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Sources These lecture notes are mashups of various sources, with some added clarifications where I couldn’t
follow the argument. Evidently the material presented here is treated by these sources, and in most cases it
will be lifted without acknowledgement from the “text-books” for the convenience of exposition.

Lecture 1
2012-01-04

See overview notes.

Lecture 2
2012-01-06

1 Local Class Field Theory

In square brackets I give the section numbers from the math 160b (winter 2012) course notes.

1.1 Local fields

Let K be a field of characteristic 0 with nonarchimedean valuation v : K* — R (e.g., Q, or a finite extension
of Q,, or an algebraic extension of Q,, etc.) Write v(0) = oo.

Denote by O = {z € Klv(z) > 0}, and mg = {z € K|v(z) > 0}. Then O = kerv and let
kx = Ok /mg be the residue field. The ring Ok is a PID and if v is discrete, i.e., Imv C R is discrete, then
there exists a uniformizer wg such that mg = (wg).

The field K has a topology given by the norm |z|x = (#kx )~ "@ (if kg is not finite, replace it by any
real number > 1). K being complete means completeness in this topology.

1.1.1 Hensel’s lemma
[Math 160b Winter 2012: §I1.2]

Lemma 1.1. Let K be complete with respect to v, let P € Og[X] be monic and let ¢ € Ok such that
P(¢) =0 (mod mg) but P'(¢) # 0 (mod mg). Then there exists ¢ € Ok such that ¢ = ¢ (mod mg) and
P(c) =0.

Remark 1. 1. The standard application is the existence of a Teichmiiller homomorphism w : kjz — O
such that w(z) =z (mod mg).

2. This construction is later generalized by Witt vectors.

1.1.2 Krasner’s lemma

[Math 160b Winter 2012: Problem set 2]

Lemma 1.2. Let K be complete with respect to v, and let o, 3 € K. If v(8 — a) > v(o(a) — ) for all
0 € Gg(a)/K then a € K(B).

Remark 2. 1. The standard application is to showing that if two polynomials are sufficiently close p-
adically then they have isomorphic splitting fields.

2. This can be use to show that there are finitely many local field extensions of a certain degree.

3. Conceptually, it is the first instance where approximating in the p-adic world does not lead to loss of
information.



1.2 Newton polygons
[Math 160b Winter 2012: §1.3]

1.2.1 Definition
d
Let K be a field with valuation v. For a polynomial f = Z feX" € K[X] the Newton polygon NPy is the
k=0
lower convex hull of the points (i, v(f;)) and (0,00) and (d, 00).

Definition 1.3. A slope of f is a slope of a segment of NP.

1.2.2 Newton polygons and products
Theorem 1.4. Let K and v be as before.

1. Let f,g € K[X] such that all slopes of f are less than all slopes of g. Then NP, is the concatenation
of NPy and NP,.

2. If (d,v(fq)) is a vertex of NPy, where h € K[X] has degree n > d > 0 then there exist polynomials
f,9 € K[X] such that h = fg and NPy = NP}, |9 4 and NPy = NPy, |(g)-

3. If NPy is pure of slope v, i.e., it consists of a segments of slope «, then all the roots of f have valuation
—a.

Remark 3. 1. Used to study ramification of local fields.

2. Useful for finding uniformizers. For example, (,» — 1 can be shown to be a uniformizer of Q,({») by
analyzing the Newton polygon of its minimal polynomial.

3. Can be generalized to Newton polygons of power series, which we’ll use to study log (which then will
be used to study the fundamental exact sequence and extensions of p-adic Galois representations).

1.3 Ramification of local fields
[Math 160b Winter 2012: §II1.2)

1.3.1 Ramification

If L/K/Q, are finite extensions write fr,/x = [k : kx| be the inertia index and e,/ x = [vr (L) : v (K*)]
be the ramification index.

Definition 1.5. Say that L/K is
e unramified if ey x = 1;
e totally ramified if fr,x = 1;
e tamely ramified if p{ ey k;
o wildly ramified if p | ey /.
Note that these can be made sense of even for infinite extensions.

Theorem 1.6. Let L/K/Q, be finite extensions.

1. fL/KeL/K = [L : K]



2. The field K" = K(w(ﬂx)) is the mazimal unramified extension of K, and K /K" is totally ramified
with Galois group Iy, the inertia subgroup.

3. The field K* = K‘"(w}(/"\p ¥ n) is the mazimal tamely ramified extension of K, and K/K" is totally
wildly ramified with Galois group Py, the wild inertia subgroup.

4. Have an exact sequence 1 — Ix — Gxg — Gi, — 1 and Frobg will denote both the topological
generator of Gyuw / = G, = Frob%( and some lift to G, well-defined up to conjugation.

5. WT’ZtZTlg [L/K = GL/LOK“‘ and PL/K = GL/LﬁKt have 1 — IL/K — GL/K — GkL/kK — 1. Moreover,
L/K is unramified if and only if It ) = {1} and L/K is tamely ramified if and only if Pr,x = {1}.

Example 1.7. K = Q,((,) is totally ramified over Q, because v,(¢,—1) = - = [K}Qp] soex/q, = [K : Q]

p—1
SO fK/Qp =1.

1.3.2 Ramification filtrations

[Math 160b Winter 2012: §III.1] The subgroups G,k D I x D Pr/k of more and more complex elements
of the Galois group fit into a ramification filtration.

Definition 1.8. If L/K is finite for u > —1 the lower ramification filtration groups are
Gr/ku =10 € Gy klvp(o(z) —2) >u+1,Vo € O}

Theorem 1.9. 1. Gryrw =Gk, [u)-

2. Gryk,—1 =G /K-

3. Gryro=1Ir/K-

4- Gryxa = Pr/k-

5. Foru>>0 have G i, = {1}.
Definition 1.10. For L/K finite consider ¢,/ : [~1,00) — [~1,00) given by

r du
€Tr) =
P1/x(®) /o Gr/ko: Gkl

which is a piece-wise linear function, of slope 1 on the interval [—1, 0], and slope 1/eL/K for x >> 0.
Definition 1.11. The upper ramification filtration groups are
A S )
Theorem 1.12 (Herbrand). Let L/M/K be finite extensions
1. G”](/[/K = G%/K/(G%/K NGr/m)-
2. oL/k = M K © PL/M-
Remark 4. Theorem 1.12 allows one to make sense of G% (but not of the lower filtration).

Theorem 1.13 (Hasse-Arf). If L/K is a finite abelian extension then Gl = GEI;JK, i.e., the jumps in the
upper filtration are at integers. In other words, the y-coordinates of the vertices of the graph of ¢k are
integers.

Example 1.14. If F = Q, and F, = F((p~) then F,/F is totally ramified, abelian, with Galois group
GFoo/F = Z;; and G?oo/F =1 +anp



1.3.3 Different
Definition 1.15. If L/K is a finite extension then

e The inverse different is ’DZ}K ={z € L|Trp/x(xOr) C Ok} is a fractional ideal of L containing Of.
e The different is Dy k is the inverse of DZ}K, ie,Dpx ={x € L|xDZ/1K Cc Op}.
Remark 5. The different measures the ramification of local field extensions.

Theorem 1.16. Let L/K be a finite extension.

oo

1. vr,(Dr/k) Z/ (#Gr/ku — 1)du.

-1

> 1
2. vg(D :/ 1-— du.
k(Dr/K) B ( #G%/K>
8. If I is an ideal of L then vi(Trr k(1)) = |vk(IDL k)]

1.4 Main results of local class field theory
1.4.1 The Weil group

Recall that by Theorem 1.6 1 — Ix — Gg — Gi, — 1 where G, = Frob%.
Definition 1.17. The Weil group Wi is the preimage via the projection map of Frob%, with the topology
that makes Ix open and Frob% discrete.
1.4.2 The main results
Theorem 1.18. Let K/Q, be a finite extension.
1. There exists an injective homomorphism recg : K* < G*}}), such that:
2. KX =W 0X =12 and forn >1, 1 +mp = GR".
8. If L/K is finite then recp(x) = reck (N /k(x)).
Remark 6. 1. This identifies the ramification filtration on G4 with the Lie filtration on K.

2. This is a general phenomenon, if the Galois group is a p-adic Lie group then the upper filtration and

the Lie filtration are “the same”.
Definition 1.19. The cyclotomic character Xcya : Gk — Z,; is given by the condition that g((,n = C;fﬁ,yd(g ),

N
Alternatively, Ycyc can be obtained by lifting Ire — I3 = O X8 Z) to Gk.

1.5 Galois cohomology

1.5.1 Continuous cohomology

Definition 1.20. Let G be a (pro)finite group and M a topological group with a continuous G-action. Set
H(G, M) = M®
HY(G,M) ={f: G — M continuous|f(gh) = f(9)g(f(h))}/ ~

where f ~ h if for some m € M one has h(g) = mf(g)g(m)~1.

Remark 7. If M is abelian then H'(G, M) = R'M© is the right derived functor as usual.



1.5.2 Inflation-restriction sequence

Theorem 1.21. Let H C G be a normal subgroup of a profinite group and let M be a topological group with
G action. Then one has an “exact” sequence

1 — HY(G/H,M") - HY\(G,M) — H'(H, M)/
where exactness is categorical.

Remark 8. If M is an abelian group this follows from the usual 5-term exact sequence obtained from the
Hochschild-Serre spectral sequence.

1.5.3 Examples
Proposition 1.22. 1. If G 1is procyclic generated by g then

HY(G,M) = MY
HY(G,M)=M/(g—1)M

2. (Hilbert 90) If L/ K s finite then

)=0
)=0
HY(Gp/x,GL(n,L)) =0
H' (Gr/x,Mpxn(L)) =0
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2 (C,-representations

2.1 The field C,
Definition 2.1. For a p-adic field K let Cx = % If K C @p write Cxg = C,,.
Proposition 2.2. 1. C, # @p, i.e., @p is mot complete.

2. C, is algebraically closed.

Proof. 1. See problem set 2.
Choose a,, roots of unity, such that a, € Q2, an,—1 € Qp(a,) and [Qy(an) : Qp(an—1)] > n. For

D b
oo
example could take a,, = Cq(m)z where ¢ # p is a prime. Let a = Z app” € C, and assume that

n=1
a €Q,. Let m = [Qp(a) : Q] and let o, = Z anp™. Choose a Galois extension M/Q, containing
n=1

a, iy, and Ay, .

Since [M : Qp(am-1)] > [Qp(am) : Qp(am—-1)] > m one may find o1,...,0m+1 € Grryg,(a,,_,) Such
that o;(a.,) are all distinct.

Clearly vp(a — o) > m+ 1 and thus for all ¢ one has v,(0;(a) — oi(m)) > m + 1. Also, for ¢ # j we
have vp(0i(m) — 0j(m)) = vp(o(am) — oj(am)) + m. Since a, is the root of a polynomial which is
separable mod p, it follows that o;(am) % oj(am) (mod p) and so v,(o(am) — oj(am)) = 0.



Putting things together we get

vp(oi(a) — oj(@)) = vp(oi(a) — gi(am) + oi(am) — oj(am) + oj(am) — oj(a))
and in the latter vy(0;(a) — oi(m)), vp(0j(m) —0j(a)) > m+1 but vp(oi(em) — (o)) = m and so
vp(0i(a) — oj(a)) = m and so 0;(a) # (). But then o has m + 1 distinct conjugates, contradicting
that o has degree m over Q.

2. Let o« € C, and WLOG v(a) > 0. Let f = X" 4+ ap1 X" ' 4+ ...+ ap € C,[X] be its minimal
polynomial. Let ¢ = maxv,(a; — ) where o = @, g, . . ., @, are the roots of f. Choose g € Z,[X] an
approximation of f such that if g(X) = X" 4b,_1 X"+ .- +bg then for all i we have v,(a; —b;) > nc,
which is always possible as C, is the completion of Q,. Let 51,..., 3, be the roots of g.

Then since v(a) > 0 we have Y v, (o — ;) = vp(g(a)) = vp(g(a) — f(@)) > minw,(a; — b;) > ne. Thus
for some 4, v,(a — B;) > ¢. By Krasner’s lemma 1.2 it follows that o € C,(8;) = C,,.
O

2.2 Ax-Sen-Tate and Galois invariants

Definition 2.3. Let G be a profinite group and R a topological ring with an action of G. Then Repg(G)
will consist of finite free R-modules M with semilinear actions of G, i.e., an action of g € G on M such that
if « € R and m € M then g(am) = g(a)g(m).

Definition 2.4. If R is a topological ring with an action of G (say R = Q,, or R = Q,, or R = C,) and
n: Gg — R* is a character, let R(n) € Repr(Gk) be the one dimensional representation with basis e,
described by g(ae,) = g(a)n(g)e,, for a € R.

Write Qp(n) - QP(X?ycl) and CP(”) - CP(X?ycl)'

The goal of the next few sections is to study H%(Gk,C,(n)) and H'(Gk,C,(n)) for certain 1 including
ngcl‘
2.2.1 A lemma on roots of polynomials
Lemma 2.5. Let f € Q,[X] be monic of degree n such that all roots have valuation > u.

1. If n = pFn, with p{ngy then f(pk) has a root B with v(B) > u.

v(p)
pF(p—1)
Proof. Let f(X) = X" + a,_1 X" ! +---ap. By Theorem 1.4 all slopes of NP, are < —u 50 ap—; > iu.

Write ¢ = p¥, we have
flo (n — z) e
— = i X171
= (", e

2. If n = p**! then f(pk) has a root B with v(B) > u —

whose roots have product [[8 = :I:aq/(Z). Therefore > v(8) = v(aq) — v ((Z)) so there exists a root 8 such
that

But from problem set 1 one has that

and the conclusion follows. O



2.2.2 Approximations of algebraic numbers

If a € K write Ag(a) = minv(o(e) — a) where 0 € Gg(q)/x. While Krasner’s lemma says that if an
algebraic element is very close to an element then it lies in the field generated by that element, the following
lemma will say that no matter what finite field extension one chooses one can find a sufficiently good
approximation in that field to any given algebraic element.

Lemma 2.6. Let K/Q, be a finite extension and let o € K. Then there exists 3 € K such that

v(p)
—B3) > A _
ve—9) > Axl) - B
Proof. In fact we’ll show that one may find 8 such that
[log,, n]
v(p)

vz Axe) = Y ST

which implies the lemma.

Let Q(X) be the minimal polynomial of « over K. We’ll show by induction over deg@. The base case,
when deg @ = 1 is immediate as then one can take § = a.

Now for the inductive step. Let P(X) = Q(X + a) which has roots o(a) — a for a € Gg)/k. By
definition, all the roots of P have valuation > A (a). Let n = deg@ and let n = p*ng or n = p**! with
g = p* as in Lemma 2.5. Thus there exists a root E of P@ such that

~ Ak(a) n = pFng
v(B) = v
{AK@ ~woon n=pt
Let 8 = E+ a be a root of Q9 such that
Ak (a) n = png
v(B—a)>
s Tt

Note that

v(o(B) =) =v(e(B) — o) +o(a) —a+a—f)
> minv(o(f) — o(a)),v(o(a) - a),v(a - f)

> min Ag (), v(a — )
k(@) n = pFng
- { K (o) = p (p 1) n=ptt!

as v(o(B) — o)) = v(a = B).
By the inductive hypothesis applied to Q@ of degree n — ¢ one may find v € K such that

[log,(n—q)]

WAk~ Y s

Then if n = p¥ng one has [log,(n — ¢)] = [log,n] so

v(B=7) = Ax(a) -



and if n = p** then [log,(n — ¢)] = k while [log, n| = k + 1. Therefore

k
v(B—7) > Ax(a) - k”(ml) _Zp v(p)

pH(p — —~p~tp-1)
SR

=Ag(a) — .

x(e) ; ptp—1)

e )

=Ax(a)

; ptp—1)
and the inductive step follows. O

2.2.3 Galois invariants: the Ax-Sen-Tate lemma

Theorem 2.7. Let L/K be an algebraic extension. Then CEL =L. In particular, if L/K is finite then
CGr =L.
P

Proof. Let v be a valuation on L and let z € (CIC,;L. Choose a, € @ such that z = lim «,.

n— oo
For 0 € G, have

v(o(an) — an) = v(o(an — ) — (@ — x))
> minv(o(a, — x)),v(a, — )

=v(ay, — )

and therefore Ay (ay,) > v(a, — ).
v(p)

By Lemma 2.6 it follows that one may find 3,, € L such that v(8, — an) > Ap(an) — ( ek
p—

But then

v(z = By) =v(z — an + ap — Br)
> minv(z — ay),v(a, — Br)

> minv(z — ay), AL(an) — (pvfpi)Z
>o(r —ap) — (pv_(pi)Q

which goes to infinity so z = lim 3, € L.
n—oo

Conversely, if x € L such that = = lim Bn then for g € G one has g(8,) = B,. Since G, acts continuously
it follows that g(x) = g(lim 8,) = lim g(8,) = lim 8, = z so z € C§*. O

Lecture 4
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2.3 Ramification estimates and Tate periods

The goal of this section is the study of H°(Gk,C,(n)) and H'(Gk,Cp(n)). The idea is to first restrict to
ker Xcyel = Gi.. where Ko, = K((peo) is the p> cyclotomic extension. Then C,(n)%= = K, (n) by the

Ax-Sen-Tate Theorem 2.7. One first studies the ramification of K, and then approximates K, by finite
extensions.



2.3.1 Cyclotomic extensions

Let F' = Q, and K/F be a finite extension. Write K, = K((yn), Hx = Gk, ' = Gk /k, 'k, = Gk /K,
and similarly for F'; we have the following diagram of Galois groups

K F
]JK ‘F
Ko —Fo
N\
//FK" ) +p"zp\
FQ K,——F, zf
i
(z/p™)
AN | /
K F
Lemma 2.8. 1. The cyclotomic character factors through Xcya : ' — I'p = Z;.

2. There exists an integer ng such that Xeye(Ux) D 1+ p"XZp.
3. Forn > ng one has Xeya(I'k,,) =2 1+ p"Zy, and K, N Foo = F,,.

Proof. 1. The map I'x — I'p given by restriction to F, is injective; otherwise, let g € I'x nontrivial.
Then there exists n large enough such that g ¢ T'k,, (since 'k, form a basis around 1 in ') and so g
does not fix (p». But then g cannot be trivial in I'r. That xcyc factors through this map follows since
Xcycl is trivial on HK = GKoo and FK = GK/HK.

2. Since Xeya is continuous it follows that yeye(I'x) is compact. The logarithm log : 1 + p?Z, — p*Z,
is a continuous homomorphism so again by continuity it follows that log(xeye(Tx) N (1 + p?Z,)) is
a closed subgroup of Z,. But then it must also be open. Since log is continuous this implies that
Xeyel(Tx) N (1 + p?Z,)) is open and S0 Xeyel (k) contains some 1+ p"£Z,.

3. For n > ng we have xeya(I'p,) =1+ p"Zp C Xeya(I'i) as above.

The injection 'k < I'r given an injection ', < I'r,. But 'k also surjects onto I'r,, by the above.
If g € I'x maps to an element of ', it must fix {,» so g € I'x,, and so 'k, surjects onto I'r, and so
the two groups are isomorphic. This implies that xeye1(T'k,) = 1+ p"Zp.

Now K, N Fy, = FoLfn = Fifn — B

2.3.2 Ramification in cyclotomic extensions

Having compared the Galois groups of the cyclotomic extensions of K and F' we now proceed to compare
their upper ramification filtrations.

Lemma 2.9. Let F = Q, and K/F finite.
1. Forn > ng the extension K,1/K, is totally ramified of degree p.
2. |Ky, : Fy] is decreasing and Gk, /p, = Gk /r.. for n large enough.

3. There exists ug such that if n > ng and u > ug then GuKn/FnK ~ GEL/FnK'

10



Proof. 1. For n > ng we have by Lemma 2.8

GKnJrl/Kn = GFn+1/Fn
=1p, /P,
={9€Gp,.,,/r.|v(gz —x) > 0,Yv(x) > 0}
={9 € Gk,y1/k,lv(gz — x) > 0,Vo(z) > 0}

= IKn+1/Kn

where the second line follows because F, 11/ F,, is totally ramified of degree p. Thus K,41/K, is totally
ramified, and the degree is p.

2. [K, : F,] = [KF, : FF,] decreases and stabilizes.

3. Let ug such that G3* = {1} (Theorem 1.9). Also recall by Lemma 2.8 for n > ng have
K, NFx =F,s0Gr,/r, =Gr,r, *XGk

mpe/ P
By Herbrand’s Theorem 1.12 it follows that for u > ug we have G}‘(RK Py = GIIL(n/FnK /(GUK”/FnK N

Gk, /K., ) and since the former is trivial it must be that Gy p = Gk,/k,, = Gr,/p,,- But

ni

another application of Herbrand gives that G%n/FnK = G?{H/FHK/(G}L{"/FTLK NGk, /F,) SO G%n/FnK

surjects onto G% /P, C Gr,/ Py - Therefore the conclusion follows, having already shown injection.
n ’VLK

O
Lemma 2.10. 1. The sequence {p"v,(Dk, /r,)} is bounded.
2. There exist a constant ¢ and a bounded sequence a,, such that
(427
Up(Dre,/r) =n+c+ o
Proof. 1. We may assume that n > ng. Then
Up(Pr,/r,) = vp(Pk,/F,,. — 0p(Dr,/F,,
1 /°° ( 1 1 )
eF”K/F -1 #G%n/FnK #G?{n/FnK
1 /“K ( 1 1 )
CFn /F J-1 #Glfm/FnK #GuKn/FnK
1 /“K 1
L — o
anK/F —1 #GFn/FnK
where the second line follows from Theorem 1.16 and the third from Lemma 2.9.
Sr (v
Now we have that GFn/Fan = GFn/FﬂJ N GFn/FnK and GFW,/F,U = GF:/}‘F( ) = GF"/FWFn/F(’U)J . From
Theorem 1.12 we get that (using that G% ,» = Gp,/F,)
Fo/Fn, — GF'H./FTLK ’d);i/FnK (u)
O ezt o | O o
= GFH/FMF,,,K/FWU NGF,/F,,
= GFn/Fxnax(Ld)FnK/F(u)j,nK)

11



SO
n—max( H’FHK sr(uw)]nK)

#G%,L/F,LK =p
and thus

1 uK max u n —n
/Up(DKn/Fn,) < e ; / p (WFnK/F( )nk) du
Frnp/F J—1

UK
Py (D, p,) < — / p O e (L) gy
o CFn /F J-1

and the right hand side is independent of n.

2. See problem set 2.

We compute

and the result follows from the fact that v,(Dg, /r) = vp(Pk,, /F,) + vp(DF, /F)-

Lecture 5
2012-01-18

2.3.3 Almost etaleness

Theorem 2.11. Let L/K/Q, be finite extensions. Then Try_ k. _(mr.) D mx,, .

Proof. For m > n > max(ng,nr) we know that G, /x,, =G, /K, SO

Cn

Trr k. (mr,) =Try, /K, (M, ) =meg

where the exponent ¢, can be computed using Theorem 1.16 as

cn = |vk, (ML, Dy, /k,)]
= vk, (mz,) + ek, /rop(Dr,, k)]
= ler,/x, tex,/r.€r,/F(vp(Dr, /r) — vp(DPk, /F))]
Now e, /k, < [Ln : Kp) < [L: K] and ek, /p, < [K, : Fo] < [K : F] and ep, ;p = p" *(p — 1) since
F,/F is totally ramified. It now follows from Lemma 2.10 that ¢, is bounded by some constant ¢. Thus
mg CTrr k. (mp_ ) for all n.

Let z € mk_ and let © € mg, for some m. Since ek, g, is unbounded, for n >> 0 one has ek, /k,, > ¢
soxr €mg, Cmg CTrp k., (mr,)

Corollary 2.12. Let K/Q, be a finite extension.

12



1. Every finite extension of Koo is of the form Lo, = LK for a finite extension L/K.

2. If L/K s finite there evists a € Lo such that Try, k() =1 and v(a) > —v(wk) where wk is a

uniformizer for K.

Proof. 1. See problem set 2.

2. From Theorem 2.11 there exists a such that v(a) > 0 and Tr;__ k. (@) = wk. Let a = a/wk in

which case Try,__/x_(a) =1 and v(a) > —v(wk).

2.3.4 Normalized Traces

O

Definition 2.13. For n > nk and z € K, 1, define pr, (z) = p~* Trg, ., /K, () which is independent of k
since Ky 4k+1/Kntk is cyclic of degree p by Lemma 2.9.

Lemma 2.14. Let n > ng and x € Kpy. Then

Up(prn(x)) > vp(x) T

where o, s a bounded sequence.

Proof. Using Theorem 1.16 in the fourth line and Lemma 2.10 in the seventh line one has

vp(pr, (7)) = —k + vp(Trge, ., /i, (2))
= —k+v,(Trg, ./, <m2

= —k“l_e;{l/FLvK’L Kotk

(m
(myer

>—k:+eK /F( mK o

K,
= 7k+€K /F( K

Kptk (ﬂ)

pn

Kok (0)y)

n+k

n+k/Kn)J

)+UK,L (Dk,pir/i,) — 1)

(@) +ek, /pvp(Pk, k) — 1)

= —k+vy(2) (Up( n+k/F> _UP(DKTL/F)) _eK;lL/F

= vp(x) — k+n+k+c+p

(679
= vp(z) — p7
where

Ap+k

Ap+tk (293 1

Y23

p

Ap = Ap —
pk
- _ Ontk

€K, /F,€F,/F
p

n pk

€K, /F, (r—1)

which is bounded since a,, is bounded and ek, /r, < [K,, : F,] stabilizes to [K : Fuol.

Corollary 2.15. For n > ng the function pr, is uniformly continuous on Ko and thus extends to a

continuous function pr,, : Koo — K.

Proof. Lemma 2.14 implies

|pr,(z) — pr,,(y)| = |pr, (v — v)

where C' is some constant.

13
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Remark 9. Write K;- = {z € I/(:o|prn(x) = 0}. Since pr, is an idempotent we get a decomposition
Ko =FK,® K> .
Proposition 2.16. Forn > ng and x € I?o\o

n

1. vp(pr, (z)) = vp(x) — anp™;
2. ¢ = nh—>Holo pr,(z);
3. pr,, commutes with the action of T'x = Gk __ /K-

Proof. 1. The function pr,, is continuous on I?o\o and the inequality follows from Lemma 2.14.

2. Fixn. Since z € I/(; for every C' > 0 we may choose m and &p4m € Ky 4y, such that v,(x—2p4m) > C.

Since Tn1m = Pyt (Tntm) it follows that

Up(x - prn-{—nL(x)) = Up(m — Tn4m + Plypsm (xn+m) — Plytm (x))
> min vy (T = Tntm); Vp(Pryypon (T — Tnim))
Z min C, C - Oén+mp7(n+m)

= C = app "

>C —anymp "

n

Since ay4mp~ ™ is bounded as m — oo, making C' — oo gives that x = lim pr,,,, ().
m—r o0

3. Let v be a topological generator of 'y, which is procyclic. Then for n + k > n > ngx the group
Gk, ../K, 18 cyclic generated by some power v°. Thus

ypr,(z) =p~Fy Z(Vs)i(z) =p" Z(vs)i(v(w)) = pr, (7(2))

2.3.5 Tate periods: degree 0
Lemma 2.17. Let n: Gx — Z, be a finite order character. Then C,(n) = C, as G k-modules.

Proof. Let L/K be finite such that n(Gr) = 1. Then 5 factors through G,k and n € Hom(Gp/k,Z, ) =
HY (G, Z)) where Z* has trivial Galois action. But H' (G k,25) = H' (G x,L*) = 0 by Hilbert 90
so there exists &€ € L* such that n(g) = £ 1g(€).

Then C,(n) — C, given by ae, — o is a Gk equivariant isomorphism. O

Theorem 2.18. Let K/Q, be a finite extension and let n: G — Z) be a continuous character such that
n(Hg) =1, where Hx = Gk_,. (For ezample, n = x{,, where n € Z.) Then
0 7 has infinite order
H°(Gg,C = Cp(n) " =
(G, Cplm) (1) {K 1 has finite order

Proof. Suppose that C,(n)“% is nonempty and that it contains ae, where a € C, is nonzero. Then for
g € Gg:
aey = glaey) = g(a)n(g)e,
so g(a) = n(a) ta.
If h € Hk then n(h) = 1 by assumption so we deduce that g(a) = aso « € (Cf" = I/(; by Ax-Sen-Tate.

14



By Proposition 2.16 o = lim pr,, () and since g € T'x commutes with pr,, it follows that
n—oo

g(pr, @) = pr,, g(a) = pr, (n(9) @) = 1(g) ™" pr, @
so we conclude that
pr, «

g(pr,, @)
But choosing g € 'k, , which invaries pr,, a € K,, gives that n(I'x,) = 1 so n(Gk, ) = 1 so n would have to
have finite order.

The second part follows from Lemma 2.17 as if n has finite order then C,(n)“% = (Cg ¥ = K by Ax-Sen-
Tate. O

n(g) =

Lecture 6
2012-01-20

2.3.6 Topological generators

Let v be a topological generator for I'ir and +, a topological generator for I'x;,. Then ~, = +° for some s
and for n > ng one has vy, = fyﬁk.

Lemma 2.19 (Lemma A). If x € Ko then v,((1 — ) (x)) > v,((1 — 7)) (2)).
Proof. Indeed

0 (1= A7) = 5p(( 3 A (1 — 7))
1=0

— (3 21— ) (@)
1=0

> min vy, (77 (1 — 7,) ()

= Up((l —)(T))

Lemma 2.20 (Lemma B). If z € K,, where m > n > nk then

m—1
Up( = pr, (1)) > (1 = 7)(x) = 1= 3 =%
k=n p

Proof. We show this by induction. The base case, when m =n + 1 is

vp(x — pr, (2)) = vp(pr — Trg,, /K, (2)) — 1
p—1

=0, (Y (1 =7})(@) - 1

i=1
> minv,((1—;,)(x)) -1
2 vp((1 = n)(x)) — 1
where the last line follows from the previous lemma.

Now for the inductive step. Suppose known for m = n + k and now we look at © € K,,4+1. Then
Trg,, ../ (z) € Ky, and by the inductive hypothesis we have

m—1
€93
Up(TrK'ryL+l/K'ryL (JJ) - prn(TerJrl/Km (1‘))) > Up((l - ’YTL)(TI‘KWL+1/KV,,L (J?))) -1- Z Tk

k=n

15



But

0p (1= 9) (Tt /10, (@))) = 09Tk, 1, (1= 70) ()
= vp(pr,, (1 = 1) (2))) + 1
> u((1 =) (@) +1 - =

pm
where the last line follows from Proposition 2.16. We deduce that
m ak
UP(TerJr1/Km (m) - prn(TI'Kerl/Km (33))) > U;U((l - Vn)(m)) - Z }7“
k=n
Finally
1 1
vp(@ — pr,,(z)) = vp(x — » Tri, /K, (@) + ];(Trxmﬂ /K, (%) = pPr,(2)))
. 1
2 min Up(x - prm(m))v UP(I;(TI‘KV,,L+1/KV,” (l‘) - pprn('r))) -1
. N ay,
> min v, (1= 7)) = Lvp((1 =) (@) = 1= Y o
k=n
m o
=vp(l=m)(@) — 1= —
k=n p
where in the third line we use the inductive hypothesis for K,,+1/Kp,. O

Proposition 2.21 (Proposition A). Let n > ng. The operator 1 — v, is bijective on K-, its inverse
(1 —7,) "t is continuous and the operator norm ||(1 —v,)71|| is bounded independent of n.

Proof. Since 7, is a generator of 'k, the kernel of 1 — v, on I/(:O is I/{;FK” = K,, by Ax-Sen-Tate. Thus
the kernel 1 — v, on K;- is K;- N K,, = {0} so the operator is injective.

For m > n the linear map 1 — 7, is injective on the finite dimensional vector space K, N K;- and so it
is surjective. Let y € K,,, N K;- which by surjectivity can be written as y = (1 — ~,)(z) for z € K,, N K;-.
Lemma 2.20 applied to x gives

vp(@ = pr (7)) 2 vp((L =) (@) =1 = z_: ’
k=n p

Since pr,,(r) =0 as z € K;- and z = (1 — v,,) () we deduce

vp((1 - Vn)_l(y)) > vp(y) = C
where -
=143 %
k=n p
which is a number as «y are bounded. Therefore on K,, N Kf; we have

[0 =) W)l

1 —,)" || =sup
(1= 7) ] B

< [p|°

so the operator norm ||(1 —~,)7!|| on K, N K;- is bounded independent of n and m. Therefore (1 —~,)~!

extends to a continuous function on K;- of norm independent of n. O
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Proposition 2.22 (Proposition B). Let n: 'y — ZTDX be an infinite order continuous character and let ~y
be a topological generator of Tic. Then 1 — v : Koo(n) = Koo(n) is surjective.

Proof. Let C be the uniform bound on ||(1 —~,)~!|| on K;- from Proposition 2.21. Since the character 7 is
continuous and I'k, form a neighborhood basis of the identity in I'k it follows that lim 7(y,) = 1 and so
n—oo

’1 —1(m)

for n >> 0 we have |1 — n(v,)| < C~!. Therefore
—In

‘ < 1 and so on K;- everything converges in

the following computation:

1 1

L=amn(n) (1= ) (14 (42222 5,

= (1 - 7n)71 Z (’Yn(l - W(Vn))(l - ’Yn)il)j

320

Therefore 1 — 7,,n(V,) : K;- — K- is surjective, as its inverse is well-defined. This is equivalent to saying
that 1 — v, : K;-(n) — K;-(n) is surjective.

Now on K, (n). Since n has infinite order it follows that for all v, n(v,) # 1. Since 7, invaries K, we
get that on K,,, 1 — v, =1 —n(v,) # 0 and so it is an injective map on a finite dimensional vector space,
thus also surjective. - -

We conclude that 1 — 7, : K(n) = Kx(n) is surjective. But v, = ~° for some s and 1 — 7, =

s—1
(I—7) (Z 7i> so 1 — « is necessarily surjective as well.
i=0

2.3.7 Galois cohomology of I/(;

This section computes the continuous cohomology groups in degree 1 of the group Hx = Gk, which will
later feed into an inflation-restriction sequence. We start with a lemma on approximations of cocycles.

Lemma 2.23. 1. If M € Hl(HK,p"OCp) there exists © € p"_locp such that the cohomologous cocycle
g M(g) +g(z) —x € H' (Hg,p" ™ Oc,).

2. Ifn>2 and M € H'(Hg,1+ @ My(Oc,)) then there ezists a matriz N € 1+ @l My(Og,) such
that the cohomologous cocycle g — N~*M(g)g(N) € H'(Hg,1 + @it Ma(Oc,)).

Proof. 1. Note that p”“O(cp is open in p"Oc, and so the quotient p"Oc, / p”+2(9<cp is discrete. Therefore
the kernel of M : Hx — p"Oc, /p"+2(9(cp is open and by Corollary 2.12 it must contain a subgroup
of the form Hy where L/K is a finite extension, and increasing L we may also assume that L/K is
Galois. Thus M(Hy) C p" 20Ok,

Let o € Lo from Corollary 2.12 such that Try_/x (o) = 1 and v(a) > —v(wgk) > —v(p). For a set
T of representatives of Hyx /Hy, in Hg let

rr =Y gla)M(g)

geT

17



If h € Hy, and hT = {hg|g € T} then we compute

h(zr) = h (Z g(a)M(g))

geT

= (hg)(@)h(M(g))

geT

=Y (hg)(a)(M(hg) — M(g))

g€eT

= 3 () @)M(hg) — | 3 (hg)(e) | M(g)

hgehT hgehT
= apr — M(9)

where in the last line we used Z (hg)(a) = Trp__ k. () = 1.
hg€hT

Also note that

anr — a0 = »_((hg)(@ - 9@

geT geT

= (99 "hg)(@)M (g9~ hg) = > g(a)

geT geT

= > g(@)(M(g) + g(M(g~'hg))) = D g(a)

geT g€eT

=) gl 9" "hg))
geT

=0 (mod p™™t)

Here the third line follows from the fact that Hy, is normal in Hx by choice of L and thus g~ 'hg acts
trivially on «, and from the cocycle condition on M; the last line follows from the fact that v(a) > —1
and v(M (g~ thg)) > n + 2.

Finally, M(g) + g(xT) — X7 = TpT — T € Hl(HK7pn+10Cp).

. Note that 1 + @™ Mg(Og,) is open in 1 + wh My(Oc,) so as before (1 + wh Ma(Oc,))/(1 +
@ Mg(Og,)) is discrete and so there exists L/ K finite (Galois) such that M (H) C 14w My(Oc, ).

As before, for representatives T' of Hx /Hp, in Hg let Np = Z g(a)M(g), where « is as before. Note

g€eT
that if one writes M(g) = 1+ wh X (g) then

Np = g(a)(1 + =% X(9))

geT

= Trp k(@) + @k Y g(@)X
geT

=1 (mod @i ™)

because v(a) > —1 and X (g) € My(Oc,).

As before we compute
9(Nr) = M(g)™ ' Npr

18



and thus
NflM(g)g(NT) = NlehT
=1+ N;Y(Nyr — Nrp)

=1 (mod wi™)

because as before we have
Nyr — Ny =0 (mod @)

Lecture 7
2012-01-23

The main result of this section is the following;:
Proposition 2.24. We have

1. H'Y(Hk,C,) = {1}.

2. H'(Hk,GL(d,C,)) = {1}.

Proof. 1. Let M € H'(Hg,C,). By continuity there exists ng € Z such that Im M C p"™O¢,. Applying
Lemma 2.23 successively we obtain for n > ng elements z,, € p"*IO@p such that

m

M(g)+ Y (g(an) —2,) €™ O,

n=no

oo
But then z = Z x, converges and M(g) + g(z) — = € p™Oc, for all m and so it must be trivial.
n=ngo

Therefore M(g) = x — g(x) so it is the trivial cocycle.

2. Let M € H'(Hk,GL(d,Cp)). By continuity, since Hy is compact, it must be that Im M is also
compact. But (1+w@% Mq(Oc,))NIm M is an open subgroup of the compact Im M and so Im M /((1+
@k Mq(Oc,)) N Im M) is discrete. Therefore we may find L/K finite Galois such that M(Hp) C
1+ w%( Md(o(cp).

As before, applying Lemma 2.23 successively we obtain for n > 2 matrices N,, € 14w " M4(Oc,)
and N = H N,, will converge giving M (g) = Ng(N)~! the trivial cocycle in H' (Hp, 1+ wjk Mq(Oc, ).
n>2

Consider now the inflation-restriction sequence (Theorem 1.21):

1 — H'(Hy /Hy,GL(d,C,)"t) 225 HY(Hy, GL(d,C,)) == H'(Hy,,GL(d,C,))

We have already established that res(M) = 1 and so M = inf(N) for some N € H*(Hy /H [, GL(d,C,)Hr) =

HY(G._ k.., GL(d, fo\o)) (an application of Ax-Sen-Tate). But L., /K is a finite extension and there-
fore H'(G_ k.., GL(d, f;)) = {1} by Hilbert 90 which gives M = inf(N) = 1.
O
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2.3.8 Tate periods: degree 1
Theorem 2.25. Letn: Gk — Z, be a continuous character such that n(Hy) = 1. Then

0 1 has infinite order

H'(Gg,C =
( K p(77)) {K -log Xeyel 7] has finite order

where log : Z; — Zy, is the logarithm map from Problem set 2.
Proof. By inflation restriction for Hx C Gk and 'k = G /Hg we get
1= H' Tk, Cp(n)") — HY (G, Cp(n) = H' (Hr,Cp(n))

But C,(n)fx = I/(:o(n) by Ax-Sen-Tate and H'(Hf,Cp(n)) = H'(Hg,C,) = 0 by Proposition 2.24 and the
fact that n(Hg) = 1. We conclude that

HY (G, Cp(n)) = H' (Tk, Koo ()
= Keo(n)/(1 =) Koo (n)
where 7 is a topological generator of the procyclic group I'x (by Proposition 1.22).
When 7 has infinite order Proposition 2.22 implies that 1 — v is surjective on K (n) and so that

HY(Ge, Cyln) = Ko (1) (1 — ) Ko (1) = 0.

When 7 has finite order Lemma 2.17 shows that C,(n) = C, so we need to compute H!(Gg,C,) =
H'(Tk, I/(O\o) = I/(O\O/(l - 7)1/(0\0 But we’ve seen that 1 — « is surjective on K- in the proof of Proposition
2.22 and so [/(O\O/(l — ’y)I/(O\O =K,/(1-v)K,.

Consider the map K — K, /(1 — v)K,, obtained by inclusion and then projection. If the map were not
injective one could find a nonzero x € K such that x = (1 — «)(y) for some y € K,,. Let 7, = v° in which
case we would have [K,, : K]z = Trg, /x(z) = (14+~v+---+7""1)(z) = (1 —7*)(y) = 0 as y € K, which is
fixed by v, = v®. Therefore the map is injective.

Since I'x /T'k, = Gk, /x and I'k, fixes K,,, inflation-restriction gives an exact sequence

1— Hl(GKn/Ka Kn) - Hl(rKv Kn) — Hl(FKann)GK"/K
But Hilbert 90 shows that HI(GKn/K, K,) =0 and so we get an injection

Ko/l =K, = H' Tk, K,) = H' Tk, , K,)9%0/5 22 (K, /(1 = 7,) K,,)F5n/5 = KSK"/K =K

and it follows from the explicit construction of the isomorphism H(T'k, K,,) & K,, /(1 —v)K,, that if z € K
has image = in K, /(1 —v)K,, then res(z) € K is equal to z.
Explicitly, the isomorphism K = K,, /(1 —v)K, = H' (', K,,) is given by

s (Ve (Lt y+ "))
which is cohomologous to 4" + rz. But this can also be written as

r — IOg chcl (’YT) T
log Xeye1(7Y)

which is a scalar multiple of g — log xcyci(9)- O

Corollary 2.26. If m # n and V € Repe, (Gk) such that 0 — Cy(m) — V — Cy(n) — 0 then V =
Cy(m) © Cyln).

Proof. Twist by C,(—n) and get 0 = C,(m—n) — V(—n) — C, — 0 which extensions are in bijection with
cohomology classes in H' (G, Cp(m —n)) = 0. ]

Remark 10. We will see later that the Tate curve provides a nonsplit sequences 0 — Q1) =V —=-0Q,—0
which doesn’t even split over Q,.
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2.3.9 Tate periods: degree > 2

This section was not covered in class, and was included here at the same time as §5.6, since it is necessary
for Proposition 5.66. These results are adapted from [3, 14.3.1, 14.3.2].

Lemma 2.27. Letn > 2 and m € Z.

1. If M € H"(Hk,p"Oc,) there exists a cochain N € C”_l(HK,p”_IO@p) such that M — dN €
H"(HK7pm+1OCp)-

2. H"(Hg,C,) =0.

Proof. 1. Let L/K finite and let o such that Tr;__/x_(a) = 1 with v(a) > —v(p) as in the proof of
Lemma 2.23. For a set of representatives T of Hy /H, let

Nr(gi,- s gn-1) == (=1)" Z(!]l o gn—1h)(@)M (g1, .-, gn—1, )
heT
We now compute

n—1

(ANT)(91,---59n) = 91(N7 (92, - -, gn)) + Z(—l)jNT(gh s 9iG541s s 9n) + (=1)"Np(g1, ..., gn-1)

=1

n—1

_l)nzglgnh(a) gl(M(g2vagnah))+(_1)J M(gh)g]gj-i-l)

heT
+ (71)nNT(gla cee 7gn—1)
= (=)™ g1+ gnhl(a) (dM)(g1, 92, -, gGn, h) + (=1)"M (g1, .-, gn)

1

.
Il

heT
- (71)nM(gl7agn—1vgnh)) + (*l)nNT(gla-"agn—l)
Tra= ldM 0
_Zgl (gla"'7gn—1agnh)+M(gla"'agn)

heT
+ (=1)"Nr(g1,- -+ 9n-1)

(M —dN7)(g1s--:n) = D g1 Gn1 (Gul(@)M (g1, -+, Gn1, gnh) — h(@)M (g1, .., gn1, h))
heT

but Hy, is normal in Hx so h~'g,h € Hy, acts trivially on a so we may rewrite the above as
(M —dN7)(g1,---1gn) = > g1+~ Gn1h(@) (M(g1, .-, gn—1,90h) = M (g1, .., gn—1, D))

heT

Now we choose the finite extension L/K. For each h € Hy by continuity of the cochain M there exists

a finite extension Ly /K such that for ¢1,...,¢9, € Hz, we have

M(g1, ... gn-1,9nh) — M(g1,...,gn-1,h) € p" 72O,
Since Hy, is open, U, = (1,...,1,h)Hy, is open in Hp. But the opens U, cover the compact
1x---x1x Hg and so there exists a finite subcover Up,,...,Uy,. Let L = Ly, --- Ly, . Then for all

h € Hi and g1,...,9, € Hy, there exists an h; such that h, g,h € HL,” h; in which case

M(gla s agn—l;gnh) - M(gla s agn—hh’i) € pn+20(cp
M(glw"?gnfhh') - M(glu"'agnfhhi) Epn+2(9cp

21
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and so
M(g1,-- s Gn-1,9nh) — M (g1, .., Gn-1,h) € p"+2(’)(cp
Since v(a) > —wv(p) we deduce that (M — dN7)(g1,...,9n) € "' Oc, and Np(g1,...,gn—1) €
p”—IO@p.
2. Let M € H"(Hg,C,). By continuity there exists mqo such that M € H"(Hg,p"™ Oc,). Using the
first part for each m > mg we construct N, € C”(HK,pm_l(’)Cp) such that M — E;cn:mo dN,, €

H”(HK,pm+1O@p). But then N = Z N}, converges and M — dN € H"(HK,pmHOCP) for all
k:mo
m > mg and so M = dN is trivial as a cohomology class.
O

2.4 Sen theory
2.4.1 Hodge-Tate representations

We start with a bit of notation. For a representation V' € Repc (Gr) and an integer n let V{n} = V(n)9x =
{v € V]g(v) = Xeyci(9)"v,Vg € Gi}. The beginnings of Hodge-Tate theory is the following lemma due to
Serre and Tate:

Lemma 2.28 (Serre-Tate). Let V € Repe, (G ). Then there exists a natural map
&v : @PCo(-n) @ V{n}) =V

n

and the map vy s injective.

Proof. For immediate proof see [3, Lemma 2.3.1]. The statement will follow from the formalism of admissible
representations, specifically Theorem 3.7. O

The map &y is called a comparison map and nice things happen when it is an isomorphism:

Definition 2.29. A representation V € RepCP(GK) is said to be Hodge-Tate if the comparison map &y is
an isomorphism. The Hodge-Tate weights of a Hodge-Tate representation V' are the integers n such that
V{n} #0.

Remark 11. If V € Repe, (Gk) in the Grothendieck ring is a sum of Cp(n) with distinct n then Corollary
2.26 implies that V is a Hodge-Tate representation. However, it is not necessarily true if the Hodge-Tate
weights are not distinct, and there are extensions 0 — C, — V — C, — 0 with V' not Hodge-Tate.

Remark 12. Hodge-Tate representations can be thought of in two ways: the first, as forming a category,
is a special instance of a category of “admissible” representations, which we study in the next section; the
second, which we pursue in the remainder of this section, is as special types of C, representations where a
certain matrix (the Sen operator) is diagonalizable with integer eigenvalues. Both points of view are crucial
in p-adic Hodge theory, the first one because it leads to many classes of admissible representations, such as
de Rham, crystalline, semistable, etc, while the second because it ties the Galois representations arising from
geometry to p-adic differential equations.

2.4.2 Galois descent

—

The Galois descent procedure of Sen theory is that C, representations should be the same thing as K
representations.

Lemma 2.30. H'(Gg,GL(d,C,)) = H'(I'x, GL(d, K.)).

Proof. This follows from the inflation-restriction sequence and Proposition 2.24. O

Lecture 8
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2.4.3 Decompletion

Consider the natural map H'(I'x, GL(d, K+)) — H'(T'x, GL(d, K+ )). The main result of this section is that
this map is an isomorphism, a procedure known as “decompletion” because it takes Galois representations
over the completion K, to Galois representations over K,. The way to show this is to use Tate’s normalized
maps to approximate cocycles over the infinite cyclotomic extension by finite ones, where completion does
nothing. As such, this section is a careful combination of the approximation estimates from the previous
sections on the normalized traces.

Lemma 2.31. 1. The limit thl(I‘K, GL(d, K,)) is identified with isomorphism classes of V€ Repg_ (I'r)
for which there exists some n and V,, € Repg (I'y) such that V = Koo ®k, Va.
2. The natural map liﬂHl(FK, GL(d, K,,)) = H'(T'x,GL(d, K&)) is an isomorphism
Proof. This is [3, Exercise 14.4.4] O
Lemma 2.32. Let K,v be a field with valuation. For a matric M = (m;;) € Mg(K) define v(M) =
min; j v(m;;).

1. Then

2. With the notation of Lemma 2.20, if M € My(K;-) then

up(M) > vp((1 = ym)(M)) = C

o]
@
where C' is some constant larger than 1 + Z —: < 00.

k=n

Proof. 1. Straightforward.
2. Since M € My(K;5) we have M = M — pr,,,(M) and so by Lemma 2.20

vp(M) = vp(M — pr,, (M))
= min vy (mi; — pr,, (M)
> min vy, ((1 — ym)(msj) — C
=vp((1 =) (M)) = C

We next prove a lemma on approximating matrices over K., with matrices over K.

Lemma 2.33. Let A = max(a,p™ ") and let C as in the previous proposition. Let M € Md(I?O\O), which we
will approximate by matrices over K,,, for n large enough.

1. Suppose M € GL(d,I/(O\O) is a matriz such that v,(M) = Uy MU, where Uy, Uy € 1+p® My(K,,). Then
M € GL(d, K,,).

—

2. Assume that M can be written as a sum M = 14+ M, + My, where M,, € M4(K,,) and My € My(K)
(here My, can be thought of as the defect of writing M over K, ) with the property that v,(M,) > A+2C

and vy(Moo) > vp(M,) + A. Then there exists B € Md([/(o\o) such that vy,(B —1) > v,(Ms) —A—-C
and B~'M~,(B) = 1+ N,, + Noo where N,, € My(K,), Noo € My(Koo) such that v,(Ny) > v,(M,,)
and vp(Noo) > vp(Moo) + vp(My) — A —2C (the new defect Now has smaller norm than the old defect
M)
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3. If v,(M — 1) > 2A + 2C there exists B € Md(f/(:o) such that v,(B —1) > v,(M — 1) — A—C and
B71M~,(B) € My(K,).

Proof. 1. Write M,, = M — pr,,(M) € Mg(K;-). Then, since y,, commutes with pr,, we have

(1 =) (My) = My, — Ui MU
={U; —1)M,(Uzy—1) — (Uy — )M, Uy — Uy M,,(Us — 1)
Up((1 = ) (M) = min v, (Uy = 1) My (U — 1)), 0, ((Ur — 1) M, Ua),
vp (U1 M, (Uz — 1))
> vp(My) +C

If M,, # 0 then this contradicts Lemma 2.32 and so M = pr,, (M) € Mg(K,).
Similarly one may show that M~ = pr, (M ~!) and so that M € GL(d, K,,)

2. Let N = (1 —7,) Y (M — pr,,(My)) which exists as My, — pr,,(Ms) € Mg(K;-). Let N,, = M, +
pr, (M), B=1+ N and Ny, = (M — 1)y, (N) = N(M — 1) = NM~,(N) + (B~ + N — 1) M~,(B).
Checking that these choices work is a matter of applying Lemma 2.20 and Proposition 2.16. For details
see [3, Lemma 14.2.4].

3. We will use the second part to construct better and better approximations of M over K,,. Let M,(Ll) =0
and Mé};) = M — 1. Applying the first part of this lemma recursively we get matrices By such that

e v,(Br—1)> (k+1)(vp,(M —1)—2A—-2C) + A+ C and
o (By-+By) "M (Bo -+ Bi) = 1+ M + MY with v, (M) > v,(M —1) — A and v, (ML) >
vp(M — 1) + k(vp(M — 1) —2A —2C).
Let B = klim By - - - By, (which converges by the condition on By) in which case we would have
— 00

B 'M~,,(B) = 1+ M, + My, with M, € My(K,) and M, infinitely divisible by p and so
M = 0. For details see [3, Lemma 14.2.5].

O]
Proposition 2.34. The natural map H*(Tx,GL(d, Ko)) — H'(Tk, GL(d,I/(O\O)) is injective.

Proof. By Lemma 2.31 it is enough to show that H'(I'x, GL(d, K,,)) — H'(T'x, GL(d, I?O\O)) Suppose this
map is not 1nJect1ve i.e., there exist cocycles U, U’ € HI(I‘K, GL(d, K,)) such that they become cohomolo-
gous over K, i.e., there exists a matrix B € GL(d, Koo ) such that for g € 'y one has U'(g) = B~'U(g)g(B)
which we rewrite at g(B) =U(g)"*BU'(g).

The cocycles U and U’ are continuous and I'g, form a neighborhood basis of the identity in T'x so for
m >> 0 one has U(v,,), U’ (Ym) € 1+ p© My4(Oc,) where C'is as in Lemma 2.32. These choices imply that
Vp(U(ym)) = vp (U’ (7m)) = 0 and that v, (U ()~ — 1) > C and v,(U' () — 1) > C.

Applying the first part of Lemma 2.33 we deduce that B € GL(d, K,,,), which shows that U and U’ are
cohomologous in H(T'x, GL(d, Kw))- O

Theorem 2.35. We have H' (T, GL(d, K&)) = HY(T'x, GL(d, K)).

Proof. Injectivity is the content of Proposition 2.34. Now surjectivity. Let U € H'(T'x, GL(d, I/(:o)) For
m >> 0 we have v,(U(yy) — 1) > 2A + 2C as I'k,, form a neighborhood basis of identity in I'x. Now the
the third part of Lemma 2.33 shows that U’(v,,) = B7 U (Y )ym (B) € GL(d, K,,).

If 7 is a topological generator of ' we still need to show that U’ () is defined over K. Recall that v, =
~* for some s and thus ¥y, = Ymy. Thus U (7)Y(U' (7)) = U'(vym) = U (4m7y) = U’ (9m)vm (U’ (g)) and so
Yo (U' (7)) = U (Ym) "0 (7)7(U’ (Ym)). Appyling the first part of Lemma 2.33 gives that U’() € GL(d, I/(\m)
as well. This implies that U’ € H'(I'x, GL(d, K,,,)) and U’ is cohomologous to U in H}(I'x, GL(K)). O
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2.4.4 Sen Theory

This section is an overview of the main results of Sen theory, with no proofs, as they are easily readable in
3].

Theorem 2.36. Let V' € Repc, (Gk) of dimension d > 1. Then one can find uniquely Dsen(V) €

Repg_ (k) a Koo submodule of V' such that I/(;@)Kw Dsen(V) = VHE (and thus that C,® k. Dgen(V) 2 V).
Moreover, Dgen(V') descends to some K.

Proof. This is [3, Theorem 15.1.2]. Existence follows from Theorem 2.35 and the interpretation in Lemma
2.31 of the cohomology of GL(d) as isomorphism classes of Galois representations. O

Proposition 2.37. It can be shown that Dge, : RepCP(GK) — Repg (') is a fully faithful functor that
respect direct sums and tensor products.

Proof. This is [3, Lemma 15.1.3] and [3, Proposition 15.1.4]. The compatibility properties follow from the
uniqueness of Dgey,. O

Theorem 2.38. For D € Repg__ (T) there exists a unique Ko -linear operator O p gen, called the Sen opera-
tor, which has the property that for allv € D form >> 0 and g € 'k, one has g(v) = exp(log(Xeyc1(9))OD,Sen) (V).

Proof. Fixing a basis of D let U € H'(I'x, GL(d, K+,)) be the cocycle describing the action of I'sc on this
basis. Then if U is defined over some K, then one may check that

_ log(U(yn)(v))

Op,sen(v) = log(Xeyel(7n))

gives a well-defined operator. Then one must shrink I'x, to I'x,, where m depends on v in order to make
sense of exp, which has a smaller radius of convergence than log (see problem set 2). O

Proposition 2.39. The Galois representation of 'k on D € Repy_ (I'x) seem to be, via Theorem 2.38,
encoded in the Sen operator. Let Sk, be the category of finite dimensional K, vector space with Ko, -linear
endomorphisms. While the functor taking the Ik representation D to (D,©p sen) € Sk, is neither fully
faithful nor essentially surjective, it does however detect isomorphisms in the sense that D1, Dy € Repy_ (')
are isomorphic if and only if (D1,©Op, sen) and (Da,Op, sen) are isomorphic.

Proof. This is [3, Corollary 15.1.13] O

Corollary 2.40. Let V € Repg, (Gk). Then Cp @k (Cp ®q, V)6x = C,®q, V if and only V is potentially
unramified, i.e., there exists a finite extension L/K such that I}, acts trivially on V.

Proof. We will only show this in the case when Hy acts trivially on V', the general case requiring the study
of the cohomology of ker V' (assuming that V' is not potentially trivial) instead of H, via the general Tate-
Sen formalism. Writing W = C, ®q, V suppose C, @k WEx = W, Thus Dgen (W) 22 Dgen(Cp ®x WEr)
where on the right hand side Gk acts only on C, coeflicients, but not on a basis of W&k, This gives that
the associated cocycle to V is trivial, being cohomologous to B~1g(B) for B € GL(d,C,). The triviality
of the action of Hg gives B € GL(d,I/(O\O). If Dgen descends to K, get that B € GL(d, K,,) and so get
K, ®g, V ® K™V But then restricting to G, gives trivial action on V. O

Lecture 9
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It turns out that while the functor Dge, is not fully faithful the category Sk, is sufficiently rich to detect
Hodge-Tate representations:

Proposition 2.41. LetV € RepCP(GK). Then V' is Hodge-Tate if and only if Opg_ (v),sen 18 diagonalizable
with integer eigenvalues. In that case these eigenvalues are the Hodge-Tate weights.
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Example 2.42. We have seen that the nonvanishing of H!(Gg,C,) = K log Xcycl gives a nontrivial extension
. . . (1 1 . . .
0—-C, =V = C, = 0 on which Gx acts via the matrix ( 8 Tcyd). This representation, not being

isomorphic to C, ® C, is not Hodge-Tate, and

0 1
@Dsen,Sen(V) = ( 0>

which follows from the formula defining the Sen operator.

3 Admissible Representations

3.1 The category of Hodge-Tate representations
3.1.1 Basics

Recall that W € RepCP(G k) was defined to be Hodge-Tate if the comparison morphism
&w: P Cp(—n) @c, W - W

was an isomorphism. Write Reng(G k) for the full subcategory of Rep(cp(G k) consisting of objects which
are Hodge-Tate and let Reng(G k) be the full subcategory of Repgg(G k) consisting of objects W such

that W ®g, C, € Repg (Gx).
For W € Rep(cp(G k) the K-vector spaces W{n} can be thought of as the graded pieces of the graded

vector space @ W{n}. Therefore we now introduce some categories of vector spaces.

n

3.1.2 Graded vector spaces

Let GrVectx be the category of graded vector spaces, i.e., of vector spaces W over K together with a
grading W = @gr” W where gr™ W is a K-subvector space. Morphisms in this category are morphisms

n
[+ W1 — Ws of vector spaces such that f: gr™ Wi — gr™ Ws for all n. A graded ring is a ring R with a
grading gr® R such that 1 € gr’ R and g™ R - g™ R C gt " R.
The category GrVectg has

1. direct sums,

2. tensor products: (Wi, gr® W1)®x (Wa, gr® Wa) = (W1 @k Wa, gr® (W1 @ Wa)) where gr” (W @ g Wa) =
Z gr' Wy @k g’/ Wa,
i+j=n
3. linear duals: (W, gr®* W)Y = (WV, gr* WV) where gr® WV = (gr " W)V),

4. kernels: if T : W/ — W is a morphism in GrVectx then (kerT,gr®(kerT) € GrVectyx where
gr'(kerT) = ker T N g™ W',

5. cokernels: if W/ — W is a morphism in GrVecty then (cokerT”,gr®(cokerT)) € GrVectyx where
gr’(coker T) = (gr" W + T(W"))/T(W").

The category GrVectg is an abelian category.
In concordance with the notation of [3, §2.4], we will write K (n) for the graded vector space K with
gr' K = K if m = n and 0 otherwise. Then K(m) @ K(n) = K(m + n) and K(m) = K(—m).
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3.1.3 Filtered modules

Let R be a commutative ring. Let FilModg be the category of (separated and exhaustive) filtered R-
modules, i.e., of R-modules W together with descending filtrations ... > Fil" W > Fil"™ W > ... such that
Fil"W =W for n << 0 (exhaustive) and Fil" W = 0 for n >> 0 (separated). Morphisms in this caregory
are morphisms f : Wi — W5 of R-modules such that f : Fil" W, — Fil” W5 for all n. A filtered ring is a ring
R with a separated and exhaustive filtration Fil® R such that 1 € Fil° R and Fil™ R - Fil" R C Fil™*" R. If
K is a vector space write FilVectx instead of FilModg.

The category FilVectx has

1. direct sums,

2. tensor products: (W1, Fil®* W) ®@g (Wa, Fil®* Ws) = (W1 @ Wa, Fil* (W1 ®g Ws)) where Fil" (W) ®gr

Wy) = > Fil' Wi @ Fil! Wy,
i+j=n

3. linear duals: (W, Fil* W)Y = (WY, Fil*(W")) where Fil"(WV) = {v¥ € WY|Fil' "W C kerv"}.

4. kernels: if T : W' — W is a morphism in FilVectx then (kerT,Fil®(kerT)) € FilVectyx where
Fil" (ker T') = ker T N Fil" W/,

5. cokernels: if T : W/ — W is a morphism in FilVectx then (ker T, Fil®(coker T')) € FilVectx where
Fil" (coker T) = (Fil" W + T(W"))/T(W").

However, FilVectg is not an abelian category.
There is a functor gr* : FilVectg — GrVectg taking (W, Fil®* W) to (W, gr® W) where gr W = Fil™ W/ Fil" ™ W
If W € FilVecty and d € Z let W|d] € FilVectx be the vector space W with the filtration Fil" Wd] =
Fil"™ W. Then W(n]¥ = WV[-n].
3.1.4 Reformulating the comparison morphism

We have not proven Lemma 2.28 but will reformulate it in a way which will make it amenable to the notation
of Theorem 3.7.
Let Bur = ,, Cp(n) which is a graded ring (via C,(m)®c, Cp(n) = Cp(m+n)) with a G action. Then

we may obtain the graded vector space @ W{n} = (Bur ®c, W)®% e GrVectg. Then we get a natural
morphism

anT,w : Bar ®K (@ W{”}) — Bur ®c, W

which is simply agr,w = @gw(n) where & (n) is the Tate twist of {w by X¢,- Then the injectivity of
n

&w will follow from that of apr w from Theorem 3.7. In fact one may recover &y = gr¥ QHT, W -
As a matter of preliminary notation we write (now for W € Repg (G ), and D € GrVecty )

Dur(W) = (Bur ®g, W)
Vur(D) = g (But ® K D)

which of course makes sense as GrVectx has tensor products, in which case &w : Vur(Dur(W)) — W.
The formalism of admissible representations will generalize the functors (we don’t know they are functors
yet) Dt and Vit to more general rings than By, rings which we describe next.
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3.2 Regular rings

The setup is the following: G is a group, F' is a field, B is an integral F-algebra with an action of G, and
BE is a field.

Definition 3.1. The algebra B is (F, G)-regular if the following two conditions are satisfied:
1. (Frac B)® = B¢, and
2. if b € B is nonzero and F - b is G-stable then b € B*.

Example 3.2. If B is a field then B is (F, G)-regular.

Lecture 10
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Proposition 3.3. The ring Bur is (Qp, Gk )-regular.

Proof. Certainly Bg’f = K (by Ax-Sen-Tate) is a field. To tackle the first condition of regularity it is useful to
consider the isomorphism Byt = C,[T] where Gk acts on T via g(T') = Xeye1(9)T- Then FracBur C C,((T)
so we need to check that C,(T)“* = K. But if f(T) = Y,-, anT" is Gk invariant then a, € Cp(n)%*
for all n and so f(T) = ag € C§* = K = BSE by Ax-Sen-Tate.

Now for the second condition of regularity, let f(T') € Byt # 0 give a Gk stable line f(T)Q, on which
G acts via a character n: G — (@;. Thus

Q(Z anT") = Z g9(an)Xeya(g)T"
n=0 n
=Y nlg)a,T"

which gives a,, € (Cp(xgycln_l)GK. Suppose that for some n one has a,, # 0 which implies that dim g (Cp(xyycm_l)

1 =dim (Cp(xgycmfl). But then Corollary 2.40 implies that ngcln’l is potentially unramified. Since xcycl

is infinitely ramified it follows that this condition can be satisfied only for one n.

However, we did not give a proof of Corollary 2.40 and an alternative is the following. Since a,, # 0 it
follows that (Cp(x’gycm_l)GK = 0. Therefore Dsen((Cp(X?ycm_l)) = K, and so (Cp(Xfycm_l) = C,. But then
if m # n then (Cp(xgdnfl)GK =~ Cp(m —n)9% =0 by the Ax-Sen-Tate theorem and so a,, = 0.

The final conclusion is that f(T') = a, 7™ which is invertible. O

3.3 Admissible representations

Definition 3.4. Suppose V € Repp(G) and B is a (F, G)-regular ring. Then
Dp(V) = (Bar V)¢
is the associated Dieudonné module.
Remark 13. One has a natural comparison morphism
apy:BepDp(V)2 B (BerV)? = Bor(Bor V)2 (B B)®@rV - BopV
Proposition 3.5. 1. Let B be a (F,G)-regular ring and V € Repp(G). Then apyv is injective.

2. dimg Dp(V) < dimp V with equality if and only if ap v is an isomorphism.
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Proof. 1. Let dy,...,d, be the smallest number of linearly independent elements in Dp(V) such that

there exist b; # 0 with ap,v (> b; ®g d;) = > b;d; = 0. Since the d; are G-invariant for all g € G get
> g(b;)d; = 0. Dividing by by get

dl—&-ZZ—idi:O
d1+zg<;jj> =0

Subtracting and using the minimality of n we get that for all g

bi (b
A

b; :
50 4~ € (Frac B)Y = BY = E by regularity. But then

1
D5 di=0
i=2 1

is an identity in D (V) which contradicts the independence of d;.

The above proof also shows that ap 1 ®p Frac B is injective and a comparison of Frac B dimensions
gives that dimg Dp(V) < dimp V. Suppose now that dimg Dp(V) < dimp V. Let ¢; be an E-basis
of Dp(V') and v; an F-basis of V' and let ay(e) = Av where A is a matrix with det A € (Frac B)*.
To show that «y is an isomorphism (over B not only over Frac B) is suffices to show that det A € B*
and for that it is enough to show that F' - det A is G-stable, by regularity. But the e; are G-invariant
and so detag y(e1r A ... Aeg) =det Avy A...vg is also G-invariant. Thus G acts on F - det A via the
inverse of the determinant of the action of G on V, and so F - det A is G-stable.

O

Definition 3.6. A representation V' € Repy(G) is said to be B-admissible if ay is an isomorphism. Write
RepZ (@) for the full subcategory of Rep(G) of representations which are B-admissible.

Theorem 3.7. Let B be (F,G)-regular and V € Repp(G).

1.

AR RN

Dp: Repg (G) — Vectg is a covariant, exact and faithful functor to the category of finite dimensional
FE-vector spaces.

FEvery subrepresentation or quotient of a B-admissible representation is B-admissible.
If V, V' are B-admissible then Dp(V) @ Dp(V') 2 Dg(V @pr V') and V ®p V' is also B-admissible.
Exterior and symmetric powers preserve B-admissibility and commute with Dp.

If V is B-admissible then V'V is B-admissible and Dp(V) @ Dp(VV) — Dp(F) = E is a perfect
duality.

Proof. 1. Dp is clearly covariant. To show exactness on Rep?(G), note that if 0 = U — V — W — 0 is

an exact sequence of F-representations then also0 - BRQrpU — BRrpV — Bpr W — 0 is exact and
thus 0 » B®g Dp(U) - BRrDp(V) - BegDp(W) — 0is exact and so 0 = Dp(U) = Dp(V) —
Dp(W) — 0 is exact as E-vector spaces. That Dp is faithful follows from the fact that if Dg(f) =0
then f =0 on B®p V and by left exactness of tensoring with B it follows that f =0 on V.

.Let 0 V' =V = V" — 0 such that V is B-admissible. Then by left exactness of Dg on Repp(G)

it follows that dimg Dp(V) < dimg Dg(V') + dimg Dp(V"”). But the left hand side is dimp V' =
dimp V' 4+ dimp V" while the right hand side is < dimp V' 4+ dimg V" by Proposition 3.5. Thus V'
and V" are both B-admissible.
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3.

The image of Dp(V)®@gDp(V’') = (BRrV)®r (BRr V') = Ber (V®r V') is G=invariant and so
factors through Dp(V ® V). Since dimg Dp(V) ®g Dp(V’) = dimp V dimp V’ while dimg Dp(V ®
V') <dimpg V dimp V' it is enough to show that this map is injective. It is enough to check this after

tensoring with B (as B is an algebra over a field) in which case the map is B&r Dp(V)®rDp(V’) &
(B Dp(V))®p (B®rDp(V')) > Beg (V®Fr V') is simply ay ®p ay.

If V is B-admissible then V®" is B-admissible by the previous part. Then A"V is a quotient and so is
B-admissible. Similarly for Sym” V.

Let V be B-admissible of dimension d. There exists a natural isomorphism
det(VY) @p N1V 2 VY

given by (z1 A ... Axzq) ® (¥ A ... Aya) — (y1 — det(z;(y;)). Therefore it is enough to show that
det(VV) is B-admissible. Therefore it is enough to show this part for d = 1 as det V' is B-admissible.

Let V = F - e with respect to which the action of G is given by the character n : G — F*. Let
Dp(V)=E - (b®e) for some b € B and G-invariance of b ® e gives 1(g) = bn(b)~*. Then D(V"V) =
E-(b"lweY).
The pairing arises as the composition Dg(V)®@gDp(VV) 2 Dp(VRV"Y) — Dp(F) = E. Its perfectness
is immediate when dimg V' = 1. In general, the perfectness of the pairing is equivalent to the perfectness
of the pairing AYDg(V) @ AYDg(VY) = Dp(A?V @ AYVY) — E. (A bilinear pairing given by a
matrix A is perfect if and only if det A # 0.) The perfectness of the latter follows from the one
dimensional case.

O

Example 3.8. 1. Hodge-Tate representations are the Byr-admissible ones.

2.
3.

By Corollary 2.40 a Q, representation V' is Cp-admissible if and only if it is potentially unramified.

A much easier statement, which boils down to Hilbert 90, is that V is @p—admissible if and only if V
is potentially trivial.

. There is a Q, subalgebra Bge, of Cplu] (where G acts semilinearly via g(u) = u + 1og Xcyci(g)) such

that Dgen = Dpg,,. See the third problem set.

Other examples for B, some to be studied, are Bqr giving de Rham representation, Beis giving crys-
talline representations, Bg; giving semistable representations, £°°P giving IF,, representations, O giving
Z,, representations and &Y giving Q,, representations.

Lecture 11
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3.4

Hodge-Tate again

Since the ring By is (Qp, Gk ) is regular we get the functor Dyt satistying all the properties of the previous
section. However, Byt is also a graded ring.

Definition 3.9. Let gr” Dyr(V) = V{n}. Then (Dypr(V), gr* Dur(V)) € GrVecty. For D € GrVecty let
Vur(D) = gr’(Bur @ D).

Proposition 3.10. The functors Dyt : Reng(GK) — GrVectyg and Vyr : GrVecty — Rep&r(GK) are
quasi-inverse and they provide an equivalence of categories.
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Proof.

Virr (Dt (V) = g’ (Bur @k Dur(V))
=~ o1’ (Byr ®c, W)
= gr(Bur) ®c, W
=W
and if (D, gr® D) € GrVectg one has

Dur(Virr(D)) = @,.4(Cp(r) ©c, Cp(—q) @k gr? D)
= ®r,q(Cp(r — q) ®c, gr? D)%
=®.gr" D
=D

by Ax-Sen-Tate O

Remark 14. Dy : Repng(G k) — GrVectx however is not an equivalence of categories. In fact all potentially
unramified Q, representations have the same image via Dyt by Corollary 2.40.

4 de Rham Representations

Proposition 3.10 does not apply in the case of QQ, representations as nonisomorphic Q, representations can
become isomorphic over C,,. A finer period ring is necessary for Q, representations. What properties it should
have? Inspiration comes from algebraic de Rham cohomology. It should be a filtered ring, with residue field
C,, and graded ring By. Moreover, if m is the maximal ideal one wants the extension m/m? — B /m? — B /m
to be nonsplit in order to account for the Tate curve:

The Tate curve (of some parameter ¢) E, is an elliptic curve over Q, with multiplicative reduction at p.
Its Tate module gives V =T, E; ®z, Q) € Repg, (Gg, ) such that 0 — Q,(1) =V — @, — 0 is not split. In

fact it does not split over @, whereas it splits over C,, (and therefore is Hodge-Tate).

4.1 Witt Vectors

The Witt vectors construction is supposed to generalize the Teichmiiller lift [-] : k — OKngr.

4.1.1 Definitions

Definition 4.1. Let A be a ring and consider a chain of ideals A D I; D I D ... such that A/I; = R is an
F, algebra and such that I,, - I, C Ip4p,. The ring A is said to be a p-ring if it is separated and complete
for the topology defined by (I,).

Definition 4.2. A is a strict p-ring if it is a p-ring and moreover if p is not nilpotent in A.
Example 4.3. 1. Z, with I,, = p"Z, is a strict p-ring with residue field F,,, which is perfect.

2. If K/Q, is finite then Ok with I,, = p"Ok is a strict p-ring with residue field Og /(p). It is perfect
if and only if K/Q, is unramified. Choosing instead I,, = w} Ok gives a p-ring with perfect residue
field kg It is strict if and only if K/Q, is unramified.

3. Oc, with I, = p"Oc, is a strict p-ring.

4. If J is any index set let Sy = Zp[Xfim]jeJ’mZO and let §; = @Sj/p"SJ. Then S is a strict p-ring

with perfect residue field Sy = Fp[X}  jcsm>o0-
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4.1.2 Perfect rings

Lemma 4.4. Let A be a p-ring with residue ring R which is an F,-algebra. Let x = (zo,x1,...) withz; € R

such that ¥ | = z; and let T; € A be any lift of x;. Then (f;pn)n converges to some (x) € A which only
depends on x.

k—1
Proof. Check by induction that @pk =z, (mod I). Indeed, for k = 1 this follows from zf = z,,_;.
k k—1

Then suppose z,,’ = Z,_1"  +y for y € I;. Then

k1 k—1
znp = (ﬁ—\lp + y)p

1

P
—p" D\ ——ip"™!
=Tp-1 + g i Tn—1 Y
i=1

Since p € I (as p =0 in R) the first term of the sum will be in Iy - I, C Iy while all the others will contain

y? and so will be in I, - I, C I, C I,1. Thus (:f;pn) will be a Cauchy sequence and so converges to some

3
limit Z. If (z,,") is another choice of lifts then the same proof applies to (717, (@I)pQ 73" ()P, .. .) which

will then have the common limit ().

Corollary 4.5. If R is perfect and a € R then let [a] = t(x,,) where x, = (a, /P, a/P" ) exists and is
unique by perfectness. This lift is the Teichmiiller lift of .

Lemma 4.6. If A is a string p-ring with perfect residue ring R then every a € A can be written uniquely as

=" "o

n>0
for a, € R.

Proof. See problem set 3. O

4.1.3 Universal Witt polynomials

Lemma 4.7. Let [] be the Teichmuller lift from the perfect F,, algebra S = ]Fp[Xfim,Yipim}mnzo - 8=
@ZP[X{"L, Y-pim]i’mzo/(p”). There exist “polynomials” S;, P; € S such that

S+ Y = S pIS)

i>0 >0 >0
Yoo [ Dol | = P
i>0 i>0 i>0

Proof. This follows from Lemma 4.6 as S is a strict p-ring with residue algebra S. For example

So(Xo,Yo) = Xo + Yo

= 1
Sl(X()?Xl?}/OaYl) = Xl + Yl + 5((}(&/]7 + Yol/p)p — Xo — YO)

and so on. 0
Remark 15. The polynomials S; are homogeneous of degree 1 in Xy, ..., X; and again of degree 1in Yy, ..., Y;.
Lecture 12
2012-02-03
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Lemma 4.8. Let J be a set of indices and A a strict p-ring with perfect residue ring R. Let 0:S;—>Rbea
homomorphism and 0 : S; — A be any multiplicative lift of 0. Then there exists a unique ring homomorphism

0:Sy;— A such that 0([x]) = 0(z).

Proof. Define 0 : S; — A to be the ring homomorphism such that §(X? ) = 6(X? ") for all i and m. Now

~

¢ is uniformly continuous so extends to a ring homomorphism on S;. One may check by induction, using
the multiplicativity of 8 as in the proof of Lemma 4.4, that for x € S;

k ~

o([x]”") — 6(a"") € p**+1S,

(The base case uses the fact that  is a ring homomorphism.) Applying this for 2P " € Sy and k = n shows
that 0([z]) — 0(z) € p" 1S, for all n which gives §([z]) = 6(x).
Uniqueness follows from the formula

o> PR = S P
i>0 i>0

O

Proposition 4.9. Let A be a p-ring with perfect residue ring R. If x = (xq,...) and y = (Yo, . ..) are tuples
of elements in R then

> o]+ Y Pl = p'[Si(x,y)]

i>0 i>0 120
S vl | [ Dop'lwl | =D p'Pilx,y)]
i>0 i>0 i>0

Proof. Consider the ring homomorphism # : S — R given by é(Xfim) = xfim and g(Yipim) yfim and let

6 be defined multiplicatively by 6(z) = [2]. Then Lemma 4.8 gives 6 : § — A such that 6([z]) = 6(z). Then
the two formulae follow immediately from Lemma 4.7:
D P+ Y plul =00 pXi]+ D p'Yi)
i>0 i>0 i>0 i>0
=00 _p'[Si])
i>0
= > p'0(5))
i>0
i>0
and similarly for the product formula. O

4.1.4 Witt Vectors

Lemma 4.10. If A is a strict p-ring with residue ring R and if I is a perfect ideal of R then

W(I) = {D_p'leilles € 1}

i>0

is a closed ideal of A and A/ W(I) is a strict p-ring with residue ring R/I.
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Proof. W(I) is closed under addition because if x = 3 pi[x;] and y = Y. p'[y;] then x +y = > p'[Si(z,y)]
and S;(z,y) € I as S; is a homogeneous polynomial. Now the polynomials P; have monomials which contain
both z-s and y-s as 0 = 0-y = > p*[0] Y. p'lyi] = - p*[P:(0,y)] and so P; cannot contain terms with only
y-s. Therefore if x € I and y € A then P;(x,y) € I and so zy € W(I).

We now have (A/W(I))/(p) = A/(W(I) + pA) = (A/pA)/(W(I)/(p)) = R/I. The only thing left to
check is that p is not nilpotent in A/ W(I), i.e., that p¥ ¢ W(I) for all k > 0. But p* = p°[0]+- - - +pF~1[0] +
pF[1] 4+ pFFL0] + - - - so p* € W(I) if and only if 1 € 1. O

Theorem 4.11 (Witt vectors). If R is a perfect ring of characteristic p there exists a unique strict p-ring
W(R) with residue ring R. If A is a p-ring with residue ring S and 6 : R — S is a ring homomorphism and

0 : R — A is a multiplicative lift of 0 then get a ring homomorphism 6 : W(R) — A such that 6([z]) = 0(x).

Proof. Consider a presentation of R =2 S;/I for a perfect ideal I. (For example could choose J = R with T
all the relevant relations.) Let W(R) = S;/ W(I). Since Sy is a strict p-ring with residue ring S; and I is
a perfect ideal it follows that W(R) is a strict p-ring with residue ring S;/ W(I) = R.

~

From Lemma 4.8 there exists a lift of the composition S;— R — AtoS; — A and it can be checked
that this induces 0 : S;/ W(I) — A. O

4.2 Perfections and the ring R

We would like to construct Witt vectors starting with the ring Oc, /(p), which is not perfect. To remedy
this we will study perfections.

4.2.1 R

Definition 4.12. For an Fp-algebra A let R(A) = Jim A.

TP

Remark 16. If A is perfect then R(A) = A and the inverse map is a — (a, a'/?, al/?’ .. ).

Lecture 13
2012-02-06

Lemma 4.13. R(Oc,/(p)) can be described as {(z®,zV),..)|z; € Oc,, x| = x;} where the ring structure
on the latter is given by

(x(i))(y(i)) — (x(i)y(i))
(2 + ) = (lim(2+7) 4 )P
J
(@) = ((~1)a?)

Proof. Let A be the latter ring and consider the morphism A — R(Oc, /(p)) given by (z?) > (z(¥ mod p).
This is clearly a ring homomorphism and an inverse is given by (z;) — (¢(z;)) where ¢ is the lift from

Lemma 4.4. (Explicitly ¢(z;) = limz;1;" " for some lifts Tiy; to Oc,.) The formula for negation follows
J

from the formula for addition. O
Corollary 4.14. The ring R = R(Oc,/(p)) is a domain.

Proof. That R is a domain follows from Lemma 4.13 as Oc, is a domain. O
Proposition 4.15. Let vg((2(?),...)) = v,(z®). Then

1. vr is a valuation on R;
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2. if z,y € R such that vg(x) > vr(y) then there exists z € R such that v = yz;

3. R is complete and separated with respect to vgr;
4. vr((20,...)) = lim p"v,(z,) for lifts z, € Oc, where x, € Oc,/(p).
n—oo

Proof. 1. Renormalizing we may assume that 2(0) ¢ Oc,, which will then be a

lift of Oc,/(p). The

multiplicativity of vg is clear and we would have to show the nonarchimedean property:

or(a +9) = vyl(@ + 9)®)
= 0y Jim (2 + "))

= lim p™uv,(z™ 4 (™)

m—r o0

> lim p™ min(vp(x(m)),vp(y(m)))

T m—oo

= min(vg (), vr(y))

2. Tt follows that v,(2(®) /y(®) > 0 s0 x/y = (@ [y, 21 /5D ) e R.

3. If . = (xo,21,...) € m@cp/(p) then vg(x) > nif and only if xg =21 = ... =
that limits exist in lim Oc, /(p) = R and that the topology is separated.

4. This follows from Lemma 4.13 as 2(©) = ¢(z0) = lim 7, .

Lemma 4.16. Ife = (1,(p,(p2,...) € R then vg(e — 1) = —
p—

Proof. As before we have

vr(e = 1) = lim p"v,(Gn + (~1)"))

n—oo

= lim p"vp((pn + (1))

n—oo
where the second line follows from the negation formula in Lemma 4.13. Recall that
1

Up(Gpr — 1) = m

and so UQ(CQTL + 1) = UQ(CQH -1+ 2) = UQ(CQTL — 1) =

2n—1'
n

vr(e 1) = lim oy

4.2.2 FracR

Z, = 0 which implies

Therefore in both cases p =2 and p > 2 we get

Theorem 4.17. Via the isomorphism FracR = {(z(©, 2™ .. )|2; € Cp, 2%y = x;} as above FracR is an

algebraically closed field of characteristic p.
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Proof. The explicit description for Frac R follows from the fact that R is the subset of z with vg(z) > 0 and
the (noncanonical) element p = (p,p'/?,...) has positive valuation.

Consider a polynomial P(X) € Frac R[X] and we need to show that P(X) has roots in Frac R. Multiplying
by a suitable power of [p] we may assume that P(X) € R[X]. Write P(X) = X9 + a4 1 X% 1+ +ag
and write ap = l'glakm where ay, € Oc,/(p). Let P,(X) = X4+ ad,LnXd’1 + -+ apn € Oc,[X] which
then satisfies that P, (X)? = P,_1(X?). Let P,(X) € Oc,[X] be a lift of P,,(X), which will then have roots
Qn1,-.-,0n.q. The relationship P,(X)? = P,_1(XP?) implies that Jgn,l(afw.) =0 (mod p) for all ¢ and so

d
1
H(O‘i,i —an-1,) € (p). Thus for at least one j it must be that v,(a} ; — an—1;) > 7 By induction, using

j=1
. . - P k=1 k Pl it )
the binomial formula, it’s easy to see that v,(ay, ; —ay ;) > p and so (ay, ; )P =a;_;; (mod p) which
means that s s
{O‘Z,i 1<i<d}f = {aﬁflﬁl <i<d} (modp)
d—1
and so after a reordering of the roots it follows that @afl’i (mod p) € FracR. These will be the roots of
P. O

4.2.3 Actions on R
Definition 4.18. The Galois group G acts on R via g((z(@, 20 ..)) = (g(z(®), g(z™M),.. ).
Definition 4.19. There is a Frobenius map ¢ on R given by o((z(®, 20 ..)) = ()P, 2O L0 ).
Lemma 4.20. We have

1. R*=Y =F,. (In fact R? =t =F,..)

2. R9% = k.
Proof. 1. Clearly R¥*=! = {(z,,...)[]zP = 2} = TF,.

2. Letx = (x(0)7 =z .) be G g-invariant with PAQNS Oc,. Then for all g € Gk we have z® e (C]?K =K.
Also, using (x(F1)? = () it follows that v,(z(?) = p~v,(2(?)) and since (V) € K, and therefore has
v, valuation in e;(}@pZ it must be that z(® € (’)EP. Write () = [u;](1 + wxy;) where u; € kg and

y; € Og. Then using that z(*) = (x(“‘j))pj we get that in 1 +mg we have 1+ wgy; :_(1+wai+j)”j.
Choosing j large enough we get a contradiction unless y; = 0 which implies that 2(*) = [u;] and so,
since kx is perfect, we get that REK = ke
O
4.2.4 W(R)
Since R is a perfect F,, algebra we may construct the Witt vectors W(R) and get something well-behaved.

Lemma 4.21. There is a ring homomorphism 6 : W(R) — Oc, given by

H(Z p"len]) = Z ngo)pn

where ¢, € R.

Proof. Recall that 2 € R can be described either as z = (z(¥,...) with 2@ € Oc, or as = = lim z; with
z; € Oc,/(p) and z — z(? is a multiplicative lift of 2 — 2. Now the existence of § as a ring homomorphism
given by the formula above follows from Theorem 4.11 applied to 6(x) = zo and 6(z) = (). O

Definition 4.22. 1. The Galois group Gk acts on W(R) via g(>_ p*[z]) = 3. p¥[g(a)] for x1, € R.
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2. Frobenius acts via (> p¥[zi]) = 32 pFlo(zr)].
Lemma 4.23. We have

1. WR)*~! = W(R*™") = W(F,) = Z,.
2. W(R)%% = W(RC®) = W(kg) = Ok, where Ko = K N Qp" is the mazimal unramified subfield of K.

Proof. Follows from definitions and Lemma 4.20. O
Lecture 14
2012-02-08

4.3 Bgr

4.3.1 kerf

For x € W(R) let T be the image in R.
Proposition 4.24. If o € ker 0 is such that vg (@) =1 then ker 0 = (&) is principal.

Proof. First, note that ker @ N p” W(R) = p"ker6 as C, is torsion free. If (z) = 0 then T(© € (p) (as if
0> p™len]) = Zp”cglo) =0 then p | céo)). Therefore vg (T) = v,(Z(?)) > 1 = vg (@) so there exists 7 € R such
that T = @y. This implies that z = ay (mod p) for some y € W(R). Suppose we can write z = ay, + p"v,
where y,,,v, € R (so n > 1). Then 6(p"v,) = 0 and so v, = kerf. We just showed that we may write
v, = aw ~+pz and so writing y,4+1 = y, +p"w and v,41 = 2 it follows that z = ay,11 +p”+1vn+1. Then ay,
converges to some element of W(R) of the form ay. (as W(R) is complete) which makes z € (o) W(R). O

Example 4.25. For example we may choose

l.a=[p|—por

[e] -1

2. = 7[51/1)] 7

Proof. 1. Note that p € R lifts to [p] = [p]+p-0+p?-0+--- € W(R) while p = 04+p-1+p?-0+--- € W(R).
Therefore 0([p]) = [p°)] = [p] = p while 8(p) = p- [1] = p. Thus 6([p] — p) = 0. Also the image of
[p] — p in R is p which has vg valuation 1 and so ker§ = ([p] — p) W(R).

2. Since 0([e] — 1) = [¢(©)) = 1 = 0 but ([¢'/?] — 1) # 0 by the same computation it follows that o € ker 6.
Also, from Lemma 4.16 we get that vg(@) = vr(e — 1) — vr(e'/P — 1) = P = 1 and so

p—1 p-
ker 0 = (o) W(R). -

Lemma 4.26. The Gk equivariant surjective ring homomorphism 6 : W(R) — Oc, eatends to a G
equivariant surjective ring homomorphism 0g : W(R)[1/p] — C,.

1. Show that W(R) N (ker 0g)* = (ker 0)* for all k.

2. Show that W(R)[1/p] is separated for the ker Og-adic topology, i.e., that N(ker fgp)* = 0.

Proof. 1. The extension fg is given by 0g(>_,,~_,,, P"[cn]) = D es i p”c%‘)) and so agrees with § on W(R),
which implies the statement. - -

37



2. Suppose = € N(kerfg)™ C W(R)[1/p]. For some k have p*z € W(R) and so = € N(ker §)"[1/p]. So it
is enough to show that N(ker 6)" = 0.

Any element z in N(ker #)* is divisible by arbitrary powers of [p] —p € ker . But [p| —p = (p, —1,...) €
W(R) and so the image of = in R will be divisible by arbitrary powers of p in R. But R is complete
and separated for vg and so the image of x in R will be 0. Thus we may write z = pz’ for 2’ € W(R).
Let « be a generator of ker §. By Proposition 4.24 it follows that o = Y p"[a,] with vp(oz(()o)) =1 and
so the image of « in R is not 0. Since z € (ker§)™ there exists y, € R such that z = pz’ = a™y,.
Since the image of o in R is not 0, and R is a domain, it follows that the image of y, in R is 0, and
80 Y, = py.,. This gives 2’ = a"y), and so ' € N(ker §)". Repeating this argument shows that z is

divisible by arbitrary powers of p, and so is 0.
O

4.3.2 BJ; and Bar

Definition 4.27. Set B = Jim W(R)[1/p]/(ker 6)". Projecting to the first factor gives 61 : Biz —»
W(R)[1/p]/ ker 6 = C,. B

Proposition 4.28. The ring B(‘fR is a complete discrete valuation ring, with mazimal ideal ker 8, residue

field C, and uniformizer any choice of generator of the principal ideal ker 6.

el —1
[[1/]1)]1 be a generator of ker §. By construction every element of BCTR can be written as
6 —

asum r = xg + 21w + ow? + -+ with z; € W(R)[1/p]. Let k be the smallest nonzero coefficient zj, in
which case x € w* Bj —w**1 B}, which gives a valuation on BjJ,;. This turns BJ;; into a complete discrete
valuation ring for that valuation. O

Proof. Let w =

Remark 17. Frobenius ¢ on W(R)[1/p] does not stabilize ker # and thus does not extend to Blj.

Definition 4.29. Define Byg = Frac B(}LR. It is equipped with a Gg-stable filtration Fil" Bqg = m

n
+ -
BdR,

Lecture 15
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Lemma 4.30. The series

tog((e]) = Yo (-

n
n>1

1. converges in the dvr topology on BZ{R to a uniformizer t.

2. If g € Gk then g(t) = Xcya(9)t.

Proof. 1. The coefficients # belong to W(R)[1/p] and ([e] — 1)™ € (ker @)™ and so t converges. To

see that ¢ is a uniformizer note that 17[] € (Bqr)™ from the definition. Also, recall from Example

—le

1—
4.25 that ker 6 is generated by 1[5[15/}17]. Since (1 — [¢!/7]) # 0 it follows that 1 — [¢'/?] € (Bqr)*
and so y ;
— _[gl/p
1—e] - 1— [E] (1 [8 ])
T—[c1/7]

is a product of two units which implies that ker 6 = (¢).
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2. The equality g(t) = Xcyci(g)t makes sense in BIR endowed with the dvr topology with respect to which
t makes sense. However, we will prove this equality by showing that the two sides are both equal to
log([g]Xev<1(9)), which does not converge in the dvr topology. To make sense of this auxilliary quantity
and to show that the two sides of the equality are equal to this auxilliary formula, we need to endow
B(J{R with a different topology, in which the p-adic nature of the exponent xcyq(g) interacts with the
dvr nature of the logarithm.

To begin with let a € Z. The formal power series alog(1+ ) and log((1+2)%) :=log(1+ ((14+x)*—1))
are equal for a € Z,, and so they agree modulo 2™ for all n. Plugging in « = [¢] — 1 we get

alog([e]) = log([e]*)  (mod ([e] —1)")

for all n > 0. Thus the two power series are equal in the dvr topology on B'd"R.

To extend this identity to a € Z, it is enough to construct a topology on BjR in which log(1 4+ z) =

E (—1)""'2™/n converges, is Gx-equivariant and continuous. Then for a = E a;p" we have
i>0

A k
log((1 + ;p)Zf:o ail”') = (Z aipi) log(1 + x)

1=0

and the result follows by continuity. Such a topology is constructed in [3, Exercise 4.5.3]) by letting
open sets in W(R)[1/p] be of the form

Unva= |J (07 W(@")+p" W(R))
j>—N

and giving BIR the inverse limit topology, i.e., the coarsest topology making all projection maps
Biz — W(R)[1/p]/(ker )" continuous for all n. Relative to this topology as well the ring By is
complete.

For g € Gk we know that g([¢]) = [g(¢)] = [gXev1(9)] = [g]Xeve1(9) by definition of Xeyer and so

9(t) = g(log([e]) = log(g([e])) = log([] ' ¥)) = Xcya(9)t
O

Corollary 4.31. Bygr = Bgr|[1/t] and Fil' Byg := t! B;fR fori € Z is a Gg-stable filtration giving gr® Bqr =
Bur.

Proof. The first part follows because ¢ is a uniformizer, while the second part follows from the fact that
G acts on t via a scalar. The last part of the statement follows from the fact that #**! B(J{R /t" Bj{R, a one
dimensional C,, vector space, has G action via x¢,. and so gr’ Bqr & C, (i) = gr' Bur.

Remark 18. The reason for introducting Bggr is that the p-adic etale cohomology of smooth projective
varieties over K are p-adic Galois representations which are Bgr-admissible, and there are examples where
this is not true for smaller subrings of Byg.

4.3.3 Cohomology of Byr

Since Bgr is a field it is automatically (Q,, Gk )-regular; the goal of this section is to compute the Gk
invariants in order to compute the target category of Dp,.

Lemma 4.32. Ifi # 0 then
1. HY(Gg, "' BlR) = HY(Gk, ' BRR),
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2. (' BiR)9K = (' BiR)r,
3. HY(Gr,tBlR) =0,

4. (Bar)* = (Bir)“x,

5. (tBig)¢x =0.

Proof. 1. Lemma 4.30 implies that ¢+! Bji'R Jtt B(TR, a one dimensional C, vector space, has Gk action
via Xy and so we get a Gk equivariant exact sequence

0— ¢ Bl = t'Biz — Cp(i) = 0
The cohomology long exact sequence gives
H°(Gr,Cp(i)) = H (G, ' 7' BER) — H' (Gk,t'BiR) — H' (Gk,Cp(d))
and the statement follows from Ax-Sen-Tate and Theorem 2.25.
2. The previous long exact sequence also gives
0 — HY(Gp, "7 Blz) = H°(Gk,t'Blz) — H°(Gk,Cp(d))
and the statement follows from Ax-Sen-Tate.

3. If M € H' (G, BJy) then by the first part there exists y € t' B such that g — M(g) +g(y) —y €
HY(Gr, "1 Bly). Starting with M; = M € H'(Gg,tBlg) obtain a sequence M; € H'(Gk,t' Bl)
obtained recursively as M;;1(g) = Mi(g) + g(y;) — y; where y; € t!Bl;. Letting y = > y;, which
converges in Bl; we get that M(g) = Mi(g) + g(y) —y € H (Gk,t'Bjg) for all i > 0. Now the
separatedeness of BIR implies that M is trivial and so M; = 0.

4. If x € (Bgr)“X then there exists i € Z such that x € t* BIR. Applying the second part recursively we
get the statement.

5. Applying the second part we get recursively that (¢ BXR)GK Ct BIR for each ¢+ > 1, which immediately
implies the statement.

O
Theorem 4.33. We have (Bqr)“* = (BlR)9* = K.
Proof. From 0 — th‘R — Blz = C, — 0 we get
0 — (tBJR)°" — (Bir)9" — CJ* — H'(Gk,tBiR)
Lemma 4.32 implies that this can be rewritten as
0—0— (Bir)¢ - K—0
and the statement follows. O

Remark 19. The above apparently also implies a theorem of Colmez that K C B:{R is dense (but not so in
Bar).

Proposition 4.34. ! If n € Z then H' (G, t" Bly) —» HY(Gk,Cpy(n)).

Proof. This is tricky, and this “proof” is a sketch. Assuming one has a good theory of continuous cohomology
in degree > 2 which gives long exact sequences and commutes with limits then this would follow from

H?*(Gr,t"Blz) = 0. This can be proven akin to Lemma 4.32 using H?(G,C,(n)) = 0, which can be
deduced from Lemma 2.27 similarly to Theorem 2.25. O

Inot covered in class, needed for §5.6
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4.4 De Rham representations
4.4.1 Filtered vector spaces

The ring Bqg is (Qp, Gk) regular and we denote by Repfél:(G k) the category of Bygr-admissible representa-

tions. Then Dgg : Rep&i{(G k) — Vectg will have all the properties of Theorem 3.7, but we would like to
enrich the target category as we did for Hodge-Tate representations.

Definition 4.35. If V € Repy (Gx) let Fil' Dar(V) := (t' Bf ©q,V)¢*. This gives Dar : Rep) (Gx) —
FilVect .

Proposition 4.36. 1. The functor Dgr to FilVecty is exact, faithful, respects direct sums, tensor prod-
ucts, subobjects and quotients, and thus duals and symmetric and exterior powers.

2. The comparison Bar-linear isomorphism aqr,v : Bar @k Dar(V) — Bar ®q, V' and its inverse are
isomorphisms of filtered vector spaces.

Proof. 1. This is a tedious exercise using dimension comparisons, for details see [3, Proposition 6.3.3].

2. By construction agr,v gives an isomorphism of filtered vector spaces so we now show the same for
agé v+ An inductive argument reduces this to showing that gr®(aqr,v) is an isomorphism of graded
vector spaces. But this is apT, which is such an isomorphism of graded vector spaces by construction.

O
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Example 4.37. Let n € Z.

1. Dar(Qp(n)) = Kt~ and so Q,(n) is de Rham.

2. A representation V' € Repg (Gk) is de Rham if and only if V(n) =V ®q, Q,(n) is de Rham.
Proof. 1. We have (Bar ®g,Qp(n))%% = (t" Bqr)“x = Kt~

2. D4r(V(n)) 2 Dqr(V) @k Dar(Qp(n)) = Dgr(V) @k Kt~" and the result follows by dimension com-

parison.

O
4.4.2 Comparison with Hodge-Tate
Lemma 4.38. IfV € Rep%lj(GK) then gr®* Dar (V) = Dyt (V) and so V is also Hodge-Tate.
Proof. Since the filtration on Bygr is G k-stable it follows that

Fil' Dar(V)/ Fil'™ Dar (V) 2 (g1’ Bar ®g, V)"
>~ g1 Dy (V)

and the result follows. O

4.4.3 Base change

For clarity we write Dar x (V) = (Bar ®q, V)GK. To deal with base change for Dgg we need Galois descent.

Lemma 4.39 (Galois descent). Let L/K/Q, be either finite Galois or L = Ku. LetV € Repr (Gr/Kk)-
Then L @ VCL/x 2V,

41



Proof. First, the case when L/K is finite. The natural multiplication map L ®x Vt/5 — V is surjective
because otherwise there would exist 0 # A € V* = Homy,(V, L) such that A\(L ®x VE/5) = 0. For any
a€LandveV, Z gla®v) € VO and so A(X gla®v)) = 3. g(a)A(g(v)) = 0. Picking v such that
9€GL/ Kk

not all A(g(v)) are 0 gives a linear relation between the g € G /i contradicting their linear independence.
Now for injectivity. Suppose e1,...,e, is a K-basis of VEL/5. Suppose now that their image in V are not
linearly independent over L, i.e., the map is not injective. Suppose > x;e; = 0 is a linear relation over L.
Then for every a € L we have Try i (a ) xie;) = Y Trp/k(ax;)e; = 0 and so by independence over K we
get that Try /i (ax;) = 0 for all @ € L. Since L/K is Galois, thus separable, the trace Try,x does not vanish,
implying that all the z; are 0, contradicting our assumption. -

Now suppose L = K" and let wg be a uniformizer of K and K. As usual, using the Baire category
theorem, we can find a full rank G /o = G -stable lattice A C V. Then A/wkA € Repz(Gy, ) and
the action of G, on A/wiA has open stabilizers. This implies that A/wrgA = ligq[l:kKkoo(A/wKA)Gl
and Galois descent in the finite case implies that (A/wrgA) =1 @y, (A/wrxA)F*, which in the limit gives
E@)k;{ (A/’WKA)G’“K = A/’(DKA

This implies that H'(Gy,,A/@wxA) = 0 by Hilbert 90 and similarly that H'(Gj,,wrA/wikTA) =0
for n > 0. This then implies that H' (G, A) = 0. We deduce that A%*x /i A% x = (A/wiA)“*x. From
here we get that A%*x is a finite free dim V dimensional O x-module. We then get that Kur ®o, Akx 2V
as desired. O

Proposition 4.40. If L/ K is complete and discretely valued inside C, then the natural map L& kDar kx (V) —
Dyr,(V) is an isomorphism. In particular, L/K can be finite, or L could be K.

Proof. This follows from Lemma 4.39. See [3, Proposition 6.3.8]. O

Example 4.41. If  : Gxg — 7Z; is a finite order character then there exists a finite extension L/K such
that n(Gr) = 1. Therefore Q,(n) is de Rham as a Gx representation as it is so as a G, representation.
Moreover, Dar,1.(Qp(n)) = L(0) and so the same is true of Dqr k. Therefore, while Dyr is faithful, it is not
fully so.

4.4.4 Characters

Example 4.42. Let n: Gk — Z,; be a continuous character. Then Q,(n) is de Rham if and only if there
exists an integer n such that Xeyelll 1 potentially unramified.

Proof. We can find b~ @ e, € Dar(Qy(m) = (Ban g, Qp(1)°* if and only if n(g) — b'g(b) for al
g € Gk, as we did in the proof of Theorem 2.18. Let —n be the B;fR valuation of b and so t"b € B;fR —t le'R.
We get (xeya)(9)t"b = g(t"b) and applying 6 : Blz — C,, which commutes with the G -action, we get
(Xeya™) (9)0(t"b) = g(8(t"b)). Since t'b ¢ tBJy it follows that 0(t'b) € C, — {0} and so 6(t"b) ' @ e, €
Dc, (Qp(x¢yam) (as in the proof of Theorem 2.18) showing that Q,(x¢,,7) is Cp-admissible. The result
then follows from Sen’s theorem (Corollary 2.40). O

5 Crystalline and Semistable Representations

5.1 Bcris

We will construct a Kp-subalgebra Be,is of Bqr which, unlike Byr) carries a Frobenius action.

5.1.1 A
: . e] -1
We will write £ = [p] — p and w = W be generators of ker 6.
c _
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Definition 5.1. Let

Acris = Z an%|an € W(R),an — 0
n>0 ’

Amax: Zan%|an€W(R)7an%0
n>0 p

It is easy to see that these are rings on which Gk acts.
Definition 5.2. Let
Bj}is = Aais[1/p] C B;ii_R
B$ax = Amax[1/p] C BjirR

Remark 20. The difference between cris and max is technical, and they will give the same notions of crys-
talline representations. The technical advantage if max is that p™ behaves p-adically predictably, whereas n!
less so. We will prove theorems for whichever of the two is more convenient.
5.1.2 ¢ and A
Proposition 5.3. We have

1. t € Agis.

2.t~ € p Agys.

3. If x € ker 0 N Acyis then 2™ /n! € Agis for all n > 1. In particular, t"/n! € Agis for alln > 1.
Proof. 1. We have that

which visibly is in A¢s.
2. To begin with note that vg (e —1) = ;25 so vr((e—1)P71) = p = vr(PP) so there exists 7 € R* such that
(e—1)P~L = pPr. Thus [e—1]P7! = [r](€+p)P = [r]¢P (mod p Acris). But €2 = p(p—1)1(€P/p!) € p Acris
p—1
50 [e = 1771 € p Acyis. But ([e] — 1)~ —[¢ — 1P~} € pW(R) C p Acyis and thus = e A,
We have
- (el =D"
t=> (-1)"'(n—1)I*=———  (mod pAais)

= (- s EE s cpp B o paca)

and so there exist a,b € Ay such that t = a([e] — 1) + pb. But the tP~! = a7 1([e] - 1)P"L =0
(mod p Ayis)-
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3. We may write a € ker N Acis as a = Zi21 a;(w'/i!) with a; — 0. For N >> 0 we have n! | a; for all
i > N and so to check a™/n! € A5 it is enough to check this for the partial sum Zf\il a;(w/i).
Writing v, (z) = 2™ /n! have

(@ + 1) =Y (@) m—i(y)
=0

(mn)!

)m’Ymn(x)

Ym (Yn(T)) = W

and so checking that v, (7 +y) € Acis for @,y € ker 0N Acyis it is enough to do so for v;(z) and v,—i(y)
for all . Therefore it is enough to check 7, (a;w*/i!) € Acris. But

Tn(aiw' /i) = afym (i (w))

nt)!
=af n(' (i!))" sll)

€ Acris

5.1.3 Regularity of B,
Definition 5.4. Let Buis = B/, [1/t] and Buax = B, [1/1].

cris max

Remark 21. Note that W(k) C W(R) C Agis and so Ko = W(k)[1/p] C Bepis.

Theorem 5.5. There is an injection K @, Beris = Bar.

Proof. This is complicated. The original proof in [4, §4.1] is incorrect; see [3, Theorem 9.1.5]. O
Definition 5.6. We will set Fil’(Bjs) := Fil° Bqr N Beyis-

+

cris”

Remark 22. Note that Fil® Be.is contains and is not equal to B

Theorem 5.7. The domains Beris and Bnax are (Qp, G )-regular with BéK = BOK = K.

cris max

Proof. We will do this for Be,s only. First note that Ky C Bgfg C (Frac Bms)GK. From the previous
theorem we deduce that K ®, Frac Beyis = Bgr and so K ®x, (FracBuis) 9% = (K @, Frac Begs) 9% —
(Bar)“* = K. This implies that (Frac Bes) 9% = Bgf; = Ky is a field.

For the second condition of regularity, pick b € Beyis —{0} such that Q,b is G-stable. Since Q,t is G
stable and by construction t is invertible in B¢s we may assume b € BIR —t BIR. Let b # 0 be the image
in BCTR /t BérR = C, of b. Write n : Gk — Q, for the character of G acting on the line Q,b; then 7 is
continuous as it encodes the continuous action of G on the line ng where b € Cp. As before, this shows

that Q,(n) is C,-admissible and by Sen’s theorem (Corollary 2.40) we get that 7 is potentially unramified.
Let L/K be a finite extension such that n(I) = 1 which implies that b € L' = Cl~.
Let P € I/(E[X ] be the minimal polynomial of b over K. Then for g € I it must be that g(P(b)) =

P(g(b)) = 0 and so g(b) = n(g)b is also a root of P(X). Thus all the roots of P(X) in C, are of the form
n(g)b for g € Ic. Since K" is finite over QU = W(kg)[1/p] and since R is algebraically closed it follows
that K" C W(R)[1/p] C Bl (but recall that there is no section to Bl; —» C,) it follows that P € B [X].
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The polynomial P is separable over C, and so Hensel’s lemma applied to the complete dvr BIR shows that
there exists /3 algebraic over B lifting b such that P(3) = 0. For g € I let Q(X) = P(n(g)X) which has b
as a root and has the same degree as the minimal polynomial P and so Q(X) = P(X) in Kuw [X]. Applying
Hensel’s lemma to the root b of Q(X) shows there exists 3, algebraic over Bl such that j, lifts b. But
then 7(g)B, is a root of P lifting b and separability implies that 1(g)8, = 8. This shows that the roots of
P € BIz[X] are of the form n(g)3 for g € Ix. But since the coefficients of P are Ix-invariant the roots of
P are also of the form g(j). Since g(8) —n(g)8 =0 (mod ¢tBJy) it follows that g(8) = n(g)s.

Suppose b # 8. Then Q,(b— 3) is a Gx-stable line in BIR. Since b — 8 € Fil! Bj‘R let 7 > 1 be such that
b— B €t" Bl —t"t1 Bj;. This gives a G g-stable line Q,(b— 3) in t" Bl /t""! BI; = C,(r) or alternatively
that x /7 is Cp-admissible. But r > 1, 7 is finitely ramified and Xcyq is infinitely ramified and so x_ /7 is
infinitely ramified and Sen’s theorem shows that xc_y’"cln cannot be C, admissible.

Therefore b = 3 and so P(b) = 0. Writing P(X) = X" 4+ a,1 X" ' + -+ + ag with ag # 0 since P is
irreducible we have b=' = —ag ' (0" + a,_1b" "2 + -+ +a1) and so b € BX O

cris”

Proposition 5.8. A continuous character n : G — Q) is crystalline, i.e., Dg,,,.(Qp(n)) is one dimensional
if and only if n = X¢yqp for some integer n and unramified character pu.

Proof. If b® e, € Dg,,,.(Qp(n)) is nonzero then n(g)g(b) = b and so Q,, - b is G x-stable. Rescaling by ¢ for
some integer n, the proof of Theorem 5.7 shows that b is algebraic over K. Let L = K§"(b) be finite over
K{*. Then Theorem 5.5 shows that L ®r, Bais — Bar. But Lo = LN K§* = K§* and L C Bg,s so we get

L ®p, L — Bgr which implies that L ®p,, L is a field and so L = Lq giving b € I/(Om and so 1(Ix) = 1 thus
7 is unramified. Rescaling back we get that n = x¢,,p for p unramified. O

5.1.4 Frobenius on A

The Frobenius ¢ on W(R)[1/p] does not extend to Bgr because ¢ does not preserve ker §. However one can
define ¢ on A, via a different description of the ring.
Writing AY .. = W(R)[w" /n!],>1 it can be shown that Jim AL /p™ A2, injects into Bl with image equal

to Acpis (this is hard, the content of [3, Proposition 9.1.1]).

Lemma 5.9. The W(R)-algebra A°,, ¢ W(R)[1/p] is stable under .

cris
Proof. Note that

p—1

p(w) = (D 7))

i=0

for some a € W(R). Then

m! m/!
zm: pm—iaz W
- — il
poars (m—1i)l i
which belongs to A2, as n! | p" in Z, for all n. O

Definition 5.10. Let ¢ be the Frobenius endomorphism on A, obtained as the p-adic completion of ¢ on
A% . Also get ¢ on B

cris* cris®
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Lemma 5.11. We have ¢(t) = pt and thus ¢ extends to an endomorphism of Beis-
Proof.

p(t) = (D (=1)""'(le] = 1)"/n)

n>1
=> (=) (") - 1) /n
n>1
= log([e"])
O
Theorem 5.12. The Frobenius ¢ : Acris — Acris 15 injective.
Proof. This is hard. O
Lecture 18
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5.2 The fundamental exact sequence

The fundamental exact sequences compute the fixed points of Frobenius acting on various rings of periods.
It is important for proving basic properties of D.;s and Dy, but also for constructing the Bloch-Kato
exponential and for working with ordinary Galois representations.

Theorem 5.13 (The fundamental exact sequence). The following sequences are exact

0 Qp B! Bar / B(TR —0

cris

-1
00— Qp — Fllo Beris ‘ Beris 0

We will only prove the version for By ,x in Theorem 5.20, which is technically less involved, but whose
proof contains all the relevant ideas:

0 Qp Bt Bar /Big —0

max

p—1

BHIZ}X O

0 — Qp ——= Fil’ Bpax

5.2.1 Frobenius on W(R)

Definition 5.14. For a subring A C A we will write It (A) = Np>op "(ANFIl" Agyig) whre Fil" Agyig =
Aeris NFil” Beyi. We will write I = 1A ).

For simplicity we’ll prove this for By, instead of Beis.

Lemma 5.15. We have I"(W(R)) = ([e] — 1)" W(R).

Proof. We first show the lemma for r = 1. Let I, = ([EIEE,];]171> W(R) in which case ker § = I; and we first
show that Ny~ (ker #) = NI,.
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If 2 € N~ " (ker A) then O(¢™(x)) = 0 for all x and so p™(x) € I; giving x € <[6p_n]_1) W(R) and we

[P~ -1

write

for z,,_1 € W(R). But then §(¢""!(z)) = 0 and so

(™! (W) 06" () = 0

and this gives 0(¢" " !(z,)) = 0. Applying the above we may write

—(n—1)
Tp—1 = 7[61) ] ! Tn—1
n— [EP’"] 1 n—

for 2,2 € W(R) and continuing we get that

and so N~ "(ker #) C NI,. The reverse inclusion is obviously true.
It’s now clear that ([e] — 1) W(R) C NI, so we only need to show the reverse inclusion to conclude the
lemma for r = 1. If z € NI, then writing T for the image of x in R we get that

— p p
vr(T) > -
) p—1 p(p—1)
for all n > 1 and so vr(Z) = ;27 = vr(e — 1). Thus we may write z = ([e] — 1)y + pz for y,z € W(R) and it
is easy to see that in that case we also get that z € Np~"(ker ) = NI,,. We then repeat and conclude that
x € ([e] = 1) W(R) as in the proof of Proposition 4.24.
The general statement now comes from the fact that

N~ "((ker8)") = N(p~ " (kerH))"

since ¢ is multiplicative. O

5.2.2 Frobenius on A, .«

Lemma 5.16. If x € Ay such that 0(¢"(z)) =0 (i.e., x € TN AL ) then ([e] — 1)/p | p(z) in Apax.
Proof. We compute

) =3 oHan) (mod EL AL
n>0 p
A mo le] -1
=¥ (z ") ( d D Amax)



and so ©*(>a,) = oF(x) + M%ak for some oy € Apax. But then 6(0*(3" a,)) = 0 by assumption on z

and so ¢(>_ an) € W(R) is in the ideal generated by [¢] — 1 by Lemma 5.15. Thus [g]% divides ¢(z), since
[e] — 1 divides (> ap). O
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5.2.3 Frobenius on B

max

Proposition 5.17. If x € B, such that for all i > 0 we have 0(¢*(z)) = 0 then t | ¢(x) in B

max max*

Proof. We may scale x by powers of p and assume = € A,.x. Then [E]TA | o(z) in Apax which implies that
[e] = 1] o(z) in B

max*

Now

t (1—[eh™!
a1 —1+;feAmax

But W € Apax for n > 2 and so [E]%l is in fact a unit. Thust | [g] =1 | ¢(x) in B, = Apax[1/p]. O

5.2.4 Frobenius invariants on B

Lemma 5.18. We have
1. A¥T =7

max p-
2. (B;rlax)w:l = @P'

Proof. 1. Let & € A?Z). We may write 2 = > >0 xn@—: (as w and [p] — p differ by a unit in W(R)).

cris *

Since ¢(z) = z it follows that for all i > 1 one has ¢*(z) = z and so

In the topology on An.x given by uniform convergence of the coefficients of the power series we get
that

. n(pt—1), i [i)']p”’b _
lim  p ' (xn) 0

n>1 prr
We conclude that lim ¢(z) = lim ¢’(x¢) € W(R) since W(R) is complete. But then z € W(R)¥=! =
1—00 1—>00
Z

p-

2. Follows from the first part after inverting p.

Proposition 5.19. For k > 0 there is an exact sequence

0 Qpt* (B

max

)= > B /1" Big >0
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Proof. When k = 0 this follows from Lemma 5.18. Suppose k& > 1. Injectivity is clear so we now show by
induction on k exactness in the middle. Let x € (Brflax)“":pk Nt BZ{R. We want to show that x € Q,t".
Since t | t* | 2 it follows that 8(¢"(x)) = O(p"*z) = 0 for all n > 0 and so Proposition 5.17 implies that
t | p(z) in B, (note that this is automatic in B, but that is not enough). Writing = = ty it follows that
Yy E (BLLX)*”:I”’C_1 Nt*=1 B which by the inductive hypothesis is Q,t*~!. Thus z € Q,t*.

For surjectivity take for granted that log : 1 + Mo, — C, is surjective. (This is proven using Newton
polygons for power series.) Let x € BI; and let o € 1+ mo,  such that (log a)k =0(z).

Since the image of [a] —1 in R has vg-valuation > 0 there exists & > 0 such that vg(([a]—1)* mod p) > 1

and so ([a] — 1)¥ € ker§. Then

log([o]) = 3 (-1 1=

= (1) ([a] = 1)t med w ([l =D/

Ln/k) (1o — 1)Ln/k)
= >y (] -y e 0272 ]pml/lJ

: : . Ln/k]
and this convergen in B, = A, [1/p] since v, (2

plog([a]) the same way we showed that (t) = pt.

Now z — (log[a])* € ker@ (since 6(x) = (log())*). Thus we may write  — (loga])¥ = ty for some
y € Bji. By induction, there exists z € (BLM)*D:’”C_1 mapping to y, i.e., 2 = y (mod t* 1 BJ;). Now
(log[a])* +tz = = (mod t* Byr) and

p((log[a])® + tz) = p*((logla))* + t2)

) — oo. Therefore log([a]) € B, and ¢(log([a])) =

and so (logla])* + tz € (Bi,,)?=7". O

5.2.5 The fundamental sequence for B,,.x

We will prove the fundamental exact sequence for By,ax instead of Bs, the latter being more technically
involved.

Theorem 5.20. The following sequences are exact

0 Qp Bt Bar /Bir —0

max

and
—1
00— Qp — Fllo Biiax ‘ Bmax 0

Proof. Dividing by t* in Proposition 5.19 gives

0—Q, —— (t7*"Bf, )=t —=t*Bi; /Blg —=0

max

and taking a limit over k gives the first exact sequence.
Exactness in the middle in the first sequence gives

Qp = ker(cp —1:Bnax — BdR/BdJrR)
= ker(cp —1:Bnax — BdR) N BIR
= (Blrlax)¢:1 N B;R
= (Buax "Bl )?~!
= (Fil’ Bpay)? ™
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which gives exactness in the middle for the second sequence. We only need to show that 1 — ¢ : Fil Biax —
Buax is surjective. Let’s first show that 1 — ¢ : Bpax — Bmax is surjective. Since Bpax = Uit~ 1B$ax

it is enough to show that 1 — t_‘Bj{ldX — t‘ZBj{1ax is surjective which is equivalent to showing that
1—p~ip: Bl = Biax is surjectlve.

Formally we have

- =Y o)

L=p7 =
1 1 i, —1\k
T — i1y i Z(p@ )
pie(l=ple™h)  pTe
==Y e )"
E>1

and so

szl

1—p e E>1

[p]™

Now if z € B written as z = S e then the previous formal equation gives

max

zo=—(1—p ') > (¢ ") (x0)

k>1
=(1—p"p)(A)

which converges in the p-adic topology.
Similarly

Sl = (-5 Y Y ) e )

n>1 n>1k>0 p
iﬂ” "
ZZSO zk+n
n>1k>0
pp
1_p@zz(p mnA‘] ppnzkn
n>1k>0

n

and this sum converges in B, . Therefore Y1 xn[ﬁ]—n = (1 — p~%)(B) and we deduce that = = (1 —

io)(A+ B) with A+ B € B, .

To see that the second exact sequence is exact we need to show that 1 — ¢ : BmaxﬂB+ — Bmax 18
surjective. Let € Bpax and let y € Bpax such that (1 — ¢)(y) = x. Also let z € BY . mapping to
Y € Biax C Bar in the first exact sequence. Then y — z € Bl and (1 — ¢)(y — 2) = (1 — )(y) = x and so

y — z is a preimage in Fil® Byax as desired. O

Remark 23. Tt turns out that ©(Bmax) C Beris € Bmax-
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5.3 DBy
5.3.1 Definition
Definition 5.21. Let B}, = B,

cris

[X] and By, = Beyis[X] endowed with Frobenius

(> anX") = plan)p" X"
Galois action
90> anX™) = glan)(X + c(g)t)"
where g(p) = pe®9) and monodromy N = —d/dX.

Lemma 5.22. On By we have Ny = ppN.

5.3.2 Filtrations

Let log : C, — C, given by log(p) = 0. Then

[Pl (1—[pl/p)"
)= -y Q-

= € BT
P dR

log([p]) = log(

n>1
Take for granted the following theorem:

Theorem 5.23. The map K @k, Bst — Bar given by a ® P(X) — aP(log([p])) is injective.

Remark 24. This map is not canonical, depending on log([p]). However, it is Gx-equivariant.

Definition 5.24. Write Fil* By, = By NFil* Bar and Fil* B, = B NFil* Byg.

5.3.3 Regularity
Proposition 5.25. The ring By is (Qp, G )-regular with BSGtK = K.

Proof. The first condition of regularity follows as in the case of B, via Theorem 5.23. Now pick b € By
different from 0 such that Qb is G g-stable. Write b = bg+b1 X +---+b, X" with b, # 0. Let ¢ : Gg — Qg
be the character encoding the Gk action on Q,, - b. Then

9(b) =(g) Z b X'
i=0

= 37 g(b)(X + clg)t)’

=0

and comparing leading terms we get ©¥(g)b,. = ¢g(b,) which implies that 1 is continuous by looking at the
image in C,. Moreover, it follows that Q, - b, C Beys is Gg-stable and so b, ! ® ey, € Dg_,..(Q,(n)) and
Proposition 5.8 implies that ¢ = x¢y . p for some unramified character p. Replacing b by bt ™" we may assume

that 1 is unramified. This implies that b, € BIX = I/{OE , which is the maximal unramified subfield of K,

cris

Comparing the coefficients of X" ~! in the formula we get

w(g)br—l = g(br—l) + Tg(br)c(g)t

If g € Ik then ¢(g) =1 and g(b,) = b, so this becomes

by—1 = g(br—1) + rbrc(g)t
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which can be rewritten as

brfl brfl
_ — t
by g ( by, > (9)
But g(X) — X = ¢(g)t and so this becomes
br—l br—l
X =X
g( + b, ) + b,

€ BI¥ = B/X, C Beys. Bu eris yet X ¢ Beys and this contradiction

implies that » = 0 and so b = by € Beuris and so b is 1nvert1ble by the regularlty of Beyis- O

5.4 Filtered modules with Frobenius and monodromy

We now construct additive/abelian categories tha will be natural target categories for De,is and Dgs.

5.4.1 Isocrystals

Definition 5.26. Let Modf}o be the category of isocrystals over K. The objects are pairs (D, ¢p) of a
finite dimensional Ky-vector space D and a bijective Frobenius-semilinear map ¢p : D — D, i.e., if a € K|
and v € D then ¢p(av) = o(a)ep(v), where 0 € G, /q, is a choice of Frobenius; the morphisms are
morphisms of vector spaces commuting with the ¢p.

Remark 25. The category Mod}”{O is abelian, with tensors and duals defined as follows:
o If (D,¢p), (D', pp) € Mody, then (D ®k, D', ¢p ® ¢pr) € Mody, .
e If (D, pp) € Modf, then (DY, ¢pv) € Modf, where ppv(A)(v) = a(Mep!(v))).
Example 5.27. The basic example of isocrystal is obtained as follows: If » > 0 and s are integers let
Drcor,s = Ko[X]/(Ko[X](X" = p%))

Then Dk, s is a finite dimensional Ky-vector space (the division algorithm), and ODigrs Dgyrs —
Drcy s defined by ¢p, .. (P(X)) = Xo(P(X)) is a bijection.
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Remark 26. If D is an isocrystal and eq, ..., e, is a basis on which ¢p acts via the matrix A, and if f = Be
is another basis then ¢p acts on the basis f via the matrix o(B)AB~!. Therefore it does not make sense to
talk about the characteristic polynomial of ¢p, and thus of eigenvalues of ¢pp. In fact the eigenvalues of the

matrix of ¢p relative to some basis don’t even have v,-valuations independent of the choice of basis. The

S5

—
isocrystals D over Qp" will function as “valuation #” eigenspaces for Frobenius.

Qur r,s
Take the following theorem for granted:

Theorem 5.28. The category Mod‘p is semisimple and the simple objects are (isomorphic to) DQm s for

P

(r,s) =1. We will denote As = D—

Qi .rs”

Definition 5.29. For D € Modf, , let D := D@KU@H together with ¢ 5(d®z) := (,pD(d)@aQur( x) giving an
object in Mod“" . The above theorem implies that we get a decomposition D = @D( ) where D( £) =AY

P
for some nonnegative integer e, ;. A rational 2 such that D(;) # 0 is said to be a slope of D; the isocrystal
D is said to be isoclinic if it has only one slope.

52



Proposition 5.30 (Slope decomposition). Every D € Mod}’}0 decomposes as a direct sum ®,D(«) where
a € Q and D(«) is isoclinic with slope a.

Proof. We have seen that there is a decomposition D= @B(a) over @ . There is a natural semilinear

action of Gy, = Gk /Ik on the @—isocrystal A,. Let D(a) := D(a)%x . By Galois descent (Lemma 4.39)
— e

it follows that D(a) ®p, QW = D(a) (as QW "% = K,). A dimension count now show that D = ®D(«)

and that D(«) is isoclinic of slope «. O

5.4.2 Newton Polygons

Definition 5.31. For D € Modf}o let agp < a1 < ... < ay be the slopes with multiplicities ug, ..., t,. The
Newton polygon Py (D) of D is the convex polygon starting at (0,0), consisting of n 4+ 1 segments, such
that the i-th segment (for ¢ = 0,...,n) has horizontal length u; and slope «;. We denote by tx(D) the
y-coordinate of the rightmost endpoint of Py (D).

Figure 1: Figure copied from [3]

Lemma 5.32. If D € Mod?}O then the vertices of the Newton polygon ty are integral.

Proof. Let D ®, @ = ®ARL. If a; = ¢ then dim@; Al = r;u; and so the segment of slope «; and
i u i

horizontal length r;u; will have vertical length s;u; € Z. O

Lemma 5.33. If (r,s) =1 and (m,n) =1 then A: ®gm Az is isoclinic.
i P m

Proof. Write As = @[X]/(XT —p°) and A = @[Y]/(Ym —p™). Then
A: Ogr Ap X QEFIXY]/(X7 —p* Y™ —p")
(r,m)—1 o ‘
= @ YIQUXY]/(XY)lrm] — plrml Gy
i=0
gA(:’,?rb)

7
ERET

Proposition 5.34. We have
1. ty(D®k, D') = dimg, D - ty(D') + ty(D) - dimg, D",
2. tn(D) = ty(det D),
3. tn(DVY) = —tn(D), and
4. if0—= D — D" — D" — 0 is exact in Mody, then ty(D') = tn(D) +ty(D").
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Proof. 1. Tt is clear from the definition that ¢ty (D @ D') = tn (D) + tn(D’). Therefore, by induction, it
is enough to show this for isoclinic isocrystals. But then by Lemma 5.33 we have

In(A: Or, An) = (r,m)in(Azyn)
= (7“, m) dimKO A%+£(§ + 2)

m oy m
n

S
- (T, m)[r, m](; + E)
=sm-+rn
= dimKO A% . tN(A%) + tN(A%) . dimKO Aﬁ

2. If D is isoclinic of slope = 2 and dimension rd then D®r? is isoclinic of slope sd by Lemma

5.33 and so det D, a one dimensional subspace of D®"¢ will be isoclinic of slope sd. Therefore
ty(det D) = sd = tny(D). In general, if D = ®D, where D, is isoclinic of dimension d, then
det D = AXda (®D,) = ®4 A= D, and the result follows from the first part.

3. From the previous part it is enough to show this for one dimensional isocrystals of the form As. But

from the definition of duals in the category Mody, it follows that (3~ a; X", Y 8;Y") = 3 a;f3; gives a
well-defined Frobenius equivariant perfect pairing Ko[X]/(X" —p®) ® Ko[Y]/(Y" — p~*) — Ko which
implies that AY = A_s. The conclusion follows.

4. Theorem 5.28 implies that the exact sequence splits over @ and the conclusion follows since the

Newton polygon depends only on the isocrystal over @ .
O

5.4.3 Filtered p-modules and (¢, N)-modules

Definition 5.35. The category MFY, of filtered ¢-modules consists of triples (D, ¢p, Fil®* Dk ) such that
(D,¢p) € Modf}o and (Dg,Fil® D) € FilVectg, where Dg := D ®p, K. (Note that no compatibility
between pp and Fil® D is required; in fact it wouldn’t make sense to do so) Morphisms in the category are
morphisms in the category Modf}o such that the base change to K gives a morphism in FilVecty.

Remark 27. The category MF%. is not abelian, but the fact that Modf}o is abelian and §3.1.3 implies that
in MF¥, there exist kernels, cokernels, image, coimage, short exact sequences, tensor products and duals.

Definition 5.36. A morphism in a category with image and coimage is said to be strict if the natural map
from the coimage to the image is an isomorphism

Definition 5.37. The category MFf(’N consists of tuples (D, pp, Np,Fil* Dg) where (D, ¢p,Fil® D) €
MF}'} and Np : D — D is a Kp-linear morphism (called monodromy) such that Npyp = pepNp. Mor-
phisms in the category are morphisms in the category MF%. which commute with Np.

Remark 28. Much like MF%., the category MF%. is not abelian, but there exist kernels, cokernels, image,
coimage, and short exact sequences. To define tensor products and duals, in addition to the construction in
MF?} we need to define these operations on the monodromy operator: ND®K0 pr=Np®1+1® Np and
Npv = —Np.

Remark 29. If (D, ¢p,Fil®* Dg) € MF%. then (D,¢p, Np = 0,Fil®* Dg) € MF}%N and so many theorems
need only be proven for (p, N)-modules and the analogs will follow for p-modules.

Lemma 5.38. The slope decomposition D = @&D(a) in Modf(0 extends to a decomposition in MFY. by

endowing each direct summand with the subspace filtration over K. In MF?N each ®o<a,D(a) is stable
under N.
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Proof. Consider As = @[X]/(X’” — p®) on which ¢" = p°. Then by N¢ = p¢N we have
¢"Nv=p "No"v
=p° "Nv
and so Nv € As_;. This shows that N(A,) C A,—1 and so the conclusion follows. O

Lemma 5.39. The monodromy operator on any object in MF?N is milpotent.

Proof. We have seen that N(D(«)) C D(aw — 1) and the result follows from the fact that an isocrystal has
finitely many weights. O
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5.4.4 Hodge polygons

Definition 5.40. For (D, Fil® D) € FilVectx let iy < iy < ... < i, be the integers such that gr' D # 0, i.e.,
the indices where the jumps in the filtration occur. The Hodge polygon Py (D) of (D, Fil® D) is the convex
polygon in the plane, starting at (0,0) and whose k-th segment has horizontal length dimy gri* D and slope
ir. We denote by ¢z (D) the y-coordinate of the rightmost endpoint of Py (D).

Proposition 5.41. We have
1. tg(D®g D) =dimg D -ty (D') + ty(D) - dimg D',
2. ty(D) =ty (det D),
3. ty(DY) = —ty(D), and
4. if0— D — D' — D" — 0 is an exact sequence in FilVecty then ty(D') =ty (D) + tgy(D").
Proof. These follow from the definitions. O
Definition 5.42. If (D, ¢p,Fil®* D) € MF%. then we define t (D) := ty(Dg, Fil* D).
Lemma 5.43. Let D € FilVecty.
1. If D' C D in FilVectx then Py (D') lies above Py (D).

2. If f : D' — D is a morphism in FilVecty which is an isomorphism in Vectx then ty(D') < ty(D)
with equality if and only if f is an isomorphism in FilVectg, i.e., it respect filtrations.

Proof. 1. This follows form the fact that the filtration on D’ is the restriction of the filtration on D and
the slopes of Py (D) and Py (D’) are the same except the length of each segment in Py (D’) is shorter
so the conclusion follows.

2. The morphism f is an isomorphism in FilVect g if and only if it induces an isomorphism det f : det D’ —
det D in FilVectyx. Now det f : Fil' det D’ — Fil'det D so if i = tg(det D) is the unique index such
that gridet D’ # 0 then gri det D = 0 for j < i which implies that ¢y (det D) > tg(det D') and the
conclusion follows from Proposition 5.41

O
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5.4.5 Weakly admissible modules

The categories MF% and MF%™ will be the target categories of Deys and Dy, respectively, but since they
are not abelian, while the category of representations is, the two Dieudonne functors (which we’ll prove to be
fully faithful) cannot be essentially surjective, and so we must seek abelian subcategories which are natural
target categories for the two functors.

Lemma 5.44. Let D € MFY, (MF?N). Then the following two statements are equivalent:
1. For all subobjects D' C D in MF%, (MF?N) the Newton polygon Pyn(D') > Py (D).
2. For all subobjects D' € D in MF% (MF%N ) we have ty(D') > tg(D').

Moreover, if L/ K is unramified then D satisfies the above properties in MFY, (MF%N) if and only if D® g, Lo
satisfies them in MFY (MF9N ).

Proof. Note that we only need to prove the version for (¢, N)-modules as the one for ¢-modules can be
deduced by setting N = 0.

The first statement implies the second. Suppose now the second is true but for some subobject D’ of D the
Newton polygon Py (D’) does not necessarily sit above Py (D). Since ty(D') > ¢t (D’) it follows that some
vertex v of coordinates (z, Px(D’)(x)) of the polygon Py (D’) has to lie below Py (D’). Let ag be the slope of
the segment to the left of this vertex. Let D" = ®q<q, D’ (), which is then a subobject of D (by Lemma 5.38)
sotn(D") >ty (D"). But ty(D") = Py(D')(z) and since the filtration on D" is inherited from that on D’ it
follows that Py (D") lies above Py (D') and so ty(D") = Py(D")(x) > Py(D')(z) > Py(D')(z) = tn(D")
giving a contradiction. - N
__For the second statement note that if D’ is a subobject of D over Ky then D’ is a s@ogbject of D over
Qpr and Py(D') = PN(I)\’) and Py (D) = PH(I)\’) so the conditions are satisfied over Qy*. Now suppose
that D’ is a subobject of D over @ such that ¢y (b\’) <ty (I)\’) Again Galois descent produces a subobject

D’ of D such that D’ = D’ ® K, (@;r and the conclusion follows. O

Definition 5.45. An object D € MF% (MF%™) is weakly admissible if for all subobjects D’ € D in MF%,
(MF}D(’N) we have ¢ty (D) > ty(D’) with equality if and only if D = D’. Let MF%"* (MF?N’Wa) be the full
subcategory of MFY, (MF?N) consisting of weakly admissible objects.

Lemma 5.46. An object D € MF¥%, (MF?}’N) is weakly admissible if and only if for every quotient D —» D'
we have ty (D) < tg(D').

Proof. Let D" := ker(D —» D') so we get an exact sequence 0 — D" — D — D’ — 0. Assuming D is
weakly admissible we get tx(D) = tg(D) and tx(D") > tg(D") thus tn(D’') < tg(D’). The converse is
obtained by following the above going in reverse. O

Proposition 5.47. If D € MFY, (MF?N) then D is weakly admissible if and only if DV is.

Proof. This is not vacuous as slopes swap signs under duality. Again, we will show this for (¢, N)-modules and
set N = 0 to get the result for p-modules. Suppose (DY) C DV, then D —» D" := ((DV)")V is a surjection.
Lemma 5.46 implies that ¢t (D") < tg(D"). But ty(D”) = —tn((DV)') and tg(D") = —tx((DV)’) and so
ty (DY) >ty ((DY)') with equality occuring if and only if (DY) = DV. Thus DV is weakly admissible. [
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Proposition 5.48. If0 — D' — D — D" — 0 is an exact sequence in MF%, (MF?}’N) and any two of the
objects are weakly admissible then the third one is also weakly admissible.

56



Proof. Assume D and D" are weakly admissible. If D; C D’ then it is also a subobject of D and so
tN(Dl) > tH(Dl) and if D1 = D’ then tN<D/) = tN(D) — tN(DH) = tH(D) — tH(DH) = tH(D/) and so D’
is weakly admissible.

Assume D and D’ are weakly admissible. Then 0 — (D”)¥ — DY — (D’)¥Y — 0 is an exact sequence
with DY and (D’)Y weakly admissible by Proposition 5.47 and so (D")" is weakly admissible which implies
that D" also is.

Assume D’ and D" are weakly admissible. Then ¢ (D) = tn(D')+tn(D") =ty (D) +ty(D") =ty (D).
Let Dy C D. We need to check that tx(D1) > ty(D1). Let Di = Dy N D with the subobject filtration on
(D7) i coming from D’ (which is the same as the one coming from (D;)k), and let D = D /D] endowed
with the quotient filtration from D; (which need not be the same as the subspace filtration from D”). Also

let Ell/ be the image of DY in D” together with the subspace filtration from D”. Then D} — 5? is a
morphism in FilVect g which is an isomorphism in Vectx and so by Lemma 5.43 we have tg (D7) <ty (5/1/)
Moreover, tx (DY) =tn (Elll) since the vector space isomorphism respects ¢.

Since D} C D’ which is weakly admissible we get that tx(D}) > tg(D}). Since 5/11 C D" which is weakly
admissible we get that ¢ty (D)) = tn(Dy) > tu(D}) > ty(D}). But 0 — D} — Dy — D/ — 0 is exact so
combining the two we get the desired conclusion. O

Theorem 5.49. The categories MF?}’N’Wa and MFZ™ are abelian.

Proof. We only need to prove that MF?}’N’W'& is abelian as then MF%"" is automatically also abelian. The
category is clearly additive (hom sets are abelian groups and finite direct sums and products exist) so we only
need to check that kernels and cokernels exist and the natural map from coimage to image is an isomorphism.
Kernels, cokernels, images and coimages exist in MF?N so if f : D — D’ is a morphism in MF?}’N’Wa then
in MF?M we have

0 ker f D coim f ——=(

0 im f D’ coker f —— 0

Now D and D’ are weakly admissible so using the definition and Lemma 5.46 we get ¢ (ker f) > tg(ker f),
ty(coim f) < tg(coim f), ty(im f) > ty(im f) and ¢y (coker f) < tg(coker f). Now the morphism coim f —
im f is an isomorphism in Vectg (which is abelian) so Lemma 5.43 implies that ¢z (coim f) < ¢ty (im f) and
combining we get ty(coim f) < ty(coim f) < ty(im f) < tx(im f). But the category Mody, is abelian
and so the map coim f — im f is an isomorphism in Mod% =~ and so ty(coim f) = ty(im f) implying that
ty(coim f) = ty(im f) and so coim f and im f are weakly admissible. Another application of Lemma 5.43
now gives that coim f — im f is an isomorphism in FilVectx as well, and so in MF}D(’N. Finally Proposition
5.48 gives that ker f and coker f are weakly admissible as well. O
5.5 Crystalline and semistable representations

Definition 5.50. A representation is said to be crystalline if it is Bes-admissible and semistable if it is
Byi-admissible. We denote the categories Repg *(Gk) and Repgp (Gk).

5.5.1 D and Dg;

Definition 5.51. If V € Repg (Gk) let ¢ := ¢ ® 0 act on Deyis(V) and ¢ and N := N ® 1 act on Dy (V).
Lemma 5.52. Let V € Repy .
1. Deis(V) = Dt (V)V=Y and so crystalline representations are semistable;

2. Deris goes into MF%. and Dy goes into MF?}’N, they are faithful and exact;
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8. Deris 0N Repgis(GK) and Dy on Rep&s(GK) respect tensor products, duals, symmetric and exterior
powers;

4. if V is semistable then K Qk, Dst(V) 2 Dar (V) and so V is de Rham;
5. if L/K is complete and unramified then Lo @k, Dst,x (V) = Dgt, (V).

Proof. 1. Dg&(V)N=0 = (B ®q, V)95 V=0 = (B™" ®q, V)% = (Bewis ®g, V)K= ns( ). Now By,
and Bejs are regular so if V' is crystalline then dimg, V = dim g, Deris (V) < dimg, Dgt (V) < dimg, V
so V' is also semistable.

2. We need to check only that ¢ is an isomorphism, which follows from Theorem 5.12.
3. This follows from Proposition 4.36.

4. Since K @k, Bst — Bgr it follows that K @, Dst(V) < Dgr(V) as K-vector spaces. Now a dimension
count in the case when V' is semistable gives an isomorphism as vector spaces and so V' is de Rham.
Finally, the isomorphism is also one of filtered vector spaces since K ®p, By carries the subspace
filtration from Bggr.

5. Lo®K,Dst,k (V) = Dgt 1, (V) is a morphism in MFf’N‘ Now using Proposition 4.40 we get L&, Lo®x,
Dy (V)2 LRk Dar,x (V) 2 Dar, (V) 2 L ®p, Dst,.(V) and so Ly @k, Dgt, (V) = Dy, (V) is an
isomorphism in MFf’N

O
Corollary 5.53. Every semistable continuous character n: Gk — Q) is also crystalline.

Proof. Since N is nilpotent it follows N = 0. O

Example 5.54. Deis(Qp(n)) = Ko-t7", o(at™") = 0, /g, (v)p~"t™" and Fil' K-t~ is K-t~" fori < —n
and 0 for i > —n.

Lemma 5.55. The homomorphism x — o(x)/x on W(]FT,X) is surjective.

Proof. The map x ~— xP~! is surjective on F, and so on W(F,)* /(1 + pW(F,)). Therefore it is enough
to show that z +— o(z)/z is surjective on 1 + pW(F,). If u = 1 + p"v with v € W(F, let z € F, such
that 2 — z = v mod p. Let z = [Z] in which case o(z) — 2z = v (mod p). Letting w = 1 + p™z we have
o(w)/w=1+p*(c(2) — 2) =u (mod p"*!). We denote f,(u) := w.

Suppose u; =u € 1+ pW(IFp) and w1 = 1. We recursively construct u,,w, € 1+ p* W(F, ») by setting
W = fr(un) and uy41 = uy(o(wy,)/w,) "t By construction w, € 1+p™ W(F,) and u, 11 € 1—|—p"+1 W(F,).
Then w = [Jw, converges to an element of 1+pW(F,) and u = o(w)/w. O

Theorem 5.56. We get functors Deys : RepC“S(GK) — MF2™ and Dy : Repap(GK) — MFZSt,

Proof. We only need to show that if V' € Rep(spr(GK) then D := Dg (V) is weakly admissible.

(a) First, assume that dimg, V' = 1 and so by Corollary 5.53 and Proposition 5.8 there exist an integer n and
an unramified character p such that V = Qp(xcydu) Then D = D s (V) =Dy Kur(Qp( n)) = Qpr-t7".

To show that D is weakly admissible note that Dis isoclinic with slope —n and gr* 'D =0 unless i = —n in
which case it is one dimensional, which implies that Py (D) PN(D). Now Lemma 5.44 shows that D is
weakly admissible.
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(b) If D is any dimensional but dimg, D’ = 1 let €’ be a choice of basis with respect to which ¢(e’) = Ae/,
in which case tn(D’) = vp(A). Let vq,...,v, be a basis of V and consider ¢/ = > b; ® v; € (Bg ®QPV)GK.
But p(e’) = Ae/ and N(e’) = 0 implies that o(b;) = Ab; and N (b;) = 0. Therefore b; € BY=% = Bis. Let s
be such that ¢/ € Fil® Dgr(V) — Fil*** Dgr(V), in which case tg(D’) = s. This implies that all b; € Fil® Beig
but not all are in Fil**!. Let b; ¢ Fil**! Beyis. We need to show that s < Up(A).

Assume, for the sake of contradiction, that s > v,(A) + 1. Let b = bjt_”P(A) c Fil e Beris C Fil' Beyis

in which case (b) = ub where u € W(F,)*. Lemma 5.55 gives w € W(F,)* such that o(w)/w = u which
gives b/w € (Fil' Beys)?=". But (Fil' Benis)?=! = Fil' Beyis N(Fil” Boyig)#=! = Fil' Beyis NQ, = 0 where we

used (Fil0 Beris) P! = Q, from the fundamental sequence in Theorem 5.13.

(¢) If D is any dimensional, det D is one dimensional and we deduce ¢ty (D) = ty(det D) = ty(det D) =
tr (D). Moreover, for every subobject D' C D of dimension d’ we need to show that tx(D’) >ty (D’). But
tr(D') =ty (det D') and tn5(D’') = tx(det D). Lemma 5.52 implies that A% D is semistable and det D’ is a
one dimensional subobject of a semistable representation and the conclusion follows from the previous cases.

O
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5.5.2 Vs and Vg

Definition 5.57. For D € MF% define Vis(D) := Fil®(Beis @1, D)?=" and for D € MF%Y let V(D) :=
Fil’ (B, @, D)#=1N=0,

Theorem 5.58. The functors Ders (Dst) is fully faithful and the inverse on its essential image is Vs

(Vst)'

Proof. We show this for Dy. That V' = Vi (Dg(V)) follows from the fundamental exact sequence and
before. Let V, V' € Reprfp (Gk) and let D = Dg (V) and D’ = Dg (V). We already know that Dy is faithful,
as By is regular, so we only need to show that Homg, (g, (V',V) — HomMF}.?N(D',D) is surjective. Let

T : D' — D respecting ¢, N, as well as filtrations over K. Then 1 ® T : By ®k, D’ — By ®k,D and
using the comparison isomorphisms ags,p : Bst @k, D = By ®g, V' and agt,pr @ Bst @k, D' = Byt ®g, V' we
get T := o, DTas_t}D, : Bst ®k, V' — Byt ®k, V. We already know that the comparison isomorphism is an
isomorphism of filtered vector spaces over K by Proposition 4.36, and it respect ¢ and N so T respects ¢, N
and filtrations over K as well. Taking ¢ and N invariants we get (Bg ®q, V/)?=1V=0 — (Bg ®q, V)?=1N=0
which gives a map B~ V=0 ®q, V' — B&=hAN=0 ®q,V. Tensoring with K and restricting to Fil’ gives
(since (Fil’ Bg)#=1V=0 = (Fil’ Beys)?=! = Q) amap V' — V. O
5.5.3 The main theorems: admissibility and the p-adic monodromy conjecture

The main results are the following:

Theorem 5.59. The functors Des : Repgﬁs(GK) — MF2™ and Dy : Repap(GK) — MF?}’N’Wa are
equivalences of categories.

Theorem 5.60. IfV € Repg:(GK) there exists a finite extension L/K such that Vg, € Repap(GL), in
other words, de Rham representations are potentially semistable.

5.6 Bloch-Kato

The reference for this section is [2].
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5.6.1 H., H} and H;
Definition 5.61. For V € Repgy (G ) define

HYK,V)=H'(Gg,V)

H; (K V) = ker( H! (GK, ) — H! (GK, Bar ®q, V) “geometric”
H}<K V) =ker(H'(Gk,V) = H' (G, Bais ®q,V) “finite”
HYK,V) =ker(H (Gk,V) - H' (G, Bfml ®q,V) “exponential”

Note that H!(K,V) C H}(K,V) C H}(K,V) C H'(K,V).
Lemma 5.62. If V € Rep( (GK) then H'(K,Bjy ®q,V) — H'(K,Bar ®q,V).

Proof. The exact sequence 0 — BdR — Bar — Bar / BdR — 0 gives the exact sequence 0 — BIR ®q,V —
Bar ®q,V — Bar / B(J{R ®q, V' — 0 which in turn gives the exact sequence

0 — H(K,BY; ®g,V) — H(K,Bar ©q,V) — H°(K,Bar /B ®0,V)
But then

dimg Dar(V) = dimgx H°(K,Bar ®q, V)

< dimg H(K, B ®q,V) + dim H(K,Bar / Bl ©0,V)

Now 0 — ¢'*1 Bl — ¢! BIz — Cp(i) — 0 gives

0— H(K,t""' Bl ®q,V) = HY(K,t' Bl ®q,V) = H(K,C,(i) ®g, V)
and we deduce that

dimg HO(K,t' Bjy ®q,V) < dimg HO(K, ' Bl ®g,V) + dimg H°(K, C,(i) ®q, V)
Similarly for i < 0
dimgx HO(K,t' Bl / Biz ®q,V) < dimgx HO(K,t" 7' Bl /Biz ®q,V) + dimg H° (K, C,(i) ®g, V)

Since H°(K, By ®q,V) = lim H(K, By ®q, V) such that for i > ie we have Fil' Dgr(V) = (' B ®q,V)ox =
0. Moreover, since H°(K,Bar /Blz ®q,V) = li_1r1)1H0(K7 t'Blz / Big ®g,V) is finite dimensional it fol-
lows that there exists an integer i_o < 0 such that for i < i_o we have H(K,Bar /Bjg ®q,V) =
HO(K,t' Bl /Biz ®g,V). Inductively we have

dimg H(K, Bl ©q,V) < dimg H(K, 1> Bl @q,V) + Y dimg HO(K, C, (i) ®g, V)
1=0

<Y dimg HO(K,Cy(i) @g, V)
=0

and

dimg H°(K,Bar /Bjg ®g,V) = dlmK H(K,t'—= B}y /Bir ®q,V)

< Z dimg HO(K,C,(i) ®g, V)

1=1_ oo

-1
< Z dim g HO(K7Cp(i) X0, V)

1=—00
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Combining the two we have

dimg Dar(V) < Y dimg HO(K,C,(i) @, V)

= dimK DHT(V)

and the two are equal since V is assumed to be de Rham. Therefore the map H°(K,Bar ®q,V) —
H°(K,Bar / B}, r ©0Q, V) is surjective which in the long exact sequence gives that the map H' (K, By ®g,V) —
H'(K,Bar ®q, V) is injective as desired. O

Proposition 5.63. IfV is de Rham then the following diagram is commutative and the two rows are exact:

0 ——= HY(K,V) = Dis(V)?=! @ Fil’ Dgr (V) Dar(V) HNK,V)—=0

B
| Jos |
2l K

0— H(K,V) Deris(V) @ Fil° Dgr (V) Deris(V) ® Dar(V) — H{(K, V) —0
where
(z) = (v,
Blz,y) =z —y

Proof. We may rewrite the exact sequences in Theorem 5.13 as

0—=Q, —==B% Bl d Bar 0

cris

00— QP — Beris ® BIR — Beris ® Bar —> 0

From the first one we get the exact sequence
0= Qp = Deris(V)=! @ Fil Dgr(V) — Dar(V) — HY (K, V) —

— HY(K, B2 @V) @ HY(K, Bl ®V) — H'(K,Br ®V)

cris

Lemma 5.62 shows that H' (K, Bl ®V) — H'(K, Bqr ®V) is injective so the kernel of the map H' (K, B @V)®

Cris

HY(K,Bl ®V) — HY(K,Bqr ®V) is the same as the kernel of the map H' (K, Bf '@V) — H'(K,Bqr ®V).

cris

But the image of H'(K,V) — H'(K,B?=Z' @V) @ Hl(K Bl ®V) — HY(K,Bqr ®V) is in this kernel and

cris

so the map factors through H'(K,V) — H'(K,B?Z' ®V). But then the map Dar(V) — H'(K,V) has

image in H}(K,V) =ker(H'(K,V) — H'(K,BfL' ®V))
The second exact sequence in the proposition follows analogously from the second fundamental sequence.
Indeed, we get

0— H(K,V) = Deis (V) @ Fil’ Dgr(V) = Deris(V) @ Dar(V) —
— HYK,V) = H' (K,Buis®V) ® HY(K,BjlR ®@V) — H'(K,Buis ®V) @ H' (K, Bar ®V)

Again, since H*(K, BIR ®V) — HY(K,Bgr ®V) we deduce that the kernel of the last map lies in H* (K, Beyis ®V)
and so the image of H!(K, V) lies in H!(K, Bais ®V). But that implies that the image of Deyis (V) @ Dar(V)
lies in the kernel H(K,V) of H'(K,V) — H'(K,Bey, ®V). O
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Lecture 25
2012-03-07

Corollary 5.64. IfV is de Rham then
1. dimg, H}(K, V)= dime(DdR(V)/Filo Dar(V)) + dimg, H(K,V) and
2. H}(K7 V)/HI(K,V) 2 Deis(V) /(1 = ¢) Dexis (V).
Proof. 1. From the second exact sequence in Proposition 5.63 we compute
dimg, H}(K,V) = dimg, H*(K, V) — dimg, Deris(V) ® Fil’ Dar (V) + dimg, Deris(V) @ Dar(V)
= dimg, (Dar(V)/ Fil’ Dar (V) + dimg, H(K,V)

2. In the diagram in Proposition 5.63 we rewrite the map 3 : Deis(V)?~1 @ Fil® D4r(V) — Dgr(V) as
¥ : Deris(V)?=1 @ Fil° Dgr (V) — 0@ Dagr(V). We have

0—— HY(K,V) — Dis(V)?=! @ Fil’ Dgr (V) — 7(Deris(V)?=! @ Fil° Dgg (V)) — 0

| |

0—— H(K,V) Deris(V) @ Fil Dgr (V) Y(Dexis(V) @ Fil° Dgr (V) 0
and the snake lemma gives
Y (Deris (V) @ Fil” Dgr(V)) -~ ( Deris(V) @ Fil Dar (V) )
Y(Deris(V)9=1 @& Fil’ Dgg(V)) Deris(V)#=1 & Fil’ Dggr (V)
= ( cu%( )/Dcris(v)w:1)
= (1) Dais(V)
The snake lemma applied to the diagram
0 — v(Deris(V)?=1 @ Fil’ Dar (V) 0 Dar(V) Hj(lf ,V)—=0
0 —— Y(Deis(V) @ Fil® Dgr (V) Deris(V) @ Dar(V) — H}(K, V) ——0
gives
Deyis (V) @ Fil° Dgr (V
7 (Deris (V) & Fil OdR( ) D (V) — HY(K,V)/H(K, V) =0
Y(Deis(V)9=1 @ Fil” Dgr(V))
(1- ‘P) DcriS(V)
which implies the statement.
O

5.6.2 Tate duality

First, we start with the setup. Twisting by ¢ in Theorem 5.13 gives

O_)@p()_>BSD p@tB — Bgqr — 0

cris

which when restricted to Fil® gives

0—Qy(1) = (BEPNBL) @tBlz = Bly =0

cris
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or
0— Qy(1) = (BEPNBI) — Blg /tBlz — 0

cris
which is
0— Q,(1) > FilB?* - C, =0

cris

Lemma 5.65. 2 Let V be a de Rham representation and v : H'(K,C,) — H?*(K,Q,(1)) = Q, be the
connecting homomorphism obtained from the exact sequence 0 — Q,(1) — Fil’B¥~? — Cp — 0. Then the

cris

composite H'(K,C, ®q, V) x H'(K,C, ®g, V*) = H'(K,C,) - H*(K,Q,(1)) = Q, is a perfect pairing.

Proof. The representation V' is Hodge-Tate so we only need to prove the statement for V' = Q,(n) as the
general V' is a direct sum of these. But when n # 0 the two cohomology groups vanish so we only need to
show that H'(K,C,) x HY(K,C,) — Q, is perfect. But H*(K,C,) = K - log Xcya and H°(K,C,) = K so
we only need to show that v #£ 0.

If§: HY(K,C,) — H'(K,Q,(1)) is the connecting homomorphism in degree 0 then there is a commuta-
tive diagram

HY(K,Q,) ® H'(K,C,) 2% H\(K,Q,) @ H'(K,Q,(1))

|- |-

HY(K,C,) - H?(K,Q,(1))

Since the right vertical map is the (nondegenerate) Tate pairing, to show that v does not vanish it is enough
to show that & does not vanish. Suppose z € K = H°(K, C,) such that §(x) = 0. Then in the exact sequence

HO(K,Fil° BY=P) — HO(K,C,) 5 H (K, Q,(1))

cris

z would have to be the image in H(K,C,) of some y € H°(K, Fil’ B?_"). But

cris
. = . Gk p=
HO(K,Fil’ BYP) = Fil° BGK#=P
= Fil' K=
but on Ko Frobenius is 0, € G, g, Which preserves valuation and so K~ = 0. Therefore y = 0so 2 = 0
and thus J is injective. O

Proposition 5.66. Let V € Rep%lj(GK) and let V* = Homg, (q,](V,Qp). Via the perfect Tate pairing
HY(K, V) x H'(K,V*(1)) = H*(K,Q,(1)) = Q,
the following are annihilators of each other:
1. H}(K,V) and H}(K,V*(l))
2. HX(K,V) and H)(K,V*(1)).

Proof. We first remark that Tate duality implies that dimg, H° (K, V*(1)) = dimg, H?(K, V) while dimg, H°(K,V)—
dimg, H'(K,V) + dimg, H*(K,V) = —[K : Q,]dimg, V by the local Euler-Tate characteristic formula.
Therefore dimg, H'(K,V) = dimg, HO(K, V)+dimg, H(K,V*(1))+[K : Q,]dimg, V. Since (V*(1))*(1) =

V and dim V' = dim V*(1) it follows that dimg, H'(K, V) = dimg, H'(K,V*(1)).

2not covered in class
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1. Let a € H}(K,V) Note that the fundamental sequence 0 — Q, — Beyis EBB — Beris ®Bgr — 0
gives a connecting homomorphism ¢ : H (K, Beis @V @V*(1))®H (K, Bar ®V®V*( ) = H*(K,V®
V*(1)) and together with the bottom exact sequence of Proposition 5.63 we get a commutative diagram

HYEK, Bes @V @ V*(1)) @ H'(K,Bar ®V ® V*(1)) —— H2(K,V @ V*(1))
Since the image of a in H'(K,Bgr ®V) is trivial the left vertical map vanishes and so H}(K, V*(1)) —
o = 0 which implies that H}(K, V) annihilates H (K, V*(1)).

To show that they are exact annihilators it is enough to show that dimg, H}(K , V)+dimg, H}(K V(1)) =
dimg, H'(K,V). But Corollary 5.64 implies that

dimg, H}(K,V) = dimg, Dar(V)/ Fil” Dar (V) + dimg, H°(K, V)
dimg, H}(K,V*(1)) = dimg, Dar(V*(1))/ Fil’ Dar (V*(1)) + dimg, H°(K,V*(1))

But dimg, Dar (V) = dimg, Dar(V*(1)) = [K : Qp]dimg, V' by the fact that V' and V*(1) are de
Rham. Moreover (cf. the proof of Lemma 5.62)

dimg, Fil” Dgr (V) = dimg, gr Fil’ Dar (V')
=Y dimg, H(K,Cy(n) @ V)

n>0
dimg, Fil’ Dar(V*(1)) = Y _ dimg, H(K,Cp(-n—1) @ V)
n>0
= Y dimg, H'(K,Cy(n) @ V)
n<—1

which implies that
dimg, Fil” Dgr (V) + dimg, Fil” Dgr(V*(1)) = dimg, Dur(V)
= [K : Qp]dimg, V
Therefore
dimg, H(K,V) + dimg, H;(K,V*(1)) = [K : Q] dimg, V + dimg, H’(K,V) + dimg, H’(K,V*(1))
= dimg, H'(K,V)
by the computations at the beginning of this proof.

2. Let 6 : Dqr(V*(1)) = HL(K,V*(1)) be the boundary map from the first row of Proposition 5.63
applied to V*(1), and let € : H'(K,Bgr ®@p( )) = H?(K,Q,(1)) be the boundary map obtained

from the exact sequence 0 — Q,(1) — (BY5.' @ Bl) ® Qu(1) — Bar ®Q,(1) — 0. Then the following
diagram is commutative

HY(K, V) ® Dar(V*(1)) — 2 H(K, V) @ HL(K, V* (1) HY(K, V)@ H'(K,V*(1))

| |-

HY(K,Bqr ®V) @ Dar (V*(1)) ——— H' (K, Bar ©Qy(1)) - H2(K,Qp(1)) = Qp
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Let a € HY(K,V) and let agr be its image in H'(K,Bqr ®V). Since the right vertical map is the
perfect Tate pairing, it follows that o annihilates H! (K, V*(1)) if and only if a annihilates Dagr (V*(1))
under the composite pairing, if and only if agr annihilates Dgr(V*(1)) under eo —. We will show that
go — is a perfect pairing, which implies that agr = 0 and so « annihilates H} (K, V*(1)) if and only
if o € H)(K,V*(1)).

We now show that co — is a perfect pairing®. Suppose that o € H(K,t" BXR ®V) annihilates
Dgr(V*(1)). There exists a commutative diagram (the reason the diagram is commutative is that to
obtain the bottom row we multiplied by ¢ the fundamental sequence, whereas for the top row we did

not)

HY(K,t" B, @V) ® Dar(V*(1)) H?(K,Qp(1)) = Qp
HY(K,C,(n)®V) Fil " ' Dar(V*(1)) = Fil " Dgr(V*)t !

HY(K,C, ®V(n)) ® HO(K,Cp®V(n)") Qp

where the surjection Fil™" Dgr(V*) = H(K,Bjz ®V(n)*) = H°(K,C, ® V(n)) follows from the
proof of Lemma 5.62 and the surjection H'(K,t" BI; ®V) — H'(K,Cp(n) ® V) from Proposition
4.34. Since « annihilates Dgr (V*(1)), its image in the bottom row annihilates H°(K,C, ® V*). But
the bottom row is perfect by Lemma 5.65 applied to V' (n), so it follows that the image of « is zero and
so a is in fact in HY(K,t"*' Bl ®V). Now let o« € H(K,Bgqr ®V) annihilate Dgr(V*(1)). Let i € Z
such that o € H' (K, ' Bl ®V). Inductively we get that « € H'(K,t" Bl; ®V) for all n > i. But for
n >> 0 we have H'(K,t" Bl; ®V) =0s0 a =0.

Now suppose that 3 € Dqr(V*(1)) annihilates H*(K,t" BJ; ®V). Then since the top left map is
surjective we would get that the image of 8 in H°(K,C, ® V(n)*) annihilates H'(K,C, ® V(n)) and
by perfectness of the bottom pairing we deduce that the image of § is trivial. But that would imply
that 8 € (t"*1 Bi; ®@V)9% and inductively we again deduce that 8 = 0.

O

Lecture 26
2012-03-09

5.6.3 Computations
Proposition 5.67. Let r € Z. We have the following table of dimensions

T ‘ dim H} (K, Q,(r)) dimH}(K,(@p(r)) dimH;(K,Qp(T)) dim H' (K, Q,(r))
r<0 0 0 0 (K : Q]
r=0 0 1 1 K :Q,)+1
r=1 [K : Q) (K : Q) [K:Qp]+1 [K:Q,+1
r>1 (K : Q] (K : Q] (K : Q] (K : Q]

Proof. We denote h® = dimg, H®. First, we have that h°(K,Q,(r)) = 6,—o and h°(K,Q,(r)*(1)) =
h%(K,Q,(—r + 1)) = §,—1 and so by the Tate characteristic formula

WK, Qp(r) = [K : Qp) + hP(K, Qp(r)) + h° (K, Qy(r)*(1))
= [K : Qp] + 6r=0 + 0r=1

3not covered in class
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This gives the fourth column. Moreover,
hy (K, Qp(r)) = dimg, Dar(Q,(r))/ Fil’ Dar (Qy (r)) + h°(K, Qy(r))

and since gr=" Dar(Q,(r)) = K we deduce that Dar(Q,(r)) = Fil° Dgr(Q,(r)) when r < 0 and otherwise
Fil Dar (Q,(r)) = 0 giving Dar (Q,(r))/ Fil® Dgr(Q,(r)) = K having Q, dimension [K : @,]. This gives the
second column.

We know from Corollary 5.64 that h}(K, Qp(r))—hi(K,Qp(r)) = dimg, Deris(Qp(r))/(1—¢) Deris (Qp(7)).
But the exact sequence 0 — Deyis(V)?™1 = Deris (V) = Deris(V) = Deris(V) /(1 — ) Deris(V) — 0 show that

hy(K,Qp(r)) = he (K, Qp(r)) = dimg, Deris (Qp(r)) ="

But Deyis(Qp(r))¢=! = (Kot 7)¥=1 = KgKO:pT which is 0 when 7 # 0 as ok, preserves v, on Ko. If r =0
then KgKO:l = @, and so h}(K,Q,) — hi(K,Qp) = 1, giving the first column from the second one.
Finally, Proposition 5.66 gives that

he(K, V) =h'(K,V*(1)) — h} (K, V*(1))

giving the third column. O

5.6.4 Extensions

Remark 30. Let V' € Repg, (Gk). Extensions 0 — V — W — Q, — 0 are in bijection with elements of ey €
H'(K,V). The representation W is de Rham (crystalline) if and only if cw € Hy(K,V) (cw € H(K,V)).

Corollary 5.68. 1. There exists a (necessarily Hodge-Tate) extension 0 — Q,(-1) -V — Q, — 0
which is not de Rham.

2. When r > 1 all extensions 0 — Qp(r) =V — Q, — 0 are de Rham.
3. When r > 2 all extensions 0 = Qp(r) =V — Q, — 0 are crystalline.
4. There exists a de Rham but not crystalline extension 0 — Q,(1) -V — Q, — 0.
Proof. 1. Follows from Remark 30 since dim H'(K,Q,(—1)) = [K : Q,] > 0 and H,(K,Q,(—1)) = 0.
2. Follows from the fact that dim H'(K,Q,(r)) = dim H} (K, Qy(r)).
3. Follows from the fact that dim H*(K,Q,(r)) = dim H}c (K, Qp(r)).

4. Follows from the fact that dim H, (K, Q,(1)) > dim H}(K, Q,(1)).
O

Example 5.69. If £/Q, is an elliptic curve with multiplicative reduction then (using Tate curves) we get
an extension 0 — Q,(1) — V,E — Q, — 0, and so V, E is necessarily de Rham (even semistable using
Perrin-Riou).

5.7 Ordinary representations

Corollary 5.68 implies that all extensions 0 — Q,(1) - V — Q, — 0 are de Rham. Perrin-Riou computed

extensions in MF?}‘N’W to show that in fact all such extensions are semistable (cf. also [3, Lemma 8.3.9]). The
main complication in [5] is the lack of availability at the time of the equivalence of categories Repap (Gr) =

MF2N ™ - Assuming this, showing that such extensions are semistable is straightforward.

Lemma 5.70. We have
EXt%{ep&tp(G}()(@lﬂQp(l)) =2 K x Qp
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Proof. From the equivalence of categories we deduce:

Exthons (60)(@pr Qpl1)) 2 Bxth e s (Dt(@5), Det(Qp(1))
=~ Ethl\/[Ff(,N,wa(Koa K0<_1>)

=~ Ethl\/IF}"(’N’W&(KO<1>’ Ko)
Extensions D € ExtlleF},?N,Wﬁ(K0<1>7 Ko) have a basis e, e1 such that “K7 = Koe and “Ko(1)” = Koey, i.c.,

w(eg) = eg with slope 0 (D(0) = Kopeg) and p(e1) = pey with slope 1 (D(1) = Kpey). Since N decreases slope
by 1 we deduce that there exists a € Ky such that Ne; = aeg and Neg = 0. But o Ney = p(aey) = o, (a)eg
and Nye; = Npey = paeg. Since No = ppN we deduce that o = ok, (a) and so o € Q,.

The Hodge-Tate weights are 0 and 1 and so Fil® Dg = D, Fil? D = 0 and Fil' Dg € Keg @ Key is
a K-line. If Fil' D = Keg then Kyeg is a subobject of D in MF?}’N with tg(Koeg) =1 > 0 = tn(Koep).
Therefore Fil' D = K(e; — Leg) for some £ € K. So to D we attached (£,a) € K x @, and one can check
that all £ € K and o € Q, give weakly admissible, and hence admissible D. O

Proposition 5.71. If0 = Q,(1) = V — Q, — 0 then V is semistable.

Proof. 1t is enough, by the previous lemma, to give an isomorphism H* (G, Q,(1)) 2 K x Q,. But Kummer
theory gives H' (G, Zp(1)) = @KX/(KX)p7L and so H'(Gg,Q,(1)) mKX/(KX)p" ® Qp.

1
If v,(x) > —— then exp(z) converges and in that case exp(px) = exp(z)?. Consider the map K xQ, —
p—

]'&nKX/(KX)p" ® Q, taking (z,q) to wf:q exp(p"x) ® p~™ for n large enough to make the exponential
convergent and p"q € Z,. This map is clearly injective so we only need surjectivity. Note that K* =
@k x ki x (1+mg) and so (since p{ #ky)

lim /()" 2wy < lim (1 me) /(1 + mc)?”

which via the log map (normalized such that log wx = 0) goes to @mK/p”mK = mg which is complete.
The map l'glKX/(KX)pn ®Qp, - K x Q, given by 2z ® ¢ — (¢qlogx,quy(z)) is an inverse to (z,q) —
w’;:q exp(p"x) @ p~™. O
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