $M = \sum N_i$ with simple $N_i \subset M$.
3. If $N \subset M$ then there exists $P \subset M$ such that $M = N \oplus P$.
4. If $N \subset M' \subset M$ there exists $P \subset M'$ such that $M' = N \oplus P$.

Proof. 1 implies 2 is vacuous.
2 implies 3: choose a maximal set of simple submodules $Q_1, \ldots, Q_r \subset M$ such that $N + Q_1 + \cdots + Q_r = N \oplus Q_1 \oplus \cdots \oplus Q_r$. If $N \oplus Q_1 \oplus \cdots \oplus Q_r \neq M$ choose a simple $Q_{r+1} \subset M$ such that $Q_{r+1} \not\subset N \oplus Q_1 \oplus \cdots \oplus Q_r$.
Since Q_{r+1} is simple it follows that $N \oplus Q_1 \oplus \cdots \oplus Q_r \cap Q_{r+1} = 0$ so $N + Q_1 + \cdots + Q_{r+1} = N \oplus Q_1 \oplus \cdots \oplus Q_{r+1}$ contradicting the maximality of r.
3 implies 4: If $M = N \oplus Q$ then $M' = N \oplus (Q \cap M')$.
4 implies 1: choose $N \subset M$ a simple submodule. Then $M = N \oplus P$ and inductively we get the required decomposition.

Definition 5. When the equivalent conditions of the previous lemma hold the module M is said to be semisimple.

Note 6. It is left as an exercise that a semisimple module decomposes uniquely (up to reordering) as a direct sum of simple submodules.
Corollary 7. Semisimplicity is preserved under direct sums and passage to quotients and submodules.

Corollary 8. If A is a semisimple A-module then all finite dimensional A-modules are semisimple. In that case A is said to be a (left) semisimple ring.

Proof. If M is any finite dimensional A-module then $A^r \to M$ for some r and M must be semisimple. \hfill \Box

Corollary 9. Let M be a finite dimensional A module such that the action of A on M is faithful, i.e., if for $a \in A$ we have $am = 0$ for all $m \in M$ then $a = 0$. If M is semisimple then A is semisimple.

Corollary 10. If A is simple as a ring, i.e., there are no nontrivial two-sided ideals, then it is left semisimple.

Proof. Let $M \subset A$ a simple left A-submodule. Then $\sum_{a \in A} Ma \subset A$ is a two-sided ideal so $\sum_{a \in A} Ma = A$. Since A is then a semisimple A-module it follows that A is a semisimple ring. \hfill \Box

2 Structure of Algebras

Lemma 11 (Wedderburn). If A is a finite dimensional semisimple F-algebra then

$$A \cong M_{n_1 \times n_1}(D_1) \oplus \cdots \oplus M_{n_r \times n_r}(D_r)$$

where D_i are division algebras over F.

Any algebra of the above form is semisimple and the expression is unique up to reordering. Moreover, the semisimple modules over A are $D_i^{n_i}$ where the action is given by matrix multiplication.

Proof. Write $A = N_1^{n_1} \oplus \cdots \oplus N_r^{n_r}$ with N_i pairwise nonisomorphic simple modules. Then $\text{End}_A(A) = \oplus \text{End}_A(N_i^{n_i}) = \oplus M_{n_i \times n_i}(D_i)$ where $D_i = \text{End}_A(N_i)$ is a division algebra. Have a natural map $A^{op} \cong \text{End}_A(A)$ given by $a \mapsto \langle b \mapsto ba \rangle$ and so

$$A \cong \oplus M_{n_i \times n_i}(D_i^{op})$$

Remark 12. The above lemma shows that A is simple if and only if $A = M_n(D)$ where D is a division algebra.

Corollary 13. If A is a semisimple F-algebra and M and N are finite dimensional A modules then $M \cong N$ if and only if $\text{Tr}a|_{M} = \text{Tr}a|_{N}$ for all $i \geq 0$ and $a \in A$. If F has characteristic 0 then it is enough to check $\text{Tr}a|_{M} = \text{Tr}a|_{N}$ for all a.

Proof. Let $M \cong \oplus P_i^{s_i}$ and $N \cong \oplus P_i^{t_i}$ where the P_i are nonisomorphic simple A-modules. Clearly $M \cong N$ if and only if $s_i = t_i$ for all i, if and only if $\dim e_i M = \dim e_i N$ for $i = 1, \ldots, r$ where e_i is the projector onto P_i: $e_i^2 = e_i$, $e_i = 1$ on P_i and $e_i = 0$ on $P_j \neq P_i$. Then $\text{Tr} e_i|_M = \langle \dim P_i \rangle$ for all j and the condition on traces becomes $(s_i \dim P_i) = (t_i \dim P_i)$ for all j.

If F has characteristic 0 then $\text{Tr} e_i|_M = s_i \dim P_i$ and $\text{Tr} e_i|_N = t_i \dim P_i$ so if $\text{Tr} e_i|_M = \text{Tr} e_i|_N$ then $s_i = t_i$ for all i. If F has positive characteristic then the condition on traces implies that $(1 + x)^{s_i \dim P_i} = (1 + x)^{t_i \dim P_i}$ which implies that $s_i = t_i$ for a variable x. \hfill \Box

Definition 14. The F-algebra A is said to be a central simple algebra if it is a simple finite dimensional algebra such that $F \cong Z(A)$.

Lemma 15 (Jacobson density theorem). Let A be a finite dimensional F-algebra and let M be a simple A-module. Let $D = \text{End}_A(M)$ (a division algebra by Schur’s lemma). Let $n_1, \ldots, n_r \in M$ be linearly independent over D and let $a_1, \ldots, a_r \in M$. Then there exists $a \in A$ such that $am_i = a_i$ for all i. (In other words, “A is close to $\text{End}_D(M)$.”)
That central algebra. Let \(B = A(m_1, \ldots, m_r) \oplus P \) and \(\text{End}_A(M^r) = M_{r \times r}(D) \) so there exists \(h \in M_{r \times r}(D) \) which is projection to \(A(m_1, \ldots, m_r) \). Then

\[
\begin{align*}
 f + \cdots + f(m_1, \ldots, m_r) &= (n_1, \ldots, n_r) \\
 f + \cdots + f(h(m_1, \ldots, m_r)) &= h(f + \cdots + 1)(m_1, \ldots, m_r) \\
 &= h(n_1, \ldots, n_r)
\end{align*}
\]

so \(h(n_1, \ldots, n_r) \in A(m_1, \ldots, m_r) \) and the conclusion follows. \(\square \)

Lemma 16. Let \(A \) be a central simple \(K \)-algebra. Then \(A \otimes_K A^{op} \cong \text{End}_K(A) \cong M_{n \times n}(K) \) where \(n = \dim_K A \).

Proof. \(A \otimes_K A^{op} \) acts on \(A \) with a left \(\otimes \) right action so get \(A \otimes_K A^{op} \to \text{End}_K(A) \). Let \(f \in \text{End}_K A \) and let \(a_1, \ldots, a_n \) be a basis of \(A \) as a \(K \)-vector space. Apply the Jacobson density theorem to the \(A \otimes_K A^{op} \)-module \(A \). We may do this because \(A \) is a simple \(A \otimes_K A^{op} \)-module. We get that there exists \(c \in A \otimes_K A^{op} \) such that \(ca_i = f(a_i) \) for all \(i \). Therefore \(c \) maps to \(f \) so \(A \otimes_K A^{op} \to \text{End}_K(A) \). A dimension comparison shows that this linear map is an isomorphism. \(\square \)

Corollary 17. If \(A \) is a central simple \(K \)-algebra and \(B \) is any simple \(K \)-algebra then \(A \otimes_K B \) is a simple \(K \)-algebra.

Proof. Let \(a_1, \ldots, a_n \) be a basis of \(A/K \). For \(i = 1, \ldots, n \) find \(c_i \in A \otimes_K A^{op} \) with \(c_i(a_j) = \delta_{ij} \). Let \(I \) be a two-sided ideal of \(A \otimes_K B \). If \(\sum a_j \otimes b_j \in I \) then \(\sum c_i(a_j) \otimes b_j \in I \) so \(1 \otimes b_j \in I \cap K \otimes_K B \), where \(I \cap K \otimes B \) is a two-sided ideal of \(B \). Since \(B \) is simple, either \(I \cap K \otimes B = 0 \), in which case \(b_j = 0 \) so \(I = 0 \), or \(I \cap K \otimes B = K \otimes B \) in which case 1 \(\in I \) so \(I = A \otimes B \). \(\square \)

Corollary 18. Let \(A \) and \(B \) be central simple \(K \)-algebras. Then \(A \otimes_K B \) is also central simple.

Proof. That \(A \otimes B \) is simple follows from the previous corollary. Let \(a_i \) be a basis of \(A/K \) and let \(\sum a_i \otimes b_i \in Z(A \otimes_K B) \). For any \(b \in B \) we have \((1 \otimes b)(\sum a_i \otimes b_i) = \sum a_i \otimes (bb_i - b_i b) = 0 \). Therefore \(bb_i = b_i b \) for all \(b \) so \(b_i \in Z(B) = K \). Thus \(\sum a_i \otimes b_i \in Z(A \otimes_K K) \otimes Z(A) = K \). \(\square \)

3 The Brauer Group

Definition 19. Two central simple \(K \)-algebras \(A \) and \(B \) are equivalent if there exists a division algebra \(D \) and two nonnegative integers \(r \) and \(s \) such that \(A \cong M_{r \times r}(D) \) and \(B \cong M_{s \times s}(D) \). Let \(\text{Br}(K) \) be the set of central simple \(K \)-algebras up to equivalence.

Lemma 20. The set \(\text{Br}(K) \) becomes an abelian group under \(\otimes_K \).

Proof. The identity element is \([K] \) and the inverse of \(A \) is \(A^{op} \): \([A]\otimes_K [A^{op}] = [A \otimes_K A^{op}] = [M_{n \times n}(K)] = [K] \). \(\square \)

Definition 21. For \(L/K \) a field extension there is a natural map \(\text{Br}(K) \to \text{Br}(L) \) given by \([A] \mapsto [A \otimes_K L]\). Let \(\text{Br}(L/K) = \ker(\text{Br}(K) \to \text{Br}(L)) \).

Lemma 22 (Double centralizer theorem). Let \(A \) be a central simple \(K \)-algebra and let \(B \subset A \) be a \(K \)-subalgebra. Let \(C_A(B) = \{ c \in A | cb = bc, \forall b \in B \} \) be the centralizer of \(B \) in \(A \). Then

1. \(C_A(B) \) is simple.
2. \(\dim_K C_A(B) \dim_K B = \dim_K A \).
3. $C_A(C_A(B)) = B$.

Proof. Since $B \subseteq A$ it follows there exists n and a division algebra D such that $B \otimes_K A^{\text{op}} = M_{n \times n}(D)$ ($[B][A^{\text{op}}] = [K]$). Therefore there exists an integer r such that $A \cong (D^r)^r$ as a $M_{n \times n}(D) = B \otimes_K A^{\text{op}}$ module. Note that $C_A(B) = \text{End}_{B \otimes_K A^{\text{op}}}(A)$ ($A \cong \text{End}_{A \otimes_K A^{\text{op}}}(A)$). But $\text{End}_{B \otimes_K A^{\text{op}}}(A) = M_{r \times r}(D^{\text{op}})$ which implies that $C_A(B)$ is simple, as matrix algebras are simple.

Also, $\dim_K C_A(B) = r^2 \dim_K D^{\text{op}} = r^2 \dim_K D$ and $\dim_K B \dim_K A = \dim_K (B \otimes_K A^{\text{op}}) = n^2 \dim_K D$. Therefore $\dim_K A = rn \dim_K D$ which implies the second part.

Finally, $B \subseteq C_A(C_A(B))$ and a dimension comparison implies isomorphism.

Corollary 23. Let D/K be a division algebra. Then $\dim_K D$ is a square number and any maximal subfield of D has dimension $\sqrt{\dim_K D}$.

Proof. Let $L \subseteq D$ be a maximal subfield. Then $C_D(L) \subseteq L$. If $L \neq C_D(L)$ choose $x \in C_D(L) - L$ in which case $L(x)$ is a commutative division algebra, so a field, which contradicts the choice of L. Therefore $L = C_D(L)$ and the previous lemma implies that $(\dim_K L)^2 = \dim_K D$.

Corollary 24. Let A be a central simple K-algebra and let L be a maximal subfield of A. Then $A \otimes_K L \cong M_{n \times n}(L)$ for some n, i.e., $[A] \in \text{Br}(L/K)$.

Proof. Let $L \subseteq C_A(L) \cong M_{r \times r}(D)$ for some division algebra D. Then $L \subseteq Z(C_A(L)) = D$ so $L \subseteq D$. Again, by maximality of L we deduce that $L = D$ so $C_A(L) \cong M_{r \times r}(L)$, but this implies (as in the proof of the double centralizer theorem) that $L \otimes_K A^{\text{op}} \cong M_{n \times n}(L)$.