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Sources These lecture notes are mashups of various sources, with some added clarifications where I couldn’t
follow the argument. Evidently the material presented here is treated by these sources, and in most cases it
will be lifted without acknowledgement from the “text-books” for the convenience of exposition.

Lecture 1
2012-01-04

See overview notes.

Lecture 2
2012-01-06

1 Local Class Field Theory

In square brackets I give the section numbers from the math 160b (winter 2012) course notes.

1.1 Local fields

Let K be a field of characteristic 0 with nonarchimedean valuation v : K× → R (e.g., Qp or a finite extension
of Qp, or an algebraic extension of Qp, etc.) Write v(0) =∞.

Denote by OK = {x ∈ K|v(x) ≥ 0}, and mK = {x ∈ K|v(x) > 0}. Then O×K = ker v and let
kK = OK/mK be the residue field. The ring OK is a PID and if v is discrete, i.e., Im v ⊂ R is discrete, then
there exists a uniformizer $K such that mK = ($K).

The field K has a topology given by the norm |x|K = (#kK)−v(x) (if kK is not finite, replace it by any
real number > 1). K being complete means completeness in this topology.

1.1.1 Hensel’s lemma

[Math 160b Winter 2012: §I.2]

Lemma 1.1. Let K be complete with respect to v, let P ∈ OK [X] be monic and let c ∈ OK such that
P (c) ≡ 0 (mod mK) but P ′(c) 6≡ 0 (mod mK). Then there exists c ∈ OK such that c ≡ c (mod mK) and
P (c) = 0.

Remark 1. 1. The standard application is the existence of a Teichmüller homomorphism ω : k×K → O
×
K

such that ω(x) ≡ x (mod mK).

2. This construction is later generalized by Witt vectors.

1.1.2 Krasner’s lemma

[Math 160b Winter 2012: Problem set 2]

Lemma 1.2. Let K be complete with respect to v, and let α, β ∈ K. If v(β − α) > v(σ(α) − α) for all
σ ∈ GK(α)/K then α ∈ K(β).

Remark 2. 1. The standard application is to showing that if two polynomials are sufficiently close p-
adically then they have isomorphic splitting fields.

2. This can be use to show that there are finitely many local field extensions of a certain degree.

3. Conceptually, it is the first instance where approximating in the p-adic world does not lead to loss of
information.
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1.2 Newton polygons

[Math 160b Winter 2012: §I.3]

1.2.1 Definition

Let K be a field with valuation v. For a polynomial f =

d∑
k=0

fkX
k ∈ K[X] the Newton polygon NPf is the

lower convex hull of the points (i, v(fi)) and (0,∞) and (d,∞).

Definition 1.3. A slope of f is a slope of a segment of NPf .

1.2.2 Newton polygons and products

Theorem 1.4. Let K and v be as before.

1. Let f, g ∈ K[X] such that all slopes of f are less than all slopes of g. Then NPfg is the concatenation
of NPf and NPg.

2. If (d, v(fd)) is a vertex of NPh where h ∈ K[X] has degree n > d > 0 then there exist polynomials
f, g ∈ K[X] such that h = fg and NPf = NPh |[0,d] and NPg = NPh |[d,n].

3. If NPf is pure of slope α, i.e., it consists of a segments of slope α, then all the roots of f have valuation
−α.

Remark 3. 1. Used to study ramification of local fields.

2. Useful for finding uniformizers. For example, ζpn − 1 can be shown to be a uniformizer of Qp(ζpn) by
analyzing the Newton polygon of its minimal polynomial.

3. Can be generalized to Newton polygons of power series, which we’ll use to study log (which then will
be used to study the fundamental exact sequence and extensions of p-adic Galois representations).

1.3 Ramification of local fields

[Math 160b Winter 2012: §II.2]

1.3.1 Ramification

If L/K/Qp are finite extensions write fL/K = [kL : kK ] be the inertia index and eL/K = [vK(L×) : vK(K×)]
be the ramification index.

Definition 1.5. Say that L/K is

• unramified if eL/K = 1;

• totally ramified if fL/K = 1;

• tamely ramified if p - eL/K ;

• wildly ramified if p | eL/K .

Note that these can be made sense of even for infinite extensions.

Theorem 1.6. Let L/K/Qp be finite extensions.

1. fL/KeL/K = [L : K].
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2. The field Kur = K(ω(kK
×

)) is the maximal unramified extension of K, and K/Kur is totally ramified
with Galois group IK , the inertia subgroup.

3. The field Kt = Kur($
1/n
K |p - n) is the maximal tamely ramified extension of K, and K/Kt is totally

wildly ramified with Galois group PK , the wild inertia subgroup.

4. Have an exact sequence 1 → IK → GK → GkK → 1 and FrobK will denote both the topological

generator of GKur/K
∼= GkK

∼= FrobẐ
K and some lift to GK , well-defined up to conjugation.

5. Writing IL/K = GL/L∩Kur and PL/K = GL/L∩Kt have 1→ IL/K → GL/K → GkL/kK → 1. Moreover,
L/K is unramified if and only if IL/K = {1} and L/K is tamely ramified if and only if PL/K = {1}.

Example 1.7. K = Qp(ζp) is totally ramified over Qp because vp(ζp−1) = 1
p−1 = 1

[K:Qp] so eK/Qp = [K : Qp]
so fK/Qp = 1.

1.3.2 Ramification filtrations

[Math 160b Winter 2012: §III.1] The subgroups GL/K ⊃ IL/K ⊃ PL/K of more and more complex elements
of the Galois group fit into a ramification filtration.

Definition 1.8. If L/K is finite for u ≥ −1 the lower ramification filtration groups are

GL/K,u = {σ ∈ GL/K |vL(σ(x)− x) ≥ u+ 1,∀x ∈ OL}

Theorem 1.9. 1. GL/K,u = GL/K,due.

2. GL/K,−1 = GL/K .

3. GL/K,0 = IL/K .

4. GL/K,1 = PL/K .

5. For u >> 0 have GL/K,u = {1}.

Definition 1.10. For L/K finite consider φL/K : [−1,∞)→ [−1,∞) given by

φL/K(x) =

∫ x

0

du

[GL/K,0 : GL/K,u]

which is a piece-wise linear function, of slope 1 on the interval [−1, 0], and slope 1/eL/K for x >> 0.

Definition 1.11. The upper ramification filtration groups are

GuL/K = GL/K,φ−1
L/K

(u)

Theorem 1.12 (Herbrand). Let L/M/K be finite extensions

1. GuM/K = GuL/K/(G
u
L/K ∩GL/M ).

2. φL/K = φM/K ◦ φL/M .

Remark 4. Theorem 1.12 allows one to make sense of GuK (but not of the lower filtration).

Theorem 1.13 (Hasse-Arf). If L/K is a finite abelian extension then GuL/K = G
buc
L/K , i.e., the jumps in the

upper filtration are at integers. In other words, the y-coordinates of the vertices of the graph of φL/K are
integers.

Example 1.14. If F = Qp and F∞ = F (ζp∞) then F∞/F is totally ramified, abelian, with Galois group
GF∞/F

∼= Z×p and GnF∞/F
∼= 1 + pnZp.
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1.3.3 Different

Definition 1.15. If L/K is a finite extension then

• The inverse different is D−1
L/K = {x ∈ L|TrL/K(xOL) ⊂ OK} is a fractional ideal of L containing OL.

• The different is DL/K is the inverse of D−1
L/K , i.e., DL/K = {x ∈ L|xD−1

L/K ⊂ OL}.

Remark 5. The different measures the ramification of local field extensions.

Theorem 1.16. Let L/K be a finite extension.

1. vL(DL/K) =

∫ ∞
−1

(#GL/K,u − 1)du.

2. vK(DL/K) =

∫ ∞
−1

(
1− 1

#GuL/K

)
du.

3. If I is an ideal of L then vK(TrL/K(I)) = bvK(IDL/K)c

1.4 Main results of local class field theory

1.4.1 The Weil group

Recall that by Theorem 1.6 1→ IK → GK → GkK → 1 where GkK
∼= FrobẐ

K .

Definition 1.17. The Weil group WK is the preimage via the projection map of FrobZ
K , with the topology

that makes IK open and FrobZ
K discrete.

1.4.2 The main results

Theorem 1.18. Let K/Qp be a finite extension.

1. There exists an injective homomorphism recK : K× ↪→ Gab
K , such that:

2. K× ∼= W ab
K , O×K ∼= Iab

K and for n ≥ 1, 1 + mnK
∼= Gab,n

K .

3. If L/K is finite then recL(x) = recK(NL/K(x)).

Remark 6. 1. This identifies the ramification filtration on Gab
K with the Lie filtration on K×.

2. This is a general phenomenon, if the Galois group is a p-adic Lie group then the upper filtration and
the Lie filtration are “the same”.

Definition 1.19. The cyclotomic character χcycl : GK → Z×p is given by the condition that g(ζpn = ζ
χcycl(g)
pn .

Alternatively, χcycl can be obtained by lifting IK → Iab
K
∼= O×K

NK/Qp−→ Z×p to GK .

1.5 Galois cohomology

1.5.1 Continuous cohomology

Definition 1.20. Let G be a (pro)finite group and M a topological group with a continuous G-action. Set

H0(G,M) = MG

H1(G,M) = {f : G→M continuous|f(gh) = f(g)g(f(h))}/ ∼

where f ∼ h if for some m ∈M one has h(g) = mf(g)g(m)−1.

Remark 7. If M is abelian then Hi(G,M) = RiMG is the right derived functor as usual.
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1.5.2 Inflation-restriction sequence

Theorem 1.21. Let H ⊂ G be a normal subgroup of a profinite group and let M be a topological group with
G action. Then one has an “exact” sequence

1→ H1(G/H,MH)→ H1(G,M)→ H1(H,M)G/H

where exactness is categorical.

Remark 8. If M is an abelian group this follows from the usual 5-term exact sequence obtained from the
Hochschild-Serre spectral sequence.

1.5.3 Examples

Proposition 1.22. 1. If G is procyclic generated by g then

H0(G,M) = Mg

H1(G,M) = M/(g − 1)M

2. (Hilbert 90) If L/K is finite then

H1(GL/K , L
×) = 0

H1(GL/K , L) = 0

H1(GL/K ,GL(n,L)) = 0

H1(GL/K ,Mn×n(L)) = 0

Lecture 3
2012-01-09

2 Cp-representations

2.1 The field Cp

Definition 2.1. For a p-adic field K let CK = K̂. If K ⊂ Qp write CK = Cp.

Proposition 2.2. 1. Cp 6= Qp, i.e., Qp is not complete.

2. Cp is algebraically closed.

Proof. 1. See problem set 2.

Choose an roots of unity, such that an ∈ Qur
p , an−1 ∈ Qp(an) and [Qp(an) : Qp(an−1)] > n. For

example could take an = ζq(n!)2 where q 6= p is a prime. Let α =

∞∑
n=1

anp
n ∈ Cp and assume that

α ∈ Qp. Let m = [Qp(α) : Qp] and let αm =

m∑
n=1

anp
n. Choose a Galois extension M/Qp containing

α, αm and am.

Since [M : Qp(am−1)] ≥ [Qp(am) : Qp(am−1)] > m one may find σ1, . . . , σm+1 ∈ GM/Qp(am−1) such
that σi(am) are all distinct.

Clearly vp(α− αm) ≥ m+ 1 and thus for all i one has vp(σi(α)− σi(αm)) ≥ m+ 1. Also, for i 6= j we
have vp(σi(αm) − σj(αm)) = vp(σ(am) − σj(am)) + m. Since am is the root of a polynomial which is
separable mod p, it follows that σi(am) 6∼= σj(am) (mod p) and so vp(σ(am)− σj(am)) = 0.
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Putting things together we get

vp(σi(α)− σj(α)) = vp(σi(α)− σi(αm) + σi(αm)− σj(αm) + σj(αm)− σj(α))

and in the latter vp(σi(α)−σi(αm)), vp(σj(αm)−σj(α)) ≥ m+1 but vp(σi(αm)−σj(αm)) = m and so
vp(σi(α)− σj(α)) = m and so σi(α) 6= σj(α). But then α has m+ 1 distinct conjugates, contradicting
that α has degree m over Qp.

2. Let α ∈ Cp and WLOG v(α) ≥ 0. Let f = Xn + an−1X
n−1 + · · · + a0 ∈ Cp[X] be its minimal

polynomial. Let c = max vp(αi−α) where α1 = α, α2, . . . , αn are the roots of f . Choose g ∈ Zp[X] an
approximation of f such that if g(X) = Xn+bn−1X

n−1 + · · ·+b0 then for all i we have vp(ai−bi) > nc,
which is always possible as Cp is the completion of Qp. Let β1, . . . , βn be the roots of g.

Then since v(α) ≥ 0 we have
∑
vp(α− βi) = vp(g(α)) = vp(g(α)− f(α)) ≥ min vp(ai− bi) > nc. Thus

for some i, vp(α− βi) > c. By Krasner’s lemma 1.2 it follows that α ∈ Cp(βi) = Cp.

2.2 Ax-Sen-Tate and Galois invariants

Definition 2.3. Let G be a profinite group and R a topological ring with an action of G. Then RepR(G)
will consist of finite free R-modules M with semilinear actions of G, i.e., an action of g ∈ G on M such that
if α ∈ R and m ∈M then g(αm) = g(α)g(m).

Definition 2.4. If R is a topological ring with an action of GK (say R = Qp, or R = Qp, or R = Cp) and
η : GK → R× is a character, let R(η) ∈ RepR(GK) be the one dimensional representation with basis eη
described by g(αeη) := g(α)η(g)eη, for α ∈ R.

Write Qp(n) = Qp(χncycl) and Cp(n) = Cp(χncycl).

The goal of the next few sections is to study H0(GK ,Cp(η)) and H1(GK ,Cp(η)) for certain η including
χncycl.

2.2.1 A lemma on roots of polynomials

Lemma 2.5. Let f ∈ Qp[X] be monic of degree n such that all roots have valuation ≥ u.

1. If n = pkno with p - n0 then f (pk) has a root β with v(β) ≥ u.

2. If n = pk+1 then f (pk) has a root β with v(β) ≥ u− v(p)

pk(p− 1)
.

Proof. Let f(X) = Xn + an−1X
n−1 + · · · a0. By Theorem 1.4 all slopes of NPf are ≤ −u so an−i ≥ iu.

Write q = pk, we have

f (q)

q!
=

n−q∑
i=0

(
n− i
q

)
an−iX

n−i−q

whose roots have product
∏
β = ±aq/

(
n
q

)
. Therefore

∑
v(β) = v(aq)− v

((
n
q

))
so there exists a root β such

that

v(β) ≥ v(aq)

n− q
− 1

n− q
v

((
n

q

))
≥ u−− 1

n− q
v

((
n

q

))
But from problem set 1 one has that

v

((
n

q

))
=

{
0 n = pkn0

v(p) n = pk+1

and the conclusion follows.
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2.2.2 Approximations of algebraic numbers

If α ∈ K write ∆K(α) = min v(σ(α) − α) where σ ∈ GK(α)/K . While Krasner’s lemma says that if an
algebraic element is very close to an element then it lies in the field generated by that element, the following
lemma will say that no matter what finite field extension one chooses one can find a sufficiently good
approximation in that field to any given algebraic element.

Lemma 2.6. Let K/Qp be a finite extension and let α ∈ K. Then there exists β ∈ K such that

v(α− β) ≥ ∆K(α)− v(p)

(p− 1)2

Proof. In fact we’ll show that one may find β such that

v(α− β) ≥ ∆K(α)−
blogp nc∑
i=1

v(p)

pi−1(p− 1)

which implies the lemma.
Let Q(X) be the minimal polynomial of α over K. We’ll show by induction over degQ. The base case,

when degQ = 1 is immediate as then one can take β = α.
Now for the inductive step. Let P (X) = Q(X + α) which has roots σ(α) − α for α ∈ GK(α)/K . By

definition, all the roots of P have valuation ≥ ∆K(α). Let n = degQ and let n = pkn0 or n = pk+1 with

q = pk as in Lemma 2.5. Thus there exists a root β̃ of P (q) such that

v(β̃) ≥

{
∆K(α) n = pkn0

∆K(α)− v(p)
pk(p−1)

n = pk+1

Let β = β̃ + α be a root of Q(q) such that

v(β − α) ≥

{
∆K(α) n = pkn0

∆K(α)− v(p)
pk(p−1)

n = pk+1

Note that

v(σ(β)− β) = v(σ(β)− σ(α) + σ(α)− α+ α− β)

≥ min v(σ(β)− σ(α)), v(σ(α)− α), v(α− β)

≥ min ∆K(α), v(α− β)

≥

{
∆K(α) n = pkn0

∆K(α)− v(p)
pk(p−1)

n = pk+1

as v(σ(β)− σ(α)) = v(α− β).
By the inductive hypothesis applied to Q(q) of degree n− q one may find γ ∈ K such that

v(β − γ) ≥ ∆K(β)−
blogp(n−q)c∑

i=1

v(p)

pi−1(p− 1)

Then if n = pkn0 one has blogp(n− q)c = blogp nc so

v(β − γ) ≥ ∆K(α)−
blogp nc∑
i=1

v(p)

pi−1(p− 1)
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and if n = pk+1 then blogp(n− q)c = k while blogp nc = k + 1. Therefore

v(β − γ) ≥ ∆K(α)− v(p)

pk(p− 1)
−

k∑
i=1

v(p)

pi−1(p− 1)

= ∆K(α)−
k+1∑
i=1

v(p)

pi−1(p− 1)

= ∆K(α)−
blogp nc∑
i=1

v(p)

pi−1(p− 1)

and the inductive step follows.

2.2.3 Galois invariants: the Ax-Sen-Tate lemma

Theorem 2.7. Let L/K be an algebraic extension. Then CGLp = L̂. In particular, if L/K is finite then

CGLp = L.

Proof. Let v be a valuation on L and let x ∈ CGLp . Choose αn ∈ Qp such that x = lim
n→∞

αn.

For σ ∈ GL have

v(σ(αn)− αn) = v(σ(αn − x)− (αn − x))

≥ min v(σ(αn − x)), v(αn − x)

= v(αn − x)

and therefore ∆L(αn) ≥ v(αn − x).

By Lemma 2.6 it follows that one may find βn ∈ L such that v(βn−αn) ≥ ∆L(αn)− v(p)

(p− 1)2
. But then

v(x− βn) = v(x− αn + αn − βn)

≥ min v(x− αn), v(αn − βn)

≥ min v(x− αn),∆L(αn)− v(p)

(p− 1)2

≥ v(x− αn)− v(p)

(p− 1)2

which goes to infinity so x = lim
n→∞

βn ∈ L̂.

Conversely, if x ∈ L̂ such that x = limβn then for g ∈ GL one has g(βn) = βn. Since GL acts continuously
it follows that g(x) = g(limβn) = lim g(βn) = limβn = x so x ∈ CGLp .

Lecture 4
2012-01-11

2.3 Ramification estimates and Tate periods

The goal of this section is the study of H0(GK ,Cp(n)) and H1(GK ,Cp(n)). The idea is to first restrict to

kerχcycl = GK∞ where K∞ = K(ζp∞) is the p∞ cyclotomic extension. Then Cp(n)GK∞ = K̂∞(n) by the

Ax-Sen-Tate Theorem 2.7. One first studies the ramification of K∞ and then approximates K̂∞ by finite
extensions.
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2.3.1 Cyclotomic extensions

Let F = Qp andK/F be a finite extension. WriteKn = K(ζpn), HK = GK∞ , ΓK = GK∞/K , ΓKn = GK∞/Kn
and similarly for F ; we have the following diagram of Galois groups

K F

K∞

HK

F∞

HF

Kn

ΓKn

Fn

1+pnZp

K

ΓK

F

(Z/pn)×

Z×p

Lemma 2.8. 1. The cyclotomic character factors through χcycl : ΓK ↪→ ΓF ∼= Z×p .

2. There exists an integer nK such that χcycl(ΓK) ⊃ 1 + pnKZp.

3. For n ≥ nK one has χcycl(ΓKn) ∼= 1 + pnZp and Kn ∩ F∞ = Fn.

Proof. 1. The map ΓK → ΓF given by restriction to F∞ is injective; otherwise, let g ∈ ΓK nontrivial.
Then there exists n large enough such that g /∈ ΓKn (since ΓKn form a basis around 1 in ΓK) and so g
does not fix ζpn . But then g cannot be trivial in ΓF . That χcycl factors through this map follows since
χcycl is trivial on HK = GK∞ and ΓK ∼= GK/HK .

2. Since χcycl is continuous it follows that χcycl(ΓK) is compact. The logarithm log : 1 + p2Zp → p2Zp
is a continuous homomorphism so again by continuity it follows that log(χcycl(ΓK) ∩ (1 + p2Zp)) is
a closed subgroup of Zp. But then it must also be open. Since log is continuous this implies that
χcycl(ΓK) ∩ (1 + p2Zp)) is open and so χcycl(ΓK) contains some 1 + pnKZp.

3. For n ≥ nK we have χcycl(ΓFn) = 1 + pnZp ⊂ χcycl(ΓK) as above.

The injection ΓK ↪→ ΓF given an injection ΓKn ↪→ ΓFn . But ΓK also surjects onto ΓFn by the above.
If g ∈ ΓK maps to an element of ΓFn it must fix ζpn so g ∈ ΓKn and so ΓKn surjects onto ΓFn and so
the two groups are isomorphic. This implies that χcycl(ΓKn) ∼= 1 + pnZp.

Now Kn ∩ F∞ = F
ΓKn∞ = F

ΓFn∞ = Fn.

2.3.2 Ramification in cyclotomic extensions

Having compared the Galois groups of the cyclotomic extensions of K and F we now proceed to compare
their upper ramification filtrations.

Lemma 2.9. Let F = Qp and K/F finite.

1. For n ≥ nK the extension Kn+1/Kn is totally ramified of degree p.

2. [Kn : Fn] is decreasing and GKn/Fn = GK∞/F∞ for n large enough.

3. There exists uK such that if n ≥ nK and u ≥ uK then GuKn/FnK
∼= GuFn/FnK

.
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Proof. 1. For n ≥ nK we have by Lemma 2.8

GKn+1/Kn
∼= GFn+1/Fn

= IFn+1/Fn

= {g ∈ GFn+1/Fn |v(gx− x) > 0,∀v(x) ≥ 0}
= {g ∈ GKn+1/Kn |v(gx− x) > 0,∀v(x) ≥ 0}
= IKn+1/Kn

where the second line follows because Fn+1/Fn is totally ramified of degree p. Thus Kn+1/Kn is totally
ramified, and the degree is p.

2. [Kn : Fn] = [KFn : FFn] decreases and stabilizes.

3. Let uK such that GuKKnK /FnK
= {1} (Theorem 1.9). Also recall by Lemma 2.8 for n ≥ nK have

Kn ∩ F∞ = Fn so GKn/FnK
∼= GFn/FnK ×GKnK /FnK .

By Herbrand’s Theorem 1.12 it follows that for u ≥ uK we have GuKnK /FnK
∼= GuKn/FnK

/(GuKn/FnK
∩

GKn/KnK ) and since the former is trivial it must be that GuKn/FnK
↪→ GKn/KnK

∼= GFn/FnK . But

another application of Herbrand gives that GuFn/FnK
∼= GuKn/FnK

/(GuKn/FnK
∩ GKn/Fn) so GuKn/FnK

surjects onto GuFn/FnK
⊂ GFn/FnK . Therefore the conclusion follows, having already shown injection.

Lemma 2.10. 1. The sequence {pnvp(DKn/Fn)} is bounded.

2. There exist a constant c and a bounded sequence an such that

vp(DKn/F ) = n+ c+
an
pn

Proof. 1. We may assume that n ≥ nK . Then

vp(DKn/Fn) = vp(DKn/FnK − vp(DFn/FnK

=
1

eFnK /F

∫ ∞
−1

(
1

#GuFn/FnK

− 1

#GuKn/FnK

)

=
1

eFnK /F

∫ uK

−1

(
1

#GuFn/FnK

− 1

#GuKn/FnK

)

≤ 1

eFnK /F

∫ uK

−1

1

#GuFn/FnK

where the second line follows from Theorem 1.16 and the third from Lemma 2.9.

Now we have that GFn/FnK ,v = GFn/F,v ∩GFn/FnK and GFn/F,v = G
φFn/F (v)

Fn/F
= GFn/FbφFn/F (v)c. From

Theorem 1.12 we get that (using that GuFn/F = GFn/Fbuc)

GuFn/FnK
= GFn/FnK ,φ

−1
Fn/FnK

(u)

= GFn/FbφFn/F ◦φ
−1
Fn/FnK

(u)c
∩GFn/FnK

= GFn/FbφFnK /F (u)c ∩GFn/FnK
= GFn/Fmax(bφFnK /F (u)c,nK )

11



so
#GuFn/FnK

= p
n−max(bφFnK /F (u)c,nK)

and thus

vp(DKn/Fn) ≤ 1

eFnK /F

∫ uK

−1

p
max(bφFnK /F (u)c,nK)−n

du

pnvp(DKn/Fn) ≤ 1

eFnK /F

∫ uK

−1

p
max(bφFnK /F (u)c,nK)

du

and the right hand side is independent of n.

2. See problem set 2.

We compute

vp(DFn/F ) =

∫ ∞
0

(
1− 1

#GuFn/F

)

=

n∑
i=0

(
1− 1

#GFn/Fi

)

=

n∑
i=0

(
1− pi−n

)
= n+ 1− p

p− 1

(
1− 1

pn+1

)
and the result follows from the fact that vp(DKn/F ) = vp(DKn/Fn) + vp(DFn/F ).

Lecture 5
2012-01-18

2.3.3 Almost etaleness

Theorem 2.11. Let L/K/Qp be finite extensions. Then TrL∞/K∞(mL∞) ⊃ mK∞ .

Proof. For m ≥ n ≥ max(nK , nL) we know that GLm/Km
∼= GLn/Kn so

TrL∞/K∞(mLn) = TrLn/Kn(mLn) = mcnKn

where the exponent cn can be computed using Theorem 1.16 as

cn = bvKn(mLnDLn/Kn)c
= bvKn(mLn) + eKn/F vp(DLn/Kn)c
= beLn/Kn + eKn/FneFn/F (vp(DLn/F )− vp(DKn/F ))c

Now eLn/Kn ≤ [Ln : Kn] ≤ [L : K] and eKn/Fn ≤ [Kn : Fn] ≤ [K : F ] and eFn/F = pn−1(p − 1) since
Fn/F is totally ramified. It now follows from Lemma 2.10 that cn is bounded by some constant c. Thus
mcKn ⊂ TrL∞/K∞(mL∞) for all n.

Let x ∈ mK∞ and let x ∈ mKm for some m. Since eKn/Km is unbounded, for n >> 0 one has eKn/Km > c
so x ∈ mKm ⊂ mcKn ⊂ TrL∞/K∞(mL∞).

Corollary 2.12. Let K/Qp be a finite extension.

12



1. Every finite extension of K∞ is of the form L∞ = LK∞ for a finite extension L/K.

2. If L/K is finite there exists α ∈ L∞ such that TrL∞/K∞(α) = 1 and v(α) > −v($K) where $K is a
uniformizer for K.

Proof. 1. See problem set 2.

2. From Theorem 2.11 there exists α̃ such that v(α̃) > 0 and TrL∞/K∞(α̃) = $K . Let α = α̃/$K in
which case TrL∞/K∞(α) = 1 and v(α) > −v($K).

2.3.4 Normalized Traces

Definition 2.13. For n ≥ nK and x ∈ Kn+k define prn(x) = p−k TrKn+k/Kn(x) which is independent of k
since Kn+k+1/Kn+k is cyclic of degree p by Lemma 2.9.

Lemma 2.14. Let n ≥ nK and x ∈ Kn+k. Then

vp(prn(x)) ≥ vp(x)− αn
pn

where αn is a bounded sequence.

Proof. Using Theorem 1.16 in the fourth line and Lemma 2.10 in the seventh line one has

vp(prn(x)) = −k + vp(TrKn+k/Kn(x))

= −k + vp(TrKn+k/Kn(m
vKn+k

(x)

Kn+k
))

= −k + e−1
Kn/F

bvKn(m
vKn+k

(x)

Kn+k
DKn+k/Kn)c

> −k + e−1
Kn/F

(vKn(m
vKn+k

(x)

Kn+k
) + vKn(DKn+k/Kn)− 1)

= −k + e−1
Kn/F

(vKn(x) + eKn/F vp(DKn+k/Kn)− 1)

= −k + vp(x) +
(
vp(DKn+k/F )− vp(DKn/F )

)
− e−1

Kn/F

= vp(x)− k + n+ k + c+
an+k

pn+k
− n− c− an

pn
− 1

eKn/FneFn/F

= vp(x)− αn
pn

where

αn = an −
an+k

pk
+

pn

eKn/FneFn/F

= an −
an+k

pk
+

p

eKn/Fn(p− 1)

which is bounded since an is bounded and eKn/Fn ≤ [Kn : Fn] stabilizes to [K∞ : F∞].

Corollary 2.15. For n ≥ nK the function prn is uniformly continuous on K∞ and thus extends to a

continuous function prn : K̂∞ → Kn.

Proof. Lemma 2.14 implies

|prn(x)− prn(y)| = |prn(x− y)| ≤ |x− y|pαnp
−n

< C|x− y|

where C is some constant.
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Remark 9. Write K⊥n = {x ∈ K̂∞|prn(x) = 0}. Since prn is an idempotent we get a decomposition

K̂∞ = Kn ⊕K⊥n .

Proposition 2.16. For n ≥ nK and x ∈ K̂∞:

1. vp(prn(x)) ≥ vp(x)− αnp−n;

2. x = lim
n→∞

prn(x);

3. prn commutes with the action of ΓK = GK∞/K .

Proof. 1. The function prn is continuous on K̂∞ and the inequality follows from Lemma 2.14.

2. Fix n. Since x ∈ K̂∞ for every C > 0 we may choose m and xn+m ∈ Kn+m such that vp(x−xn+m) > C.

Since xn+m = prn+m+j(xn+m) it follows that

vp(x− prn+m(x)) = vp(x− xn+m + prn+m(xn+m)− prn+m(x))

≥ min vp(x− xn+m), vp(prn+m(x− xn+m))

≥ minC,C − αn+mp
−(n+m)

= C − αn+mp
−(n+m)

> C − αn+mp
−n

Since αn+mp
−n is bounded as m→∞, making C →∞ gives that x = lim

m→∞
prn+m(x).

3. Let γ be a topological generator of ΓK , which is procyclic. Then for n + k > n ≥ nK the group
GKn+k/Kn is cyclic generated by some power γs. Thus

γ prn(x) = p−kγ
∑
i

(γs)i(x) = p−k
∑
i

(γs)i(γ(x)) = prn(γ(x))

2.3.5 Tate periods: degree 0

Lemma 2.17. Let η : GK → Z×p be a finite order character. Then Cp(η) ∼= Cp as GK-modules.

Proof. Let L/K be finite such that η(GL) = 1. Then η factors through GL/K and η ∈ Hom(GL/K ,Z×p ) =
H1(GL/K ,Z×p ) where Z×p has trivial Galois action. But H1(GL/K ,Z×p )→ H1(GL/K , L

×) = 0 by Hilbert 90
so there exists ξ ∈ L× such that η(g) = ξ−1g(ξ).

Then Cp(η)→ Cp given by αeη 7→ ξα is a GK equivariant isomorphism.

Theorem 2.18. Let K/Qp be a finite extension and let η : GK → Z×p be a continuous character such that
η(HK) = 1, where HK = GK∞ . (For example, η = χncycl where n ∈ Z.) Then

H0(GK ,Cp(η)) = Cp(η)GK =

{
0 η has infinite order

K η has finite order

Proof. Suppose that Cp(η)GK is nonempty and that it contains αeη where α ∈ Cp is nonzero. Then for
g ∈ GK :

αeη = g(αeη) = g(α)η(g)eη

so g(α) = η(α)−1α.

If h ∈ HK then η(h) = 1 by assumption so we deduce that g(α) = α so α ∈ CHKp = K̂∞ by Ax-Sen-Tate.
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By Proposition 2.16 α = lim
n→∞

prn(α) and since g ∈ ΓK commutes with prn it follows that

g(prn α) = prn g(α) = prn(η(g)−1α) = η(g)−1 prn α

so we conclude that
η(g) =

prn α

g(prn α)

But choosing g ∈ ΓKn , which invaries prn α ∈ Kn gives that η(ΓKn) = 1 so η(GKn) = 1 so η would have to
have finite order.

The second part follows from Lemma 2.17 as if η has finite order then Cp(η)GK = CGKp = K by Ax-Sen-
Tate.

Lecture 6
2012-01-20

2.3.6 Topological generators

Let γ be a topological generator for ΓK and γn a topological generator for ΓKn . Then γn = γs for some s

and for n ≥ nK one has γn+k = γp
k

n .

Lemma 2.19 (Lemma A). If x ∈ K∞ then vp((1− γmn )(x)) ≥ vp((1− γn)(x)).

Proof. Indeed

vp((1− γmn )(x)) = vp((

m−1∑
i=0

γin)(1− γn)(x))

= vp(

m−1∑
i=0

γin(1− γn)(x))

≥ min vp(γ
i
n(1− γn)(x))

= vp((1− γn)(x))

Lemma 2.20 (Lemma B). If x ∈ Km where m > n ≥ nK then

vp(x− prn(x)) ≥ vp((1− γn)(x))− 1−
m−1∑
k=n

αk
pk

Proof. We show this by induction. The base case, when m = n+ 1 is

vp(x− prn(x)) = vp(px− TrKn+1/Kn(x))− 1

= vp(

p−1∑
i=1

(1− γin)(x))− 1

≥ min vp((1− γin)(x))− 1

≥ vp((1− γn)(x))− 1

where the last line follows from the previous lemma.
Now for the inductive step. Suppose known for m = n + k and now we look at x ∈ Km+1. Then

TrKm+1/Km(x) ∈ Km and by the inductive hypothesis we have

vp(TrKm+1/Km(x)− prn(TrKm+1/Km(x))) ≥ vp((1− γn)(TrKm+1/Km(x)))− 1−
m−1∑
k=n

αk
pk
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But

vp((1− γn)(TrKm+1/Km(x))) = vp(TrKm+1/Km((1− γn)(x)))

= vp(prm((1− γn)(x))) + 1

≥ vp((1− γn)(x)) + 1− αm
pm

where the last line follows from Proposition 2.16. We deduce that

vp(TrKm+1/Km(x)− prn(TrKm+1/Km(x))) ≥ vp((1− γn)(x))−
m∑
k=n

αk
pk

Finally

vp(x− prn(x)) = vp(x−
1

p
TrKm+1/Km(x) +

1

p
(TrKm+1/Km(x)− p prn(x)))

≥ min vp(x− prm(x)), vp(
1

p
(TrKm+1/Km(x)− p prn(x)))− 1

≥ min vp((1− γn)(x))− 1, vp((1− γn)(x))− 1−
m∑
k=n

αk
pk

= vp((1− γn)(x))− 1−
m∑
k=n

αk
pk

where in the third line we use the inductive hypothesis for Km+1/Km.

Proposition 2.21 (Proposition A). Let n ≥ nK . The operator 1 − γn is bijective on K⊥n , its inverse
(1− γn)−1 is continuous and the operator norm ||(1− γn)−1|| is bounded independent of n.

Proof. Since γn is a generator of ΓKn , the kernel of 1 − γn on K̂∞ is K̂∞
ΓKn

= Kn by Ax-Sen-Tate. Thus
the kernel 1− γn on K⊥n is K⊥n ∩Kn = {0} so the operator is injective.

For m ≥ n the linear map 1− γn is injective on the finite dimensional vector space Km ∩K⊥n and so it
is surjective. Let y ∈ Km ∩K⊥n which by surjectivity can be written as y = (1− γn)(x) for x ∈ Km ∩K⊥n .
Lemma 2.20 applied to x gives

vp(x− prn(x)) ≥ vp((1− γn)(x))− 1−
m−1∑
k=n

αk
pk

Since prn(x) = 0 as x ∈ K⊥n and x = (1− γn)−1(x) we deduce

vp((1− γn)−1(y)) ≥ vp(y)− C

where

C = 1 +

∞∑
k=n

αk
pk

which is a number as αk are bounded. Therefore on Km ∩K⊥n we have

||(1− γn)−1|| = sup
|(1− γn)−1(y)|

|y|
≤ |p|C

so the operator norm ||(1− γn)−1|| on Km ∩K⊥n is bounded independent of n and m. Therefore (1− γn)−1

extends to a continuous function on K⊥n of norm independent of n.
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Proposition 2.22 (Proposition B). Let η : ΓK → Zp
×

be an infinite order continuous character and let γ

be a topological generator of ΓK . Then 1− γ : K̂∞(η)→ K̂∞(η) is surjective.

Proof. Let C be the uniform bound on ||(1− γn)−1|| on K⊥n from Proposition 2.21. Since the character η is
continuous and ΓKn form a neighborhood basis of the identity in ΓK it follows that lim

n→∞
η(γn) = 1 and so

for n >> 0 we have |1 − η(γn)| < C−1. Therefore

∣∣∣∣∣∣∣∣1− η(γn)

1− γn

∣∣∣∣∣∣∣∣ < 1 and so on K⊥n everything converges in

the following computation:

1

1− γnη(γn)
=

1

(1− γn)
(

1 +
(

1−η(γn)
1−γn

)
γn

)
= (1− γn)−1

∑
j≥0

(
γn(1− η(γn))(1− γn)−1

)j
Therefore 1 − γnη(γn) : K⊥n → K⊥n is surjective, as its inverse is well-defined. This is equivalent to saying
that 1− γn : K⊥n (η)→ K⊥n (η) is surjective.

Now on Kn(η). Since η has infinite order it follows that for all γn, η(γn) 6= 1. Since γn invaries Kn we
get that on Kn, 1 − γn = 1 − η(γn) 6= 0 and so it is an injective map on a finite dimensional vector space,
thus also surjective.

We conclude that 1 − γn : K̂∞(η) → K̂∞(η) is surjective. But γn = γs for some s and 1 − γn =

(1− γ)

(
s−1∑
i=0

γi

)
so 1− γ is necessarily surjective as well.

2.3.7 Galois cohomology of K̂∞

This section computes the continuous cohomology groups in degree 1 of the group HK = GK∞ , which will
later feed into an inflation-restriction sequence. We start with a lemma on approximations of cocycles.

Lemma 2.23. 1. If M ∈ H1(HK , p
nOCp) there exists x ∈ pn−1OCp such that the cohomologous cocycle

g 7→M(g) + g(x)− x ∈ H1(HK , p
n+1OCp).

2. If n ≥ 2 and M ∈ H1(HK , 1 +$n
K Md(OCp)) then there exists a matrix N ∈ 1 +$n−1

K Md(OCp) such

that the cohomologous cocycle g 7→ N−1M(g)g(N) ∈ H1(HK , 1 +$n+1
K Md(OCp)).

Proof. 1. Note that pn+2OCp is open in pnOCp and so the quotient pnOCp/p
n+2OCp is discrete. Therefore

the kernel of M : HK → pnOCp/p
n+2OCp is open and by Corollary 2.12 it must contain a subgroup

of the form HL where L/K is a finite extension, and increasing L we may also assume that L/K is
Galois. Thus M(HL) ⊂ pn+2OCp .

Let α ∈ L∞ from Corollary 2.12 such that TrL∞/K∞(α) = 1 and v(α) > −v($K) > −v(p). For a set
T of representatives of HK/HL in HK let

xT =
∑
g∈T

g(α)M(g)
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If h ∈ HL and hT = {hg|g ∈ T} then we compute

h(xT ) = h

∑
g∈T

g(α)M(g)


=
∑
g∈T

(hg)(α)h(M(g))

=
∑
g∈T

(hg)(α)(M(hg)−M(g))

=
∑
hg∈hT

(hg)(α)M(hg)−

 ∑
hg∈hT

(hg)(α)

M(g)

= xhT −M(g)

where in the last line we used
∑
hg∈hT

(hg)(α) = TrL∞/K∞(α) = 1.

Also note that

xhT − xT =
∑
g∈T

((hg)(α)M(hg)−
∑
g∈T

g(α)M(g)

=
∑
g∈T

(gg−1hg)(α)M(gg−1hg)−
∑
g∈T

g(α)M(g)

=
∑
g∈T

g(α)(M(g) + g(M(g−1hg)))−
∑
g∈T

g(α)M(g)

=
∑
g∈T

g(α)g(M(g−1hg))

≡ 0 (mod pn+1)

Here the third line follows from the fact that HL is normal in HK by choice of L and thus g−1hg acts
trivially on α, and from the cocycle condition on M ; the last line follows from the fact that v(α) > −1
and v(M(g−1hg)) ≥ n+ 2.

Finally, M(g) + g(xT )− xT = xhT − xT ∈ H1(HK , p
n+1OCp).

2. Note that 1 + $n+2
K Md(OCp) is open in 1 + $n

K Md(OCp) so as before (1 + $n
K Md(OCp))/(1 +

$n+2
K Md(OCp)) is discrete and so there exists L/K finite (Galois) such thatM(HK) ⊂ 1+$n+2

K Md(OCp).

As before, for representatives T of HK/HL in HK let NT =
∑
g∈T

g(α)M(g), where α is as before. Note

that if one writes M(g) = 1 +$n
KX(g) then

NT =
∑
g∈T

g(α)(1 +$n
KX(g))

= TrL∞/K∞(α) +$n
K

∑
g∈T

g(α)X(g)

≡ 1 (mod $n−1
K )

because v(α) > −1 and X(g) ∈ Md(OCp).

As before we compute
g(NT ) = M(g)−1NhT
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and thus

N−1
T M(g)g(NT ) = N−1

T NhT

= 1 +N−1
T (NgT −NT )

≡ 1 (mod $n+1
K )

because as before we have
NgT −NT ≡ 0 (mod $n+1

K )

Lecture 7
2012-01-23

The main result of this section is the following:

Proposition 2.24. We have

1. H1(HK ,Cp) = {1}.

2. H1(HK ,GL(d,Cp)) = {1}.

Proof. 1. Let M ∈ H1(HK ,Cp). By continuity there exists n0 ∈ Z such that ImM ⊂ pn0OCp . Applying
Lemma 2.23 successively we obtain for n ≥ n0 elements xn ∈ pn−1OCp such that

M(g) +

m∑
n=n0

(g(xn)− xn) ∈ pm+1OCp

But then x =

∞∑
n=n0

xn converges and M(g) + g(x) − x ∈ pmOCp for all m and so it must be trivial.

Therefore M(g) = x− g(x) so it is the trivial cocycle.

2. Let M ∈ H1(HK ,GL(d,Cp)). By continuity, since HK is compact, it must be that ImM is also
compact. But (1+$2

K Md(OCp))∩ ImM is an open subgroup of the compact ImM and so ImM/((1+
$2
K Md(OCp)) ∩ ImM) is discrete. Therefore we may find L/K finite Galois such that M(HL) ⊂

1 +$2
K Md(OCp).

As before, applying Lemma 2.23 successively we obtain for n ≥ 2 matrices Nn ∈ 1 + $n−1
K Md(OCp)

and N =
∏
n≥2

Nn will converge giving M(g) = Ng(N)−1 the trivial cocycle in H1(HL, 1+$2
K Md(OCp).

Consider now the inflation-restriction sequence (Theorem 1.21):

1→ H1(HK/HL,GL(d,Cp)HL)
inf−→ H1(HK ,GL(d,Cp))

res−→ H1(HL,GL(d,Cp))

We have already established that res(M) = 1 and soM = inf(N) for someN ∈ H1(HK/HL,GL(d,Cp)HL) =

H1(GL∞/K∞ ,GL(d, L̂∞)) (an application of Ax-Sen-Tate). But L∞/K∞ is a finite extension and there-

fore H1(GL∞/K∞ ,GL(d, L̂∞)) = {1} by Hilbert 90 which gives M = inf(N) = 1.
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2.3.8 Tate periods: degree 1

Theorem 2.25. Let η : GK → Z×p be a continuous character such that η(HK) = 1. Then

H1(GK ,Cp(η)) =

{
0 η has infinite order

K · logχcycl η has finite order

where log : Z×p → Zp is the logarithm map from Problem set 2.

Proof. By inflation restriction for HK ⊂ GK and ΓK ∼= GK/HK we get

1→ H1(ΓK ,Cp(η)HK )→ H1(GK ,Cp(η))→ H1(HK ,Cp(η))

But Cp(η)HK = K̂∞(η) by Ax-Sen-Tate and H1(HK ,Cp(η)) = H1(HK ,Cp) = 0 by Proposition 2.24 and the
fact that η(HK) = 1. We conclude that

H1(GK ,Cp(η)) ∼= H1(ΓK , K̂∞(η))

∼= K̂∞(η)/(1− γ)K̂∞(η)

where γ is a topological generator of the procyclic group ΓK (by Proposition 1.22).

When η has infinite order Proposition 2.22 implies that 1 − γ is surjective on K̂∞(η) and so that

H1(GK ,Cp(η)) ∼= K̂∞(η)/(1− γ)K̂∞(η) = 0.
When η has finite order Lemma 2.17 shows that Cp(η) ∼= Cp so we need to compute H1(GK ,Cp) ∼=

H1(ΓK , K̂∞) ∼= K̂∞/(1− γ)K̂∞. But we’ve seen that 1− γ is surjective on K⊥n in the proof of Proposition

2.22 and so K̂∞/(1− γ)K̂∞ = Kn/(1− γ)Kn.
Consider the map K → Kn/(1 − γ)Kn obtained by inclusion and then projection. If the map were not

injective one could find a nonzero x ∈ K such that x = (1 − γ)(y) for some y ∈ Kn. Let γn = γs in which
case we would have [Kn : K]x = TrKn/K(x) = (1 + γ + · · ·+ γs−1)(x) = (1− γs)(y) = 0 as y ∈ Kn which is
fixed by γn = γs. Therefore the map is injective.

Since ΓK/ΓKn
∼= GKn/K and ΓKn fixes Kn, inflation-restriction gives an exact sequence

1→ H1(GKn/K ,Kn)→ H1(ΓK ,Kn)→ H1(ΓKn ,Kn)GKn/K

But Hilbert 90 shows that H1(GKn/K ,Kn) = 0 and so we get an injection

Kn/(1− γ)Kn
∼= H1(ΓK ,Kn) ↪→ H1(ΓKn ,Kn)GKn/K ∼= (Kn/(1− γn)Kn)GKn/K = K

GKn/K
n = K

and it follows from the explicit construction of the isomorphism H1(ΓK ,Kn) ∼= Kn/(1− γ)Kn that if x ∈ K
has image x in Kn/(1− γ)Kn then res(x) ∈ K is equal to x.

Explicitly, the isomorphism K ∼= Kn/(1− γ)Kn
∼= H1(ΓK ,Kn) is given by

x 7→ (γr 7→ (1 + γ + · · · γr−1)(x))

which is cohomologous to γr 7→ rx. But this can also be written as

γr 7→ logχcycl(γ
r)

logχcycl(γ)
x

which is a scalar multiple of g 7→ logχcycl(g).

Corollary 2.26. If m 6= n and V ∈ RepCp(GK) such that 0 → Cp(m) → V → Cp(n) → 0 then V =
Cp(m)⊕ Cp(n).

Proof. Twist by Cp(−n) and get 0→ Cp(m−n)→ V (−n)→ Cp → 0 which extensions are in bijection with
cohomology classes in H1(GK ,Cp(m− n)) = 0.

Remark 10. We will see later that the Tate curve provides a nonsplit sequences 0→ Qp(1)→ V → Qp → 0
which doesn’t even split over Qp.
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2.3.9 Tate periods: degree ≥ 2

This section was not covered in class, and was included here at the same time as §5.6, since it is necessary
for Proposition 5.66. These results are adapted from [3, 14.3.1, 14.3.2].

Lemma 2.27. Let n ≥ 2 and m ∈ Z.

1. If M ∈ Hn(HK , p
mOCp) there exists a cochain N ∈ Cn−1(HK , p

n−1OCp) such that M − dN ∈
Hn(HK , p

m+1OCp).

2. Hn(HK ,Cp) = 0.

Proof. 1. Let L/K finite and let α such that TrL∞/K∞(α) = 1 with v(α) > −v(p) as in the proof of
Lemma 2.23. For a set of representatives T of HK/HL let

NT (g1, . . . , gn−1) := (−1)n
∑
h∈T

(g1 · · · gn−1h)(α)M(g1, . . . , gn−1, h)

We now compute

(dNT )(g1, . . . , gn) = g1(NT (g2, . . . , gn)) +
n−1∑
j=1

(−1)jNT (g1, . . . , gjgj+1, . . . , gn) + (−1)nNT (g1, . . . , gn−1)

= (−1)n
∑
h∈T

g1 · · · gnh(α)

g1(M(g2, . . . , gn, h)) + (−1)j
n−1∑
j=1

M(g1, . . . , gjgj+1, . . . , gn, h)


+ (−1)nNT (g1, . . . , gn−1)

= (−1)n
∑
h∈T

g1 · · · gnh(α) ((dM)(g1, g2, . . . , gn, h) + (−1)nM(g1, . . . , gn)

− (−1)nM(g1, . . . , gn−1, gnh)) + (−1)nNT (g1, . . . , gn−1)

Trα=1,dM=0
= −

∑
h∈T

g1 · · · gnh(α)M(g1, . . . , gn−1, gnh) +M(g1, . . . , gn)

+ (−1)nNT (g1, . . . , gn−1)

(M − dNT )(g1, . . . , gn) =
∑
h∈T

g1 · · · gn−1 (gnh(α)M(g1, . . . , gn−1, gnh)− h(α)M(g1, . . . , gn−1, h))

but HL is normal in HK so h−1gnh ∈ HL acts trivially on α so we may rewrite the above as

(M − dNT )(g1, . . . , gn) =
∑
h∈T

g1 · · · gn−1h(α) (M(g1, . . . , gn−1, gnh)−M(g1, . . . , gn−1, h))

Now we choose the finite extension L/K. For each h ∈ HK by continuity of the cochain M there exists
a finite extension Lh/K such that for g1, . . . , gn ∈ HLh we have

M(g1, . . . , gn−1, gnh)−M(g1, . . . , gn−1, h) ∈ pn+2OCp

Since HLh is open, Uh = (1, . . . , 1, h)HLh is open in Hn
K . But the opens Uh cover the compact

1× · · · × 1×HK and so there exists a finite subcover Uh1
, . . . , Uhk . Let L = Lh1

· · ·LHk . Then for all
h ∈ HK and g1, . . . , gn ∈ HL there exists an hi such that h, gnh ∈ HLhi

hi in which case

M(g1, . . . , gn−1, gnh)−M(g1, . . . , gn−1, hi) ∈ pn+2OCp

M(g1, . . . , gn−1, h)−M(g1, . . . , gn−1, hi) ∈ pn+2OCp
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and so
M(g1, . . . , gn−1, gnh)−M(g1, . . . , gn−1, h) ∈ pn+2OCp

Since v(α) > −v(p) we deduce that (M − dNT )(g1, . . . , gn) ∈ pn+1OCp and NT (g1, . . . , gn−1) ∈
pn−1OCp .

2. Let M ∈ Hn(HK ,Cp). By continuity there exists m0 such that M ∈ Hn(HK , p
m0OCp). Using the

first part for each m ≥ m0 we construct Nm ∈ Cn(HK , p
m−1OCp) such that M −

∑m
k=m0

dNk ∈

Hn(HK , p
m+1OCp). But then N =

∞∑
k=m0

Nk converges and M − dN ∈ Hn(HK , p
m+1OCp) for all

m ≥ m0 and so M = dN is trivial as a cohomology class.

2.4 Sen theory

2.4.1 Hodge-Tate representations

We start with a bit of notation. For a representation V ∈ RepCp(GK) and an integer n let V {n} = V (n)GK =

{v ∈ V |g(v) ∼= χcycl(g)−nv,∀g ∈ GK}. The beginnings of Hodge-Tate theory is the following lemma due to
Serre and Tate:

Lemma 2.28 (Serre-Tate). Let V ∈ RepCp(GK). Then there exists a natural map

ξV :
⊕
n

(Cp(−n)⊗ V {n})→ V

and the map ξV is injective.

Proof. For immediate proof see [3, Lemma 2.3.1]. The statement will follow from the formalism of admissible
representations, specifically Theorem 3.7.

The map ξV is called a comparison map and nice things happen when it is an isomorphism:

Definition 2.29. A representation V ∈ RepCp(GK) is said to be Hodge-Tate if the comparison map ξV is
an isomorphism. The Hodge-Tate weights of a Hodge-Tate representation V are the integers n such that
V {n} 6= 0.

Remark 11. If V ∈ RepCp(GK) in the Grothendieck ring is a sum of Cp(n) with distinct n then Corollary
2.26 implies that V is a Hodge-Tate representation. However, it is not necessarily true if the Hodge-Tate
weights are not distinct, and there are extensions 0→ Cp → V → Cp → 0 with V not Hodge-Tate.

Remark 12. Hodge-Tate representations can be thought of in two ways: the first, as forming a category,
is a special instance of a category of “admissible” representations, which we study in the next section; the
second, which we pursue in the remainder of this section, is as special types of Cp representations where a
certain matrix (the Sen operator) is diagonalizable with integer eigenvalues. Both points of view are crucial
in p-adic Hodge theory, the first one because it leads to many classes of admissible representations, such as
de Rham, crystalline, semistable, etc, while the second because it ties the Galois representations arising from
geometry to p-adic differential equations.

2.4.2 Galois descent

The Galois descent procedure of Sen theory is that Cp representations should be the same thing as K̂∞
representations.

Lemma 2.30. H1(GK ,GL(d,Cp)) ∼= H1(ΓK ,GL(d, K̂∞)).

Proof. This follows from the inflation-restriction sequence and Proposition 2.24.
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2.4.3 Decompletion

Consider the natural mapH1(ΓK ,GL(d,K∞))→ H1(ΓK ,GL(d, K̂∞)). The main result of this section is that
this map is an isomorphism, a procedure known as “decompletion” because it takes Galois representations
over the completion K̂∞ to Galois representations over K∞. The way to show this is to use Tate’s normalized
maps to approximate cocycles over the infinite cyclotomic extension by finite ones, where completion does
nothing. As such, this section is a careful combination of the approximation estimates from the previous
sections on the normalized traces.

Lemma 2.31. 1. The limit lim−→H1(ΓK ,GL(d,Kn)) is identified with isomorphism classes of V ∈ RepK∞(ΓK)
for which there exists some n and Vn ∈ RepKn(Γn) such that V = K∞ ⊗Kn Vn.

2. The natural map lim−→H1(ΓK ,GL(d,Kn))→ H1(ΓK ,GL(d,K∞)) is an isomorphism

Proof. This is [3, Exercise 14.4.4]

Lemma 2.32. Let K, v be a field with valuation. For a matrix M = (mij) ∈ Md(K) define v(M) =
mini,j v(mij).

1. Then

v(MN) ≥ v(M) + v(N)

v(M +N) ≥ min(v(M), v(N))

2. With the notation of Lemma 2.20, if M ∈ Md(K
⊥
m) then

vp(M) > vp((1− γm)(M))− C

where C is some constant larger than 1 +

∞∑
k=n

αk
pk

<∞.

Proof. 1. Straightforward.

2. Since M ∈ Md(K
⊥
m) we have M = M − prm(M) and so by Lemma 2.20

vp(M) = vp(M − prm(M))

= min vp(mij − prm(mij))

> min vp((1− γm)(mij)− C
= vp((1− γm)(M))− C

We next prove a lemma on approximating matrices over K̂∞ with matrices over Kn.

Lemma 2.33. Let A = max(αnp
−n) and let C as in the previous proposition. Let M ∈ Md(K̂∞), which we

will approximate by matrices over Kn, for n large enough.

1. Suppose M ∈ GL(d, K̂∞) is a matrix such that γn(M) = U1MU2 where U1, U2 ∈ 1+pC Md(Kn). Then
M ∈ GL(d,Kn).

2. Assume that M can be written as a sum M = 1+Mn+M∞ where Mn ∈ Md(Kn) and M∞ ∈ Md(K̂∞)
(here M∞ can be thought of as the defect of writing M over Kn) with the property that vp(Mn) > A+2C

and vp(M∞) ≥ vp(Mn) + A. Then there exists B ∈ Md(K̂∞) such that vp(B − 1) ≥ vp(M∞)− A− C
and B−1Mγn(B) = 1 + Nn + N∞ where Nn ∈ Md(Kn), N∞ ∈ Md(K̂∞) such that vp(Nn) ≥ vp(Mn)
and vp(N∞) ≥ vp(M∞) + vp(Mn)−A− 2C (the new defect N∞ has smaller norm than the old defect
M∞).
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3. If vp(M − 1) > 2A + 2C there exists B ∈ Md(K̂∞) such that vp(B − 1) ≥ vp(M − 1) − A − C and
B−1Mγn(B) ∈ Md(Kn).

Proof. 1. Write Mn = M − prn(M) ∈ Md(K
⊥
n ). Then, since γn commutes with prn we have

(1− γn)(Mn) = Mn − U1MnU2

= (U1 − 1)Mn(U2 − 1)− (U1 − 1)MnU2 − U1Mn(U2 − 1)

vp((1− γn)(Mn)) ≥ min vp((U1 − 1)Mn(U2 − 1)), vp((U1 − 1)MnU2),

vp(U1Mn(U2 − 1))

≥ vp(Mn) + C

If Mn 6= 0 then this contradicts Lemma 2.32 and so M = prn(M) ∈ Md(Kn).

Similarly one may show that M−1 = prn(M−1) and so that M ∈ GL(d,Kn)

2. Let N = (1 − γn)−1(M∞ − prn(M∞)) which exists as M∞ − prn(M∞) ∈ Md(K
⊥
n ). Let Nn = Mn +

prn(M∞), B = 1 +N and N∞ = (M − 1)γn(N)−N(M − 1)−NMγn(N) + (B−1 +N − 1)Mγn(B).
Checking that these choices work is a matter of applying Lemma 2.20 and Proposition 2.16. For details
see [3, Lemma 14.2.4].

3. We will use the second part to construct better and better approximations of M over Kn. Let M
(1)
n = 0

and M
(1)
∞ = M − 1. Applying the first part of this lemma recursively we get matrices Bk such that

• vp(Bk − 1) ≥ (k + 1)(vp(M − 1)− 2A− 2C) +A+ C and

• (B0 · · ·Bk)−1Mγm(B0 · · ·Bk) = 1+M
(k)
n +M

(k)
∞ with vp(M

(k)
n ) ≥ vp(M −1)−A and vp(M

(k)
∞ ) ≥

vp(M − 1) + k(vp(M − 1)− 2A− 2C).

Let B = lim
k→∞

B0 · · ·Bk (which converges by the condition on Bk) in which case we would have

B−1Mγm(B) = 1 + Mn + M∞ with Mn ∈ Md(Kn) and M∞ infinitely divisible by p and so
M∞ = 0. For details see [3, Lemma 14.2.5].

Proposition 2.34. The natural map H1(ΓK ,GL(d,K∞))→ H1(ΓK ,GL(d, K̂∞)) is injective.

Proof. By Lemma 2.31 it is enough to show that H1(ΓK ,GL(d,Kn)) ↪→ H1(ΓK ,GL(d, K̂∞)). Suppose this
map is not injective, i.e., there exist cocycles U,U ′ ∈ H1(ΓK ,GL(d,Kn)) such that they become cohomolo-

gous over K̂∞, i.e., there exists a matrix B ∈ GL(d, K̂∞) such that for g ∈ ΓK one has U ′(g) = B−1U(g)g(B)
which we rewrite at g(B) = U(g)−1BU ′(g).

The cocycles U and U ′ are continuous and ΓKm form a neighborhood basis of the identity in ΓK so for
m >> 0 one has U(γm), U ′(γm) ∈ 1 + pC Md(OCp) where C is as in Lemma 2.32. These choices imply that
vp(U(γm)) = vp(U

′(γm)) = 0 and that vp(U(γm)−1 − 1) ≥ C and vp(U
′(γm)− 1) ≥ C.

Applying the first part of Lemma 2.33 we deduce that B ∈ GL(d,Km), which shows that U and U ′ are
cohomologous in H1(ΓK ,GL(d,K∞)).

Theorem 2.35. We have H1(ΓK ,GL(d,K∞)) ∼= H1(ΓK ,GL(d, K̂∞)).

Proof. Injectivity is the content of Proposition 2.34. Now surjectivity. Let U ∈ H1(ΓK ,GL(d, K̂∞)). For
m >> 0 we have vp(U(γm)− 1) > 2A+ 2C as ΓKm form a neighborhood basis of identity in ΓK . Now the
the third part of Lemma 2.33 shows that U ′(γm) = B−1U(γm)γm(B) ∈ GL(d,Km).

If γ is a topological generator of ΓK we still need to show that U ′(γ) is defined over K∞. Recall that γm =
γs for some s and thus γγm = γmγ. Thus U ′(γ)γ(U ′(γm)) = U ′(γγm) = U ′(γmγ) = U ′(γm)γm(U ′(g)) and so

γm(U ′(γ)) = U ′(γm)−1U ′(γ)γ(U ′(γm)). Appyling the first part of Lemma 2.33 gives that U ′(γ) ∈ GL(d, K̂m)

as well. This implies that U ′ ∈ H1(ΓK ,GL(d,Km)) and U ′ is cohomologous to U in H1(ΓK ,GL(K̂∞)).
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2.4.4 Sen Theory

This section is an overview of the main results of Sen theory, with no proofs, as they are easily readable in
[3].

Theorem 2.36. Let V ∈ RepCp(GK) of dimension d ≥ 1. Then one can find uniquely DSen(V ) ∈
RepK∞(ΓK) a K∞ submodule of V such that K̂∞⊗K∞DSen(V ) ∼= V HK (and thus that Cp⊗K∞DSen(V ) ∼= V ).
Moreover, DSen(V ) descends to some Kn.

Proof. This is [3, Theorem 15.1.2]. Existence follows from Theorem 2.35 and the interpretation in Lemma
2.31 of the cohomology of GL(d) as isomorphism classes of Galois representations.

Proposition 2.37. It can be shown that DSen : RepCp(GK) → RepK∞(ΓK) is a fully faithful functor that
respect direct sums and tensor products.

Proof. This is [3, Lemma 15.1.3] and [3, Proposition 15.1.4]. The compatibility properties follow from the
uniqueness of DSen.

Theorem 2.38. For D ∈ RepK∞(ΓK) there exists a unique K∞-linear operator ΘD,Sen, called the Sen opera-
tor, which has the property that for all v ∈ D for m >> 0 and g ∈ ΓKm one has g(v) = exp(log(χcycl(g))ΘD,Sen)(v).

Proof. Fixing a basis of D let U ∈ H1(ΓK ,GL(d,K∞)) be the cocycle describing the action of ΓK on this
basis. Then if U is defined over some Kn then one may check that

ΘD,Sen(v) =
log(U(γn)(v))

log(χcycl(γn))

gives a well-defined operator. Then one must shrink ΓKn to ΓKm where m depends on v in order to make
sense of exp, which has a smaller radius of convergence than log (see problem set 2).

Proposition 2.39. The Galois representation of ΓK on D ∈ RepK∞(ΓK) seem to be, via Theorem 2.38,
encoded in the Sen operator. Let SK∞ be the category of finite dimensional K∞ vector space with K∞-linear
endomorphisms. While the functor taking the ΓK representation D to (D,ΘD,Sen) ∈ SK∞ is neither fully
faithful nor essentially surjective, it does however detect isomorphisms in the sense that D1, D2 ∈ RepK∞(ΓK)
are isomorphic if and only if (D1,ΘD1,Sen) and (D2,ΘD2,Sen) are isomorphic.

Proof. This is [3, Corollary 15.1.13]

Corollary 2.40. Let V ∈ RepQp(GK). Then Cp⊗K (Cp⊗Qp V )GK ∼= Cp⊗Qp V if and only V is potentially
unramified, i.e., there exists a finite extension L/K such that IL acts trivially on V .

Proof. We will only show this in the case when HK acts trivially on V , the general case requiring the study
of the cohomology of kerV (assuming that V is not potentially trivial) instead of HK , via the general Tate-
Sen formalism. Writing W = Cp ⊗Qp V suppose Cp ⊗K WGK ∼= W . Thus DSen(W ) ∼= DSen(Cp ⊗K WGK )
where on the right hand side GK acts only on Cp coefficients, but not on a basis of WGK . This gives that
the associated cocycle to V is trivial, being cohomologous to B−1g(B) for B ∈ GL(d,Cp). The triviality

of the action of HK gives B ∈ GL(d, K̂∞). If DSen descends to Kn get that B ∈ GL(d,Kn) and so get
Kn ⊗Qp V ⊗KdimV

n . But then restricting to GKn gives trivial action on V .

Lecture 9
2012-01-27

It turns out that while the functor DSen is not fully faithful the category SK∞ is sufficiently rich to detect
Hodge-Tate representations:

Proposition 2.41. Let V ∈ RepCp(GK). Then V is Hodge-Tate if and only if ΘDSen(V ),Sen is diagonalizable
with integer eigenvalues. In that case these eigenvalues are the Hodge-Tate weights.
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Example 2.42. We have seen that the nonvanishing ofH1(GK ,Cp) = K logχcycl gives a nontrivial extension

0 → Cp → V → Cp → 0 on which GK acts via the matrix

(
1 logχcycl

1

)
. This representation, not being

isomorphic to Cp ⊕ Cp is not Hodge-Tate, and

ΘDSen,Sen(V ) =

(
0 1

0

)
which follows from the formula defining the Sen operator.

3 Admissible Representations

3.1 The category of Hodge-Tate representations

3.1.1 Basics

Recall that W ∈ RepCp(GK) was defined to be Hodge-Tate if the comparison morphism

ξW :
⊕
n

Cp(−n)⊗Cp W →W

was an isomorphism. Write RepHT
Cp (GK) for the full subcategory of RepCp(GK) consisting of objects which

are Hodge-Tate and let RepHT
Qp (GK) be the full subcategory of RepHT

Qp (GK) consisting of objects W such

that W ⊗Qp Cp ∈ RepHT
Cp (GK).

For W ∈ RepCp(GK) the K-vector spaces W{n} can be thought of as the graded pieces of the graded

vector space
⊕
n

W{n}. Therefore we now introduce some categories of vector spaces.

3.1.2 Graded vector spaces

Let GrVectK be the category of graded vector spaces, i.e., of vector spaces W over K together with a

grading W =
⊕
n

grnW where grnW is a K-subvector space. Morphisms in this category are morphisms

f : W1 → W2 of vector spaces such that f : grnW1 → grnW2 for all n. A graded ring is a ring R with a
grading gr•R such that 1 ∈ gr0R and grmR · grnR ⊂ grm+nR.

The category GrVectK has

1. direct sums,

2. tensor products: (W1, gr•W1)⊗K (W2, gr•W2) = (W1⊗KW2, gr•(W1⊗KW2)) where grn(W1⊗KW2) =∑
i+j=n

griW1 ⊗K grjW2,

3. linear duals: (W, gr•W )∨ = (W∨, gr•W∨) where grnW∨ = (gr−nW )∨),

4. kernels: if T : W ′ → W is a morphism in GrVectK then (kerT, gr•(kerT ) ∈ GrVectK where
grn(kerT ) = kerT ∩ grnW ′,

5. cokernels: if W ′ → W is a morphism in GrVectK then (cokerT ′, gr•(cokerT )) ∈ GrVectK where
grn(cokerT ) = (grnW + T (W ′))/T (W ′).

The category GrVectK is an abelian category.
In concordance with the notation of [3, §2.4], we will write K〈n〉 for the graded vector space K with

grmK = K if m = n and 0 otherwise. Then K〈m〉 ⊗K K〈n〉 ∼= K〈m+ n〉 and K〈m〉 ∼= K〈−m〉.
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3.1.3 Filtered modules

Let R be a commutative ring. Let FilModR be the category of (separated and exhaustive) filtered R-
modules, i.e., of R-modules W together with descending filtrations . . . ⊃ FilnW ⊃ Filn+1W ⊃ . . . such that
FilnW = W for n << 0 (exhaustive) and FilnW = 0 for n >> 0 (separated). Morphisms in this caregory
are morphisms f : W1 →W2 of R-modules such that f : FilnW1 → FilnW2 for all n. A filtered ring is a ring
R with a separated and exhaustive filtration FilnR such that 1 ∈ Fil0R and FilmR · FilnR ⊂ Film+nR. If
K is a vector space write FilVectK instead of FilModK .

The category FilVectK has

1. direct sums,

2. tensor products: (W1,Fil•W1) ⊗R (W2,Fil•W2) = (W1 ⊗R W2,Fil•(W1 ⊗R W2)) where Filn(W1 ⊗R
W2) =

∑
i+j=n

FiliW1 ⊗R FiljW2,

3. linear duals: (W,Fil•W )∨ = (W∨,Fil•(W∨)) where Filn(W∨) = {v∨ ∈W∨|Fil1−nW ⊂ ker v∨}.

4. kernels: if T : W ′ → W is a morphism in FilVectK then (kerT,Fil•(kerT )) ∈ FilVectK where
Filn(kerT ) = kerT ∩ FilnW ′,

5. cokernels: if T : W ′ → W is a morphism in FilVectK then (kerT,Fil•(cokerT )) ∈ FilVectK where
Filn(cokerT ) = (FilnW + T (W ′))/T (W ′).

However, FilVectK is not an abelian category.
There is a functor gr• : FilVectK → GrVectK taking (W,Fil•W ) to (W, gr•W ) where grnW = FilnW/Filn+1W .
If W ∈ FilVectK and d ∈ Z let W [d] ∈ FilVectK be the vector space W with the filtration FilnW [d] =

Filn+dW . Then W [n]∨ = W∨[−n].

3.1.4 Reformulating the comparison morphism

We have not proven Lemma 2.28 but will reformulate it in a way which will make it amenable to the notation
of Theorem 3.7.

Let BHT =
⊕

nCp(n) which is a graded ring (via Cp(m)⊗CpCp(n) ∼= Cp(m+n)) with a GK action. Then

we may obtain the graded vector space
⊕
n

W{n} = (BHT⊗CpW )GK ∈ GrVectK . Then we get a natural

morphism

αHT,W : BHT⊗K

(⊕
n

W{n}

)
→ BHT⊗CpW

which is simply αHT,W =
⊕
n

ξW (n) where ξW (n) is the Tate twist of ξW by χncycl. Then the injectivity of

ξW will follow from that of αHT,W from Theorem 3.7. In fact one may recover ξW = gr0 αHT,W .
As a matter of preliminary notation we write (now for W ∈ RepQp(GK), and D ∈ GrVectK)

DHT(W ) = (BHT⊗QpW )GK

VHT(D) = gr0(BHT⊗KD)

which of course makes sense as GrVectK has tensor products, in which case ξW : VHT(DHT(W ))→W .
The formalism of admissible representations will generalize the functors (we don’t know they are functors

yet) DHT and VHT to more general rings than BHT, rings which we describe next.
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3.2 Regular rings

The setup is the following: G is a group, F is a field, B is an integral F -algebra with an action of G, and
BG is a field.

Definition 3.1. The algebra B is (F,G)-regular if the following two conditions are satisfied:

1. (FracB)G = BG, and

2. if b ∈ B is nonzero and F · b is G-stable then b ∈ B×.

Example 3.2. If B is a field then B is (F,G)-regular.
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Proposition 3.3. The ring BHT is (Qp, GK)-regular.

Proof. Certainly BGKHT = K (by Ax-Sen-Tate) is a field. To tackle the first condition of regularity it is useful to
consider the isomorphism BHT

∼= Cp[T ] where GK acts on T via g(T ) = χcycl(g)T . Then Frac BHT ⊂ Cp((T ))
so we need to check that Cp((T ))GK = K. But if f(T ) =

∑
n≥n0

anT
n is GK invariant then an ∈ Cp(n)GK

for all n and so f(T ) = a0 ∈ CGKp = K = BGKHT by Ax-Sen-Tate.
Now for the second condition of regularity, let f(T ) ∈ BHT 6= 0 give a GK stable line f(T )Qp on which

GK acts via a character η : GK → Q×p . Thus

g(

∞∑
n=0

anT
n) =

∑
n

g(an)χncycl(g)Tn

=
∑
n

η(g)anT
n

which gives an ∈ Cp(χncyclη
−1)GK . Suppose that for some n one has an 6= 0 which implies that dimK Cp(χncyclη

−1)GK =

1 = dimCp(χncyclη
−1). But then Corollary 2.40 implies that χncyclη

−1 is potentially unramified. Since χcycl

is infinitely ramified it follows that this condition can be satisfied only for one n.
However, we did not give a proof of Corollary 2.40 and an alternative is the following. Since an 6= 0 it

follows that Cp(χncyclη
−1)GK 6= 0. Therefore DSen(Cp(χncyclη

−1)) = K∞ and so Cp(χncyclη
−1) ∼= Cp. But then

if m 6= n then Cp(χmcyclη
−1)GK ∼= Cp(m− n)GK = 0 by the Ax-Sen-Tate theorem and so am = 0.

The final conclusion is that f(T ) = anT
n which is invertible.

3.3 Admissible representations

Definition 3.4. Suppose V ∈ RepF (G) and B is a (F,G)-regular ring. Then

DB(V ) = (B ⊗F V )G

is the associated Dieudonné module.

Remark 13. One has a natural comparison morphism

αB,V : B ⊗E DB(V ) ∼= B ⊗E (B ⊗F V )G → B ⊗E (B ⊗F V ) ∼= (B ⊗E B)⊗F V → B ⊗F V

Proposition 3.5. 1. Let B be a (F,G)-regular ring and V ∈ RepF (G). Then αB,V is injective.

2. dimE DB(V ) ≤ dimF V with equality if and only if αB,V is an isomorphism.
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Proof. 1. Let d1, . . . , dn be the smallest number of linearly independent elements in DB(V ) such that
there exist bi 6= 0 with αB,V (

∑
bi ⊗E di) =

∑
bidi = 0. Since the di are G-invariant for all g ∈ G get∑

g(bi)di = 0. Dividing by b1 get

d1 +
∑ bi

b1
di = 0

d1 +
∑

g

(
bi
b1

)
= 0

Subtracting and using the minimality of n we get that for all g

bi
b1

= g

(
bi
b1

)
so

bi
b1
∈ (FracB)G = BG = E by regularity. But then

n∑
i=2

bi
b1
di = 0

is an identity in DB(V ) which contradicts the independence of di.

2. The above proof also shows that αB,V ⊗B FracB is injective and a comparison of FracB dimensions
gives that dimE DB(V ) ≤ dimF V . Suppose now that dimE DB(V ) ≤ dimF V . Let ei be an E-basis
of DB(V ) and vj an F -basis of V and let αV (e) = Av where A is a matrix with detA ∈ (FracB)×.
To show that αV is an isomorphism (over B not only over FracB) is suffices to show that detA ∈ B×
and for that it is enough to show that F · detA is G-stable, by regularity. But the ei are G-invariant
and so detαB,V (e1 ∧ . . . ∧ ed) = detAv1 ∧ . . . vd is also G-invariant. Thus G acts on F · detA via the
inverse of the determinant of the action of G on V , and so F · detA is G-stable.

Definition 3.6. A representation V ∈ RepF (G) is said to be B-admissible if αV is an isomorphism. Write
RepBF (G) for the full subcategory of RepF (G) of representations which are B-admissible.

Theorem 3.7. Let B be (F,G)-regular and V ∈ RepF (G).

1. DB : RepBF (G)→ VectE is a covariant, exact and faithful functor to the category of finite dimensional
E-vector spaces.

2. Every subrepresentation or quotient of a B-admissible representation is B-admissible.

3. If V, V ′ are B-admissible then DB(V )⊗E DB(V ′) ∼= DB(V ⊗F V ′) and V ⊗F V ′ is also B-admissible.

4. Exterior and symmetric powers preserve B-admissibility and commute with DB.

5. If V is B-admissible then V ∨ is B-admissible and DB(V ) ⊗E DB(V ∨) → DB(F ) = E is a perfect
duality.

Proof. 1. DB is clearly covariant. To show exactness on RepBF (G), note that if 0→ U → V →W → 0 is
an exact sequence of F -representations then also 0→ B⊗F U → B⊗F V → B⊗F W → 0 is exact and
thus 0→ B⊗E DB(U)→ B⊗E DB(V )→ B⊗E DB(W )→ 0 is exact and so 0→ DB(U)→ DB(V )→
DB(W ) → 0 is exact as E-vector spaces. That DB is faithful follows from the fact that if DB(f) = 0
then f = 0 on B ⊗F V and by left exactness of tensoring with B it follows that f = 0 on V .

2. Let 0 → V ′ → V → V ′′ → 0 such that V is B-admissible. Then by left exactness of DB on RepF (G)
it follows that dimE DB(V ) ≤ dimE DB(V ′) + dimE DB(V ′′). But the left hand side is dimF V =
dimF V

′ + dimF V
′′ while the right hand side is ≤ dimF V

′ + dimF V
′′ by Proposition 3.5. Thus V ′

and V ′′ are both B-admissible.
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3. The image of DB(V )⊗E DB(V ′)→ (B⊗F V )⊗E (B⊗F V ′)→ B⊗F (V ⊗F V ′) is G=invariant and so
factors through DB(V ⊗ V ′). Since dimE DB(V ) ⊗E DB(V ′) = dimF V dimF V

′ while dimE DB(V ⊗
V ′) ≤ dimF V dimF V

′ it is enough to show that this map is injective. It is enough to check this after
tensoring with B (as B is an algebra over a field) in which case the map is B⊗E DB(V )⊗E DB(V ′) ∼=
(B ⊗E DB(V ))⊗B (B ⊗E DB(V ′))→ B ⊗E (V ⊗F V ′) is simply αV ⊗B αV ′ .

4. If V is B-admissible then V ⊗r is B-admissible by the previous part. Then ∧rV is a quotient and so is
B-admissible. Similarly for Symr V .

5. Let V be B-admissible of dimension d. There exists a natural isomorphism

det(V ∨)⊗F ∧d−1V ∼= V ∨

given by (x1 ∧ . . . ∧ xd) ⊗ (y2 ∧ . . . ∧ yd) 7→ (y1 7→ det(xi(yj)). Therefore it is enough to show that
det(V ∨) is B-admissible. Therefore it is enough to show this part for d = 1 as detV is B-admissible.

Let V = F · e with respect to which the action of G is given by the character η : G → F×. Let
DB(V ) = E · (b⊗ e) for some b ∈ B and G-invariance of b⊗ e gives η(g) = bη(b)−1. Then DB(V ∨) =
E · (b−1 ⊗ e∨).

The pairing arises as the composition DB(V )⊗EDB(V ∨) ∼= DB(V ⊗V ∨)→ DB(F ) = E. Its perfectness
is immediate when dimF V = 1. In general, the perfectness of the pairing is equivalent to the perfectness
of the pairing ∧d DB(V ) ⊗E ∧d DB(V ∨) ∼= DB(∧dV ⊗F ∧dV ∨) → E. (A bilinear pairing given by a
matrix A is perfect if and only if detA 6= 0.) The perfectness of the latter follows from the one
dimensional case.

Example 3.8. 1. Hodge-Tate representations are the BHT-admissible ones.

2. By Corollary 2.40 a Qp representation V is Cp-admissible if and only if it is potentially unramified.

3. A much easier statement, which boils down to Hilbert 90, is that V is Qp-admissible if and only if V
is potentially trivial.

4. There is a Qp subalgebra BSen of Cp[[u]] (where GK acts semilinearly via g(u) = u+ logχcycl(g)) such
that DSen = DBSen

. See the third problem set.

5. Other examples for B, some to be studied, are BdR giving de Rham representation, Bcris giving crys-
talline representations, Bst giving semistable representations, Esep giving Fp representations, Ôur

E giving

Zp representations and Êur giving Qp representations.

Lecture 11
2012-02-01

3.4 Hodge-Tate again

Since the ring BHT is (Qp, GK) is regular we get the functor DHT satisfying all the properties of the previous
section. However, BHT is also a graded ring.

Definition 3.9. Let grn DHT(V ) = V {n}. Then (DHT(V ), gr•DHT(V )) ∈ GrVectK . For D ∈ GrVectK let
VHT(D) = gr0(BHT⊗KD).

Proposition 3.10. The functors DHT : RepHT
Cp (GK) → GrVectK and VHT : GrVectK → RepHT

Cp (GK) are
quasi-inverse and they provide an equivalence of categories.
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Proof.

VHT(DHT(V )) = gr0(BHT⊗K DHT(V ))

∼= gr0(BHT⊗CpW )

∼= gr0(BHT)⊗Cp W
∼= W

and if (D, gr•D) ∈ GrVectK one has

DHT(VHT(D)) = ⊕r,q(Cp(r)⊗Cp Cp(−q)⊗K grqD)GK

= ⊕r,q(Cp(r − q)⊗Cp grqD)GK

= ⊕r grrD

= D

by Ax-Sen-Tate

Remark 14. DHT : RepHT
Qp (GK)→ GrVectK however is not an equivalence of categories. In fact all potentially

unramified Qp representations have the same image via DHT by Corollary 2.40.

4 de Rham Representations

Proposition 3.10 does not apply in the case of Qp representations as nonisomorphic Qp representations can
become isomorphic over Cp. A finer period ring is necessary for Qp representations. What properties it should
have? Inspiration comes from algebraic de Rham cohomology. It should be a filtered ring, with residue field
Cp and graded ring BHT. Moreover, if m is the maximal ideal one wants the extension m/m2 → B /m2 → B /m
to be nonsplit in order to account for the Tate curve:

The Tate curve (of some parameter q) Eq is an elliptic curve over Qp with multiplicative reduction at p.
Its Tate module gives V = TpEq ⊗Zp Qp ∈ RepQp(GQp) such that 0→ Qp(1)→ V → Qp → 0 is not split. In

fact it does not split over Qp, whereas it splits over Cp (and therefore is Hodge-Tate).

4.1 Witt Vectors

The Witt vectors construction is supposed to generalize the Teichmüller lift [·] : k×K → OK∩Qur
p

.

4.1.1 Definitions

Definition 4.1. Let A be a ring and consider a chain of ideals A ⊃ I1 ⊃ I2 ⊃ . . . such that A/I1 = R is an
Fp algebra and such that In · Im ⊂ In+m. The ring A is said to be a p-ring if it is separated and complete
for the topology defined by (In).

Definition 4.2. A is a strict p-ring if it is a p-ring and moreover if p is not nilpotent in A.

Example 4.3. 1. Zp with In = pnZp is a strict p-ring with residue field Fp, which is perfect.

2. If K/Qp is finite then OK with In = pnOK is a strict p-ring with residue field OK/(p). It is perfect
if and only if K/Qp is unramified. Choosing instead In = $n

KOK gives a p-ring with perfect residue
field kK . It is strict if and only if K/Qp is unramified.

3. OCp with In = pnOCp is a strict p-ring.

4. If J is any index set let SJ = Zp[Xp−m

j ]j∈J,m≥0 and let ŜJ = lim←−SJ/p
nSJ . Then ŜJ is a strict p-ring

with perfect residue field SJ = Fp[Xp−m

j ]j∈J,m≥0.
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4.1.2 Perfect rings

Lemma 4.4. Let A be a p-ring with residue ring R which is an Fp-algebra. Let x = (x0, x1, . . .) with xi ∈ R
such that xpi+1 = xi and let x̂i ∈ A be any lift of xi. Then (x̂n

pn
)n converges to some ψ(x) ∈ A which only

depends on x.

Proof. Check by induction that x̂n
pk ≡ x̂n−1

pk−1

(mod Ik). Indeed, for k = 1 this follows from xpn = xn−1.

Then suppose x̂n
pk

= x̂n−1
pk−1

+ y for y ∈ Ik. Then

x̂n
pk+1

= (x̂n−1
pk−1

+ y)p

= x̂n−1
pk

+

p∑
i=1

(
p

i

)
x̂n−1

ipk−1

yp−i

Since p ∈ I1 (as p = 0 in R) the first term of the sum will be in I1 · Ik ⊂ Ik+1 while all the others will contain

y2 and so will be in Ik · Ik ⊂ I2k ⊂ Ik+1. Thus (x̂n
pn

) will be a Cauchy sequence and so converges to some

limit x̂. If (x̂n
′
) is another choice of lifts then the same proof applies to (x̂1

p
, (x̂2

′
)p

2

, x̂3
p3
, (x̂4

′
)p

4

, . . .) which
will then have the common limit ψ(x).

Corollary 4.5. If R is perfect and α ∈ R then let [α] = ψ(xα) where xα = (α, α1/p, α1/p2 , . . .) exists and is
unique by perfectness. This lift is the Teichmüller lift of α.

Lemma 4.6. If A is a string p-ring with perfect residue ring R then every α ∈ A can be written uniquely as

α =
∑
n≥0

pn[αn]

for αn ∈ R.

Proof. See problem set 3.

4.1.3 Universal Witt polynomials

Lemma 4.7. Let [·] be the Teichmuller lift from the perfect Fp algebra S = Fp[Xp−m

i , Y p
−m

i ]i,m≥0 → Ŝ =

lim←−Zp[Xp−m

i , Y p
−m

i ]i,m≥0/(p
n). There exist “polynomials” Si, P i ∈ S such that∑

i≥0

pi[Xi] +
∑
i≥0

pi[Yi] =
∑
i≥0

pi[Si]∑
i≥0

pi[Xi]

∑
i≥0

pi[Yi]

 =
∑
i≥0

pi[P i]

Proof. This follows from Lemma 4.6 as Ŝ is a strict p-ring with residue algebra S. For example

S0(X0, Y0) = X0 + Y0

S1(X0, X1, Y0, Y1) = X1 + Y1 +
1

p
((X

1/p
0 + Y

1/p
0 )p −X0 − Y0)

and so on.

Remark 15. The polynomials Si are homogeneous of degree 1 inX0, . . . , Xi and again of degree 1 in Y0, . . . , Yi.
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Lemma 4.8. Let J be a set of indices and A a strict p-ring with perfect residue ring R. Let θ : SJ → R be a
homomorphism and θ̃ : SJ → A be any multiplicative lift of θ. Then there exists a unique ring homomorphism
θ̂ : ŜJ → A such that θ([x]) = θ̃(x).

Proof. Define θ : SJ → A to be the ring homomorphism such that θ(Xp−m

i ) = θ̃(Xp−m

i ) for all i and m. Now

θ is uniformly continuous so extends to a ring homomorphism on ŜJ . One may check by induction, using
the multiplicativity of θ̃ as in the proof of Lemma 4.4, that for x ∈ SJ

θ([x]p
k

)− θ̃(xp
k

) ∈ pk+1ŜJ

(The base case uses the fact that θ is a ring homomorphism.) Applying this for xp
−n ∈ SJ and k = n shows

that θ([x])− θ̃(x) ∈ pn+1ŜJ for all n which gives θ([x]) = θ̃(x).
Uniqueness follows from the formula

θ(
∑
i≥0

pi[fi]) =
∑
i≥0

piθ̃(fi)

Proposition 4.9. Let A be a p-ring with perfect residue ring R. If x = (x0, . . .) and y = (y0, . . .) are tuples
of elements in R then ∑

i≥0

pi[xi] +
∑
i≥0

pi[yi] =
∑
i≥0

pi[Si(x, y)]

∑
i≥0

pi[xi]

∑
i≥0

pi[yi]

 =
∑
i≥0

pi[P i(x, y)]

Proof. Consider the ring homomorphism θ : S → R given by θ(Xp−m

i ) = xp
−m

i and θ(Y p
−m

i ) = yp
−m

i and let

θ̃ be defined multiplicatively by θ̃(x) = [x]. Then Lemma 4.8 gives θ : Ŝ → A such that θ([x]) = θ̃(x). Then
the two formulae follow immediately from Lemma 4.7:∑

i≥0

pi[xi] +
∑
i≥0

pi[yi] = θ(
∑
i≥0

pi[Xi] +
∑
i≥0

pi[Yi])

= θ(
∑
i≥0

pi[Si])

=
∑
i≥0

piθ̃(Si)

=
∑
i≥0

pi[Si(x, y)]

and similarly for the product formula.

4.1.4 Witt Vectors

Lemma 4.10. If A is a strict p-ring with residue ring R and if I is a perfect ideal of R then

W(I) = {
∑
i≥0

pi[xi]|xi ∈ I}

is a closed ideal of A and A/W(I) is a strict p-ring with residue ring R/I.
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Proof. W(I) is closed under addition because if x =
∑
pi[xi] and y =

∑
pi[yi] then x + y =

∑
pi[Si(x, y)]

and Si(x, y) ∈ I as Si is a homogeneous polynomial. Now the polynomials P i have monomials which contain
both x-s and y-s as 0 = 0 · y =

∑
pi[0]

∑
pi[yi] =

∑
pi[P i(0, y)] and so P i cannot contain terms with only

y-s. Therefore if x ∈ I and y ∈ A then P i(x, y) ∈ I and so xy ∈W(I).
We now have (A/W(I))/(p) = A/(W(I) + pA) = (A/pA)/(W(I)/(p)) = R/I. The only thing left to

check is that p is not nilpotent in A/W(I), i.e., that pk /∈W(I) for all k ≥ 0. But pk = p0[0]+ · · ·+pk−1[0]+
pk[1] + pk+1[0] + · · · so pk ∈W(I) if and only if 1 ∈ I.

Theorem 4.11 (Witt vectors). If R is a perfect ring of characteristic p there exists a unique strict p-ring
W(R) with residue ring R. If A is a p-ring with residue ring S and θ : R→ S is a ring homomorphism and

θ̃ : R→ A is a multiplicative lift of θ then get a ring homomorphism θ : W(R)→ A such that θ([x]) = θ̃(x).

Proof. Consider a presentation of R ∼= SJ/I for a perfect ideal I. (For example could choose J = R with I

all the relevant relations.) Let W(R) = ŜJ/W(I). Since ŜJ is a strict p-ring with residue ring SJ and I is

a perfect ideal it follows that W(R) is a strict p-ring with residue ring ŜJ/W(I) = R.

From Lemma 4.8 there exists a lift of the composition SJ → R → A to ŜJ → A and it can be checked
that this induces θ : ŜJ/W(I)→ A.

4.2 Perfections and the ring R

We would like to construct Witt vectors starting with the ring OCp/(p), which is not perfect. To remedy
this we will study perfections.

4.2.1 R

Definition 4.12. For an Fp-algebra A let R(A) = lim←−
x 7→xp

A.

Remark 16. If A is perfect then R(A) = A and the inverse map is a 7→ (a, a1/p, a1/p2 , . . .).
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Lemma 4.13. R(OCp/(p)) can be described as {(x(0), x(1), . . .)|xi ∈ OCp , x
p
i+1 = xi} where the ring structure

on the latter is given by

(x(i))(y(i)) = (x(i)y(i))

(x(i) + y(i)) = (lim
j

(x(i+j) + y(i+j))p
j

)

−(x(i)) = ((−1)px(i))

Proof. Let A be the latter ring and consider the morphism A→ R(OCp/(p)) given by (x(i)) 7→ (x(i) mod p).
This is clearly a ring homomorphism and an inverse is given by (xi) 7→ (ψ(xi)) where ψ is the lift from

Lemma 4.4. (Explicitly ψ(xi) = lim
j
x̂i+j

pj
for some lifts x̂i+j to OCp .) The formula for negation follows

from the formula for addition.

Corollary 4.14. The ring R = R(OCp/(p)) is a domain.

Proof. That R is a domain follows from Lemma 4.13 as OCp is a domain.

Proposition 4.15. Let vR((x(0), . . .)) = vp(x
(0)). Then

1. vR is a valuation on R;
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2. if x, y ∈ R such that vR(x) ≥ vR(y) then there exists z ∈ R such that x = yz;

3. R is complete and separated with respect to vR;

4. vR((x0, . . .)) = lim
n→∞

pnvp(x̂n) for lifts x̂n ∈ OCp where xn ∈ OCp/(p).

Proof. 1. Renormalizing we may assume that x(0) ∈ OCp , which will then be a lift of OCp/(p). The
multiplicativity of vR is clear and we would have to show the nonarchimedean property:

vR(x+ y) = vp((x+ y)(0))

= vp( lim
m→∞

(x(m) + y(m))p
m

)

= lim
m→∞

pmvp(x
(m) + y(m))

≥ lim
m→∞

pm min(vp(x
(m)), vp(y

(m)))

= min(vR(x), vR(y))

2. It follows that vp(x
(0)/y(0)) ≥ 0 so x/y = (x(0)/y(0), x(1)/y(1), . . .) ∈ R.

3. If x = (x0, x1, . . .) ∈ lim←−OCp/(p) then vR(x) ≥ n if and only if x0 = x1 = . . . = xn = 0 which implies
that limits exist in lim←−OCp/(p) = R and that the topology is separated.

4. This follows from Lemma 4.13 as x(0) = ψ(x0) = lim x̂n
pn

.

Lemma 4.16. If ε = (1, ζp, ζp2 , . . .) ∈ R then vR(ε− 1) =
p

p− 1
.

Proof. As before we have

vR(ε− 1) = lim
n→∞

pnvp(ζpn + (−1)(n))

= lim
n→∞

pnvp(ζpn + (−1)p)

where the second line follows from the negation formula in Lemma 4.13. Recall that

vp(ζpn − 1) =
1

pn−1(p− 1)

and so v2(ζ2n + 1) = v2(ζ2n − 1 + 2) = v2(ζ2n − 1) =
1

2n−1
. Therefore in both cases p = 2 and p > 2 we get

vR(ε− 1) = lim
n→∞

pn

pn−1(p− 1)

=
p

p− 1

4.2.2 Frac R

Theorem 4.17. Via the isomorphism Frac R = {(x(0), x(1), . . .)|xi ∈ Cp, xpi+1 = xi} as above Frac R is an
algebraically closed field of characteristic p.
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Proof. The explicit description for Frac R follows from the fact that R is the subset of x with vR(x) ≥ 0 and
the (noncanonical) element p̃ = (p, p1/p, . . .) has positive valuation.

Consider a polynomial P (X) ∈ Frac R[X] and we need to show that P (X) has roots in Frac R. Multiplying
by a suitable power of [p] we may assume that P (X) ∈ R[X]. Write P (X) = Xd + ad−1X

d−1 + · · · + a0

and write ak = lim←− ak,n where ak,n ∈ OCp/(p). Let Pn(X) = Xd + ad−1,nX
d−1 + · · ·+ a0,n ∈ OCp [X] which

then satisfies that Pn(X)p = Pn−1(Xp). Let P̃n(X) ∈ OCp [X] be a lift of Pn(X), which will then have roots

αn,1, . . . , αn,d. The relationship Pn(X)p = Pn−1(Xp) implies that P̃n−1(αpn,i) ≡ 0 (mod p) for all i and so
d∏
j=1

(αpn,i − αn−1,j) ∈ (p). Thus for at least one j it must be that vp(α
p
n,i − αn−1,j) ≥

1

d
. By induction, using

the binomial formula, it’s easy to see that vp(α
pk

n,i − α
pk−1

n−1,j) ≥
k

d
and so (αp

d−1

n,i )p ≡ αp
d−1

n−1,j (mod p) which

means that
{αp

d−1

n,i |1 ≤ i ≤ d}
p ≡ {αp

d−1

n−1,i|1 ≤ i ≤ d} (mod p)

and so after a reordering of the roots it follows that lim←− a
pd−1

n,i (mod p) ∈ Frac R. These will be the roots of
P .

4.2.3 Actions on R

Definition 4.18. The Galois group GK acts on R via g((x(0), x(1), . . .)) = (g(x(0)), g(x(1)), . . .).

Definition 4.19. There is a Frobenius map ϕ on R given by ϕ((x(0), x(1), . . .)) = ((x(0))p, x(0), x(1), . . .).

Lemma 4.20. We have

1. Rϕ=1 = Fp. (In fact Rϕr=1 = Fpr .)

2. RGK = kK .

Proof. 1. Clearly Rϕ=1 = {(x, x, . . .)|xp = x} ∼= Fp.

2. Let x = (x(0), x(1), . . .) be GK-invariant with x(i) ∈ OCp . Then for all g ∈ GK we have x(i) ∈ CGKp = K.

Also, using (x(i+1))p = x(i) it follows that vp(x
(i)) = p−ivp(x

(0)) and since x(i) ∈ K, and therefore has
vp valuation in e−1

K/QpZ it must be that x(i) ∈ O×Cp . Write x(i) = [ui](1 + $Kyi) where ui ∈ kK and

yi ∈ OK . Then using that x(i) = (x(i+j))p
j

we get that in 1 +mK we have 1 +$Kyi = (1 +$Kyi+j)
pj .

Choosing j large enough we get a contradiction unless yi = 0 which implies that x(i) = [ui] and so,
since kK is perfect, we get that RGK ∼= kK .

4.2.4 W(R)

Since R is a perfect Fp algebra we may construct the Witt vectors W(R) and get something well-behaved.

Lemma 4.21. There is a ring homomorphism θ : W(R)→ OCp given by

θ(
∑

pn[cn]) =
∑

c(0)
n pn

where cn ∈ R.

Proof. Recall that x ∈ R can be described either as x = (x(0), . . .) with x(i) ∈ OCp or as x = lim←−xi with

xi ∈ OCp/(p) and x 7→ x(0) is a multiplicative lift of x 7→ x0. Now the existence of θ as a ring homomorphism

given by the formula above follows from Theorem 4.11 applied to θ(x) = x0 and θ̃(x) = x(0).

Definition 4.22. 1. The Galois group GK acts on W(R) via g(
∑
pk[xk]) =

∑
pk[g(xk)] for xk ∈ R.
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2. Frobenius acts via ϕ(
∑
pk[xk]) =

∑
pk[ϕ(xk)].

Lemma 4.23. We have

1. W(R)ϕ=1 = W(Rϕ=1) = W(Fp) = Zp.

2. W(R)GK = W(RGK ) = W(kK) = OK0
where K0 = K ∩Qur

p is the maximal unramified subfield of K.

Proof. Follows from definitions and Lemma 4.20.
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4.3 BdR

4.3.1 ker θ

For x ∈W(R) let x be the image in R.

Proposition 4.24. If α ∈ ker θ is such that vR(α) = 1 then ker θ = (α) is principal.

Proof. First, note that ker θ ∩ pn W(R) = pn ker θ as Cp is torsion free. If θ(x) = 0 then x(0) ∈ (p) (as if

θ(
∑
pn[cn]) =

∑
pnc

(0)
n = 0 then p | c(0)

0 ). Therefore vR(x) = vp(x
(0)) ≥ 1 = vR(α) so there exists y ∈ R such

that x = αy. This implies that x ≡ αy (mod p) for some y ∈W(R). Suppose we can write x = αyn + pnvn
where yn, vn ∈ R (so n ≥ 1). Then θ(pnvn) = 0 and so vn = ker θ. We just showed that we may write
vn = αw+pz and so writing yn+1 = yn+pnw and vn+1 = z it follows that x = αyn+1 +pn+1vn+1. Then αyn
converges to some element of W(R) of the form αy∞ (as W(R) is complete) which makes x ∈ (α) W(R).

Example 4.25. For example we may choose

1. α = [p̃]− p or

2. α =
[ε]− 1

[ε1/p]− 1

Proof. 1. Note that p̃ ∈ R lifts to [p̃] = [p̃]+p·0+p2 ·0+ · · · ∈W(R) while p = 0+p·1+p2 ·0+ · · · ∈W(R).
Therefore θ([p̃]) = [p̃(0)] = [p] = p while θ(p) = p · [1(0)] = p. Thus θ([p̃] − p) = 0. Also the image of
[p̃]− p in R is p̃ which has vR valuation 1 and so ker θ = ([p̃]− p) W(R).

2. Since θ([ε]− 1) = [ε(0)]− 1 = 0 but θ([ε1/p]− 1) 6= 0 by the same computation it follows that α ∈ ker θ.

Also, from Lemma 4.16 we get that vR(α) = vR(ε − 1) − vR(ε1/p − 1) =
p

p− 1
− 1

p− 1
= 1 and so

ker θ = (α) W(R).

Lemma 4.26. The GK equivariant surjective ring homomorphism θ : W(R) → OCp extends to a GK
equivariant surjective ring homomorphism θQ : W(R)[1/p]→ Cp.

1. Show that W(R) ∩ (ker θQ)k = (ker θ)k for all k.

2. Show that W(R)[1/p] is separated for the ker θQ-adic topology, i.e., that ∩(ker θQ)k = 0.

Proof. 1. The extension θQ is given by θQ(
∑
n≥−m p

n[cn]) =
∑
c≥−m p

nc
(0)
n and so agrees with θ on W(R),

which implies the statement.
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2. Suppose x ∈ ∩(ker θQ)n ⊂ W(R)[1/p]. For some k have pkx ∈ W(R) and so x ∈ ∩(ker θ)n[1/p]. So it
is enough to show that ∩(ker θ)n = 0.

Any element x in ∩(ker θ)k is divisible by arbitrary powers of [p̃]−p ∈ ker θ. But [p̃]−p = (p̃,−1, . . .) ∈
W(R) and so the image of x in R will be divisible by arbitrary powers of p̃ in R. But R is complete
and separated for vR and so the image of x in R will be 0. Thus we may write x = px′ for x′ ∈W(R).

Let α be a generator of ker θ. By Proposition 4.24 it follows that α =
∑
pn[αn] with vp(α

(0)
0 ) = 1 and

so the image of α in R is not 0. Since x ∈ (ker θ)n there exists yn ∈ R such that x = px′ = αnyn.
Since the image of α in R is not 0, and R is a domain, it follows that the image of yn in R is 0, and
so yn = py′n. This gives x′ = αny′n and so x′ ∈ ∩(ker θ)n. Repeating this argument shows that x is
divisible by arbitrary powers of p, and so is 0.

4.3.2 B+
dR and BdR

Definition 4.27. Set B+
dR = lim←−

n→∞
W(R)[1/p]/(ker θ)n. Projecting to the first factor gives θ+

dR : B+
dR →→

W(R)[1/p]/ ker θ ∼= Cp.

Proposition 4.28. The ring B+
dR is a complete discrete valuation ring, with maximal ideal ker θ, residue

field Cp and uniformizer any choice of generator of the principal ideal ker θ.

Proof. Let ω =
[ε]− 1

[ε1/p]− 1
be a generator of ker θ. By construction every element of B+

dR can be written as

a sum x = x0 + x1ω + x2ω
2 + · · · with xi ∈ W(R)[1/p]. Let k be the smallest nonzero coefficient xk in

which case x ∈ ωk B+
dR−ωk+1 B+

dR which gives a valuation on B+
dR. This turns B+

dR into a complete discrete
valuation ring for that valuation.

Remark 17. Frobenius ϕ on W(R)[1/p] does not stabilize ker θ and thus does not extend to B+
dR.

Definition 4.29. Define BdR = Frac B+
dR. It is equipped with a GK-stable filtration Filn BdR = mn

B+
dR

.
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Lemma 4.30. The series

log([ε]) =
∑
n≥1

(−1)n−1 ([ε]− 1)n

n

1. converges in the dvr topology on B+
dR to a uniformizer t.

2. If g ∈ GK then g(t) = χcycl(g)t.

Proof. 1. The coefficients (−1)n−1

n belong to W(R)[1/p] and ([ε] − 1)n ∈ (ker θ)n and so t converges. To

see that t is a uniformizer note that
t

1− [ε]
∈ (BdR)× from the definition. Also, recall from Example

4.25 that ker θ is generated by
1− [ε]

1− [ε1/p]
. Since θ(1 − [ε1/p]) 6= 0 it follows that 1 − [ε1/p] ∈ (BdR)×

and so
t

1−[ε]
1−[ε1/p]

=
t

1− [ε]
(1− [ε1/p])

is a product of two units which implies that ker θ = (t).
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2. The equality g(t) = χcycl(g)t makes sense in B+
dR endowed with the dvr topology with respect to which

t makes sense. However, we will prove this equality by showing that the two sides are both equal to
log([ε]χcycl(g)), which does not converge in the dvr topology. To make sense of this auxilliary quantity
and to show that the two sides of the equality are equal to this auxilliary formula, we need to endow
B+

dR with a different topology, in which the p-adic nature of the exponent χcycl(g) interacts with the
dvr nature of the logarithm.

To begin with let a ∈ Z. The formal power series a log(1+x) and log((1+x)a) := log(1+((1+x)a−1))
are equal for a ∈ Zp and so they agree modulo xn for all n. Plugging in x = [ε]− 1 we get

a log([ε]) ≡ log([ε]a) (mod ([ε]− 1)n)

for all n ≥ 0. Thus the two power series are equal in the dvr topology on B+
dR.

To extend this identity to a ∈ Zp it is enough to construct a topology on B+
dR in which log(1 + x) =∑

(−1)n−1xn/n converges, is GK-equivariant and continuous. Then for a =
∑
i≥0

aip
i we have

log((1 + x)
∑k
i=0 aip

i

) =

(
k∑
i=0

aip
i

)
log(1 + x)

and the result follows by continuity. Such a topology is constructed in [3, Exercise 4.5.3]) by letting
open sets in W(R)[1/p] be of the form

UN,a =
⋃

j>−N
(p−j W(ap

j

) + pN W(R))

and giving B+
dR the inverse limit topology, i.e., the coarsest topology making all projection maps

B+
dR → W(R)[1/p]/(ker θ)n continuous for all n. Relative to this topology as well the ring B+

dR is
complete.

For g ∈ GK we know that g([ε]) = [g(ε)] = [εχcycl(g)] = [ε]χcycl(g) by definition of χcycl and so

g(t) = g(log([ε]) = log(g([ε])) = log([ε]χcycl(g)) = χcycl(g)t

Corollary 4.31. BdR = BdR[1/t] and Fili BdR := ti B+
dR for i ∈ Z is a GK-stable filtration giving gr• BdR

∼=
BHT.

Proof. The first part follows because t is a uniformizer, while the second part follows from the fact that
GK acts on t via a scalar. The last part of the statement follows from the fact that ti+1 B+

dR /t
i B+

dR, a one
dimensional Cp vector space, has GK action via χicycl and so gri BdR

∼= Cp(i) = gri BHT.

Remark 18. The reason for introducting BdR is that the p-adic etale cohomology of smooth projective
varieties over K are p-adic Galois representations which are BdR-admissible, and there are examples where
this is not true for smaller subrings of BdR.

4.3.3 Cohomology of BdR

Since BdR is a field it is automatically (Qp, GK)-regular; the goal of this section is to compute the GK
invariants in order to compute the target category of DBdR

.

Lemma 4.32. If i 6= 0 then

1. H1(GK , t
i+1 B+

dR) = H1(GK , t
i B+

dR),
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2. (ti+1 B+
dR)GK = (ti B+

dR)GK ,

3. H1(GK , tB+
dR) = 0,

4. (BdR)GK = (B+
dR)GK ,

5. (tB+
dR)GK = 0.

Proof. 1. Lemma 4.30 implies that ti+1 B+
dR /t

i B+
dR, a one dimensional Cp vector space, has GK action

via χicycl and so we get a GK equivariant exact sequence

0→ ti+1 B+
dR → ti B+

dR → Cp(i)→ 0

The cohomology long exact sequence gives

H0(GK ,Cp(i))→ H1(GK , t
i+1 B+

dR)→ H1(GK , t
i B+

dR)→ H1(GK ,Cp(i))

and the statement follows from Ax-Sen-Tate and Theorem 2.25.

2. The previous long exact sequence also gives

0→ H0(GK , t
i+1 B+

dR)→ H0(GK , t
i B+

dR)→ H0(GK ,Cp(i))

and the statement follows from Ax-Sen-Tate.

3. If M ∈ H1(GK , t
i B+

dR) then by the first part there exists y ∈ ti B+
dR such that g 7→M(g) + g(y)− y ∈

H1(GK , t
i+1 B+

dR). Starting with M1 = M ∈ H1(GK , tB+
dR) obtain a sequence Mi ∈ H1(GK , t

i B+
dR)

obtained recursively as Mi+1(g) = Mi(g) + g(yi) − yi where yi ∈ ti B+
dR. Letting y =

∑
yi, which

converges in B+
dR we get that M(g) = M1(g) + g(y) − y ∈ H1(GK , t

i B+
dR) for all i ≥ 0. Now the

separatedeness of B+
dR implies that M is trivial and so M1 = 0.

4. If x ∈ (BdR)GK then there exists i ∈ Z such that x ∈ ti B+
dR. Applying the second part recursively we

get the statement.

5. Applying the second part we get recursively that (tB+
dR)GK ⊂ ti B+

dR for each i ≥ 1, which immediately
implies the statement.

Theorem 4.33. We have (BdR)GK = (B+
dR)GK = K.

Proof. From 0→ tB+
dR → B+

dR → Cp → 0 we get

0→ (tB+
dR)GK → (B+

dR)GK → CGKp → H1(GK , tB+
dR)

Lemma 4.32 implies that this can be rewritten as

0→ 0→ (B+
dR)GK → K → 0

and the statement follows.

Remark 19. The above apparently also implies a theorem of Colmez that K ⊂ B+
dR is dense (but not so in

BdR).

Proposition 4.34. 1 If n ∈ Z then H1(GK , t
n B+

dR)→→ H1(GK ,Cp(n)).

Proof. This is tricky, and this “proof” is a sketch. Assuming one has a good theory of continuous cohomology
in degree ≥ 2 which gives long exact sequences and commutes with limits then this would follow from
H2(GK , t

n B+
dR) = 0. This can be proven akin to Lemma 4.32 using H2(GK ,Cp(n)) = 0, which can be

deduced from Lemma 2.27 similarly to Theorem 2.25.

1not covered in class, needed for §5.6
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4.4 De Rham representations

4.4.1 Filtered vector spaces

The ring BdR is (Qp, GK) regular and we denote by RepdR
Qp (GK) the category of BdR-admissible representa-

tions. Then DdR : RepdR
Qp (GK) → VectK will have all the properties of Theorem 3.7, but we would like to

enrich the target category as we did for Hodge-Tate representations.

Definition 4.35. If V ∈ RepdR
Qp (GK) let Fili DdR(V ) := (ti B+

dR⊗QpV )GK . This gives DdR : RepdR
Qp (GK)→

FilVectK .

Proposition 4.36. 1. The functor DdR to FilVectK is exact, faithful, respects direct sums, tensor prod-
ucts, subobjects and quotients, and thus duals and symmetric and exterior powers.

2. The comparison BdR-linear isomorphism αdR,V : BdR⊗K DdR(V ) → BdR⊗QpV and its inverse are
isomorphisms of filtered vector spaces.

Proof. 1. This is a tedious exercise using dimension comparisons, for details see [3, Proposition 6.3.3].

2. By construction αdR,V gives an isomorphism of filtered vector spaces so we now show the same for
α−1

dR,V . An inductive argument reduces this to showing that gr•(αdR,V ) is an isomorphism of graded
vector spaces. But this is αHT,V which is such an isomorphism of graded vector spaces by construction.
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Example 4.37. Let n ∈ Z.

1. DdR(Qp(n)) = Kt−n and so Qp(n) is de Rham.

2. A representation V ∈ RepQp(GK) is de Rham if and only if V (n) = V ⊗Qp Qp(n) is de Rham.

Proof. 1. We have (BdR⊗QpQp(n))GK ∼= (tn BdR)GK ∼= Kt−n.

2. DdR(V (n)) ∼= DdR(V )⊗K DdR(Qp(n)) ∼= DdR(V )⊗K Kt−n and the result follows by dimension com-
parison.

4.4.2 Comparison with Hodge-Tate

Lemma 4.38. If V ∈ RepdR
Qp (GK) then gr•DdR(V ) ∼= DHT(V ) and so V is also Hodge-Tate.

Proof. Since the filtration on BdR is GK-stable it follows that

Fili DdR(V )/Fili+1 DdR(V ) ∼= (gri BdR⊗QpV )GK

∼= gri DHT(V )

and the result follows.

4.4.3 Base change

For clarity we write DdR,K(V ) = (BdR⊗QpV )GK . To deal with base change for DdR we need Galois descent.

Lemma 4.39 (Galois descent). Let L/K/Qp be either finite Galois or L = K̂ur. Let V ∈ RepL(GL/K).

Then L⊗K V GL/K ∼= V .
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Proof. First, the case when L/K is finite. The natural multiplication map L ⊗K V GL/K → V is surjective
because otherwise there would exist 0 6= λ ∈ V ∗ = HomL(V,L) such that λ(L ⊗K V GL/K ) = 0. For any

a ∈ L and v ∈ V ,
∑

g∈GL/K

g(a⊗ v) ∈ V GL/K and so λ(
∑
g(a⊗ v)) =

∑
g(a)λ(g(v)) = 0. Picking v such that

not all λ(g(v)) are 0 gives a linear relation between the g ∈ GL/K contradicting their linear independence.

Now for injectivity. Suppose e1, . . . , en is a K-basis of V GL/K . Suppose now that their image in V are not
linearly independent over L, i.e., the map is not injective. Suppose

∑
xiei = 0 is a linear relation over L.

Then for every a ∈ L we have TrL/K(a
∑
xiei) =

∑
TrL/K(axi)ei = 0 and so by independence over K we

get that TrL/K(axi) = 0 for all a ∈ L. Since L/K is Galois, thus separable, the trace TrL/K does not vanish,
implying that all the xi are 0, contradicting our assumption.

Now suppose L = K̂ur and let $K be a uniformizer of K and K̂ur. As usual, using the Baire category
theorem, we can find a full rank G

K̂ur/K
∼= GkK -stable lattice Λ ⊂ V . Then Λ/$KΛ ∈ RepkK (GkK ) and

the action of GkK on Λ/$KΛ has open stabilizers. This implies that Λ/$KΛ = lim−→[l:kK ]<∞(Λ/$KΛ)Gl

and Galois descent in the finite case implies that (Λ/$KΛ)Gl ∼= l⊗kK (Λ/$KΛ)Gk , which in the limit gives
kK ⊗kK (Λ/$KΛ)GkK ∼= Λ/$KΛ.

This implies that H1(GkK ,Λ/$KΛ) = 0 by Hilbert 90 and similarly that H1(GkK , $
n
KΛ/$n+1

K Λ) = 0
for n ≥ 0. This then implies that H1(GkK ,Λ) = 0. We deduce that ΛGkK /$KΛGkK ∼= (Λ/$KΛ)GkK . From

here we get that ΛGkK is a finite free dimV dimensional OK-module. We then get that K̂ur⊗OK ΛGkK ∼= V
as desired.

Proposition 4.40. If L/K is complete and discretely valued inside Cp then the natural map L⊗KDdR,K(V )→
DdR,L(V ) is an isomorphism. In particular, L/K can be finite, or L could be K̂ur.

Proof. This follows from Lemma 4.39. See [3, Proposition 6.3.8].

Example 4.41. If η : GK → Z×p is a finite order character then there exists a finite extension L/K such
that η(GL) = 1. Therefore Qp(η) is de Rham as a GK representation as it is so as a GL representation.
Moreover, DdR,L(Qp(η)) = L〈0〉 and so the same is true of DdR,K . Therefore, while DdR is faithful, it is not
fully so.

4.4.4 Characters

Example 4.42. Let η : GK → Z×p be a continuous character. Then Qp(η) is de Rham if and only if there
exists an integer n such that χncyclη is potentially unramified.

Proof. We can find b−1 ⊗ eη ∈ DdR(Qp(η)) = (BdR ⊗Qp Qp(η))GK if and only if η(g) = b−1g(b) for all

g ∈ GK , as we did in the proof of Theorem 2.18. Let −n be the B+
dR valuation of b and so tnb ∈ B+

dR−tB+
dR.

We get (χncyclη)(g)tnb = g(tnb) and applying θ : B+
dR → Cp, which commutes with the GK-action, we get

(χncyclη)(g)θ(tnb) = g(θ(tnb)). Since tib /∈ tB+
dR it follows that θ(tib) ∈ Cp − {0} and so θ(tnb)−1 ⊗ eη ∈

DCp(Qp(χncyclη)) (as in the proof of Theorem 2.18) showing that Qp(χncyclη) is Cp-admissible. The result
then follows from Sen’s theorem (Corollary 2.40).

5 Crystalline and Semistable Representations

5.1 Bcris

We will construct a K0-subalgebra Bcris of BdR which, unlike BdR) carries a Frobenius action.

5.1.1 Acris

We will write ξ = [p̃]− p and ω =
[ε]− 1

[ε1/p]− 1
be generators of ker θ.
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Definition 5.1. Let

Acris =

∑
n≥0

an
ωn

n!
|an ∈W(R), an → 0


Amax =

∑
n≥0

an
ωn

pn
|an ∈W(R), an → 0


It is easy to see that these are rings on which GK acts.

Definition 5.2. Let

B+
cris = Acris[1/p] ⊂ B+

dR

B+
max = Amax[1/p] ⊂ B+

dR

Remark 20. The difference between cris and max is technical, and they will give the same notions of crys-
talline representations. The technical advantage if max is that pn behaves p-adically predictably, whereas n!
less so. We will prove theorems for whichever of the two is more convenient.

5.1.2 t and Acris

Proposition 5.3. We have

1. t ∈ Acris.

2. tp−1 ∈ pAcris.

3. If x ∈ ker θ ∩Acris then xn/n! ∈ Acris for all n ≥ 1. In particular, tn/n! ∈ Acris for all n ≥ 1.

Proof. 1. We have that

t =
∑
n≥1

(−1)n−1 ([ε]− 1)n

n

=
∑
n≥1

(−1)n−1(n− 1)!([ε1/p]− 1)n
ωn

n!

which visibly is in Acris.

2. To begin with note that vR(ε−1) = p
p−1 so vR((ε−1)p−1) = p = vR(p̃p) so there exists r ∈ R× such that

(ε−1)p−1 = p̃pr. Thus [ε−1]p−1 = [r](ξ+p)p ≡ [r]ξp (mod pAcris). But ξp = p(p−1)!(ξp/p!) ∈ pAcris

so [ε− 1]p−1 ∈ pAcris. But ([ε]− 1)p−1 − [ε− 1]p−1 ∈ pW(R) ⊂ pAcris and thus ([ε]−1)p−1

p ∈ Acris.

We have

t ≡
p∑

n=1

(−1)n−1(n− 1)!
([ε]− 1)n

n!
(mod pAcris)

since for n ≥ p+ 1 we have p | (n− 1)!. Thus

t ≡ ([ε]− 1)(

p−1∑
n=1

(−1)n−1 ([ε]− 1)n−1

n
+ (−1)p

([ε]− 1)p−1

p
) (mod pAcris)

and so there exist a, b ∈ Acris such that t = a([ε] − 1) + pb. But the tp−1 ≡ ap−1([ε] − 1)p−1 ≡ 0
(mod pAcris).
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3. We may write a ∈ ker θ ∩ Acris as a =
∑
i≥1 ai(ω

i/i!) with ai → 0. For N >> 0 we have n! | ai for all

i ≥ N and so to check an/n! ∈ Acris it is enough to check this for the partial sum
∑N
i=1 ai(ω

i/i!).

Writing γn(x) = xn/n! have

γn(x+ y) =

n∑
i=0

γi(x)γn−i(y)

γm(γn(x)) =
(mn)!

m!(n!)m
γmn(x)

and so checking that γn(x+y) ∈ Acris for x, y ∈ ker θ∩Acris it is enough to do so for γi(x) and γn−i(y)
for all i. Therefore it is enough to check γn(aiω

i/i!) ∈ Acris. But

γn(aiω
i/i!) = ani γn(γi(ω))

= ani
(ni)!

n!(i!)n
γni(ω)

∈ Acris

5.1.3 Regularity of Bcris

Definition 5.4. Let Bcris = B+
cris[1/t] and Bmax = B+

max[1/t].

Remark 21. Note that W(k) ⊂W(R) ⊂ Acris and so K0 = W(k)[1/p] ⊂ Bcris.

Theorem 5.5. There is an injection K ⊗K0
Bcris → BdR.

Proof. This is complicated. The original proof in [4, §4.1] is incorrect; see [3, Theorem 9.1.5].

Definition 5.6. We will set Fili(Bcris) := Fili BdR ∩Bcris.

Remark 22. Note that Fil0 Bcris contains and is not equal to B+
cris.

Theorem 5.7. The domains Bcris and Bmax are (Qp, GK)-regular with BGKcris = BGKmax = K0.

Proof. We will do this for Bcris only. First note that K0 ⊂ BGKcris ⊂ (Frac Bcris)
GK . From the previous

theorem we deduce that K ⊗K0 Frac Bcris ↪→ BdR and so K ⊗K0 (Frac Bcris)
GK = (K ⊗K0 Frac Bcris)

GK ↪→
(BdR)GK = K. This implies that (Frac Bcris)

GK = BGKcris = K0 is a field.
For the second condition of regularity, pick b ∈ Bcris−{0} such that Qpb is GK-stable. Since Qpt is GK

stable and by construction t is invertible in Bcris we may assume b ∈ B+
dR−tB+

dR. Let b 6= 0 be the image
in B+

dR /tB+
dR = Cp of b. Write η : GK → Q×p for the character of GK acting on the line Qpb; then η is

continuous as it encodes the continuous action of GK on the line Qpb where b ∈ Cp. As before, this shows
that Qp(η) is Cp-admissible and by Sen’s theorem (Corollary 2.40) we get that η is potentially unramified.

Let L/K be a finite extension such that η(IL) = 1 which implies that b ∈ L̂ur = CILp .

Let P ∈ K̂ur[X] be the minimal polynomial of b over K̂ur. Then for g ∈ IK it must be that g(P (b)) =
P (g(b)) = 0 and so g(b) = η(g)b is also a root of P (X). Thus all the roots of P (X) in Cp are of the form

η(g)b for g ∈ IK . Since K̂ur is finite over Q̂ur
p = W(kK)[1/p] and since R is algebraically closed it follows

that K̂ur ⊂W(R)[1/p] ⊂ B+
dR (but recall that there is no section to B+

dR →→ Cp) it follows that P ∈ B+
dR[X].
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The polynomial P is separable over Cp and so Hensel’s lemma applied to the complete dvr B+
dR shows that

there exists β algebraic over B+
dR lifting b such that P (β) = 0. For g ∈ IK let Q(X) = P (η(g)X) which has b

as a root and has the same degree as the minimal polynomial P and so Q(X) = P (X) in K̂ur[X]. Applying
Hensel’s lemma to the root b of Q(X) shows there exists βg algebraic over B+

dR such that βg lifts b. But
then η(g)βg is a root of P lifting b and separability implies that η(g)βg = β. This shows that the roots of
P ∈ B+

dR[X] are of the form η(g)β for g ∈ IK . But since the coefficients of P are IK-invariant the roots of
P are also of the form g(β). Since g(β)− η(g)β ≡ 0 (mod tB+

dR) it follows that g(β) = η(g)β.
Suppose b 6= β. Then Qp(b− β) is a GK-stable line in B+

dR. Since b− β ∈ Fil1 B+
dR let r ≥ 1 be such that

b−β ∈ tr B+
dR−tr+1 B+

dR. This gives a GK-stable line Qp(b−β) in tr B+
dR /t

r+1 B+
dR
∼= Cp(r) or alternatively

that χ−rcyclη is Cp-admissible. But r ≥ 1, η is finitely ramified and χcycl is infinitely ramified and so χ−rcyclη is

infinitely ramified and Sen’s theorem shows that χ−rcyclη cannot be Cp admissible.

Therefore b = β and so P (b) = 0. Writing P (X) = Xn + an−1X
n−1 + · · · + a0 with a0 6= 0 since P is

irreducible we have b−1 = −a−1
0 (bn−1 + an−1b

n−2 + · · ·+ a1) and so b ∈ B×cris.

Proposition 5.8. A continuous character η : GK → Q×p is crystalline, i.e., DBcris
(Qp(η)) is one dimensional

if and only if η = χncyclµ for some integer n and unramified character µ.

Proof. If b⊗ eη ∈ DBcris
(Qp(η)) is nonzero then η(g)g(b) = b and so Qp · b is GK-stable. Rescaling by tn for

some integer n, the proof of Theorem 5.7 shows that b is algebraic over K̂ur. Let L = K̂ur
0 (b) be finite over

K̂ur
0 . Then Theorem 5.5 shows that L⊗L0

Bcris ↪→ BdR. But L0 = L ∩ K̂ur
0 = K̂ur

0 and L ⊂ Bcris so we get

L⊗L0
L ↪→ BdR which implies that L⊗L0

L is a field and so L = L0 giving b ∈ K̂ur
0 and so η(IK) = 1 thus

η is unramified. Rescaling back we get that η = χncyclµ for µ unramified.

5.1.4 Frobenius on Acris

The Frobenius ϕ on W(R)[1/p] does not extend to BdR because ϕ does not preserve ker θ. However one can
define ϕ on Acris via a different description of the ring.

Writing A0
cris = W(R)[ωn/n!]n≥1 it can be shown that lim←−A

0
cris/p

n A0
cris injects into B+

dR with image equal
to Acris (this is hard, the content of [3, Proposition 9.1.1]).

Lemma 5.9. The W(R)-algebra A0
cris ⊂W(R)[1/p] is stable under ϕ.

Proof. Note that

ϕ(ω) = ϕ(

p−1∑
i=0

[εi/p])

= p+

p−1∑
i=0

([εi]− 1)

= p+ ωa

for some a ∈W(R). Then

ϕ(
ωm

m!
) =

(p+ ωa)m

m!

=

m∑
k=0

pm−iai

(m− i)!
ωi

i!

which belongs to A0
cris as n! | pn in Zp for all n.

Definition 5.10. Let ϕ be the Frobenius endomorphism on Acris obtained as the p-adic completion of ϕ on
A0

cris. Also get ϕ on B+
cris.
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Lemma 5.11. We have ϕ(t) = pt and thus ϕ extends to an endomorphism of Bcris.

Proof.

ϕ(t) = ϕ(
∑
n≥1

(−1)n−1([ε]− 1)n/n)

=
∑
n≥1

(−1)n−1([εp]− 1)n/n

= log([εp])

= pt

Theorem 5.12. The Frobenius ϕ : Acris → Acris is injective.

Proof. This is hard.

Lecture 18
2012-02-17

5.2 The fundamental exact sequence

The fundamental exact sequences compute the fixed points of Frobenius acting on various rings of periods.
It is important for proving basic properties of Dcris and Dst, but also for constructing the Bloch-Kato
exponential and for working with ordinary Galois representations.

Theorem 5.13 (The fundamental exact sequence). The following sequences are exact

0 // Qp // Bϕ=1
cris

// BdR /B+
dR

// 0

0 // Qp // Fil0 Bcris

ϕ−1 // Bcris
// 0

We will only prove the version for Bmax in Theorem 5.20, which is technically less involved, but whose
proof contains all the relevant ideas:

0 // Qp // Bϕ=1
max

// BdR /B+
dR

// 0

0 // Qp // Fil0 Bmax

ϕ−1 // Bmax
// 0

5.2.1 Frobenius on W(R)

Definition 5.14. For a subring A ⊂ Acris we will write I [r](A) = ∩n≥0ϕ
−n(A∩Filr Acris) whre Filr Acris =

Acris ∩Filr Bcris. We will write I [r] = I [r](Acris).

For simplicity we’ll prove this for Bmax instead of Bcris.

Lemma 5.15. We have I [r](W(R)) = ([ε]− 1)r W(R).

Proof. We first show the lemma for r = 1. Let In =
(

[ε]−1

[εp−n ]−1

)
W(R) in which case ker θ = I1 and we first

show that ∩ϕ−n(ker θ) = ∩In.
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If x ∈ ∩ϕ−n(ker θ) then θ(ϕn(x)) = 0 for all x and so ϕn(x) ∈ I1 giving x ∈
(

[εp
−n

]−1

[εp−n−1 ]−1

)
W(R) and we

write

x =

(
[εp
−n

]− 1

[εp−n−1 ]− 1

)
xn

for xn−1 ∈W(R). But then θ(ϕn−1(x)) = 0 and so

θ(ϕn−1

(
[εp
−n

]− 1

[εp−n−1 ]− 1

)
)θ(ϕn−1(xn)) = 0

and this gives θ(ϕn−1(xn)) = 0. Applying the above we may write

xn−1 =

(
[εp
−(n−1)

]− 1

[εp−n ]− 1

)
xn−1

for xn−2 ∈W(R) and continuing we get that

x =

(
[ε]− 1

[εp−n−1 ]− 1

)
x0 ∈ In+1

and so ∩ϕ−n(ker θ) ⊂ ∩In. The reverse inclusion is obviously true.
It’s now clear that ([ε] − 1) W(R) ⊂ ∩In so we only need to show the reverse inclusion to conclude the

lemma for r = 1. If x ∈ ∩In then writing x for the image of x in R we get that

vR(x) ≥ p

p− 1
− p

pn(p− 1)

for all n ≥ 1 and so vR(x) ≥ p
p−1 = vR(ε− 1). Thus we may write x = ([ε]− 1)y+ pz for y, z ∈W(R) and it

is easy to see that in that case we also get that z ∈ ∩ϕ−n(ker θ) = ∩In. We then repeat and conclude that
x ∈ ([ε]− 1) W(R) as in the proof of Proposition 4.24.

The general statement now comes from the fact that

∩ϕ−n((ker θ)r) = ∩(ϕ−n(ker θ))r

since ϕ is multiplicative.

5.2.2 Frobenius on Amax

Lemma 5.16. If x ∈ Amax such that θ(ϕn(x)) = 0 (i.e., x ∈ I [1] Amax) then ([ε]− 1)/p | ϕ(x) in Amax.

Proof. We compute

ϕ(
ω

p
) = ϕ(

1

p

p−1∑
i=0

[εi/(p−1)])

= 1 +

p−1∑
i=0

[εi/(p−1)]− 1

p

≡ 1 (mod
[ε]− 1

p
Amax)

Writing x =
∑
n≥0 an

ωn

pn we get that

ϕk(x) ≡
∑
n≥0

ϕk(an) (mod
[ε]− 1

p
Amax)

≡ ϕk(
∑

an) (mod
[ε]− 1

p
Amax)
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and so ϕk(
∑
an) = ϕk(x) + [ε]−1

p αk for some αk ∈ Amax. But then θ(ϕk(
∑
an)) = 0 by assumption on x

and so ϕ(
∑
an) ∈W(R) is in the ideal generated by [ε]− 1 by Lemma 5.15. Thus [ε]−1

p divides ϕ(x), since

[ε]− 1 divides ϕ(
∑
an).
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5.2.3 Frobenius on B+
max

Proposition 5.17. If x ∈ B+
max such that for all i ≥ 0 we have θ(ϕi(x)) = 0 then t | ϕ(x) in B+

max.

Proof. We may scale x by powers of p and assume x ∈ Amax. Then [ε]−1
p | ϕ(x) in Amax which implies that

[ε]− 1 | ϕ(x) in B+
max. Now

t

[ε]− 1
= 1 +

∑
n≥2

(1− [ε])n−1

n
∈ Amax

But ([ε]−1)n−2

n ∈ Amax for n ≥ 2 and so t
[ε]−1 is in fact a unit. Thus t | [ε]−1 | ϕ(x) in B+

max = Amax[1/p].

5.2.4 Frobenius invariants on B+
max

Lemma 5.18. We have

1. Aϕ=1
max = Zp.

2. (B+
max)ϕ=1 = Qp.

Proof. 1. Let x ∈ Aϕ=1
cris . We may write x =

∑
n≥0 xn

[p̃]n

pn (as ω and [p̃] − p differ by a unit in W(R)).

Since ϕ(x) = x it follows that for all i ≥ 1 one has ϕi(x) = x and so

x = ϕi(x)

= ϕi(x0) +
∑
n≥1

ϕi(xn)
[p̃]p

in

pn

= ϕi(x0) +
∑
n≥1

ϕi(xn)
[p̃]p

in

ppin
pn(pi−1)

In the topology on Amax given by uniform convergence of the coefficients of the power series we get
that

lim
i→∞

∑
n≥1

pn(pi−1)ϕi(xn)
[p̃]p

in

ppin
= 0

We conclude that lim
i→∞

ϕi(x) = lim
i→∞

ϕi(x0) ∈W(R) since W(R) is complete. But then x ∈W(R)ϕ=1 =

Zp.

2. Follows from the first part after inverting p.

Proposition 5.19. For k ≥ 0 there is an exact sequence

0 // Qptk // (B+
max)ϕ=pk // B+

dR /t
k B+

dR
// 0
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Proof. When k = 0 this follows from Lemma 5.18. Suppose k ≥ 1. Injectivity is clear so we now show by

induction on k exactness in the middle. Let x ∈ (B+
max)ϕ=pk ∩ tk B+

dR. We want to show that x ∈ Qptk.
Since t | tk | x it follows that θ(ϕn(x)) = θ(pnkx) = 0 for all n ≥ 0 and so Proposition 5.17 implies that
t | ϕ(x) in B+

max (note that this is automatic in B+
dR, but that is not enough). Writing x = ty it follows that

y ∈ (B+
max)ϕ=pk−1 ∩ tk−1 B+

dR which by the inductive hypothesis is Qptk−1. Thus x ∈ Qptk.
For surjectivity take for granted that log : 1 + mOCp

→ Cp is surjective. (This is proven using Newton

polygons for power series.) Let x ∈ B+
dR and let α ∈ 1 + mOCp

such that (logα)k = θ(x).

Since the image of [α]−1 in R has vR-valuation > 0 there exists k > 0 such that vR(([α]−1)k mod p) ≥ 1
and so ([α]− 1)k ∈ ker θ. Then

log([α]) =
∑
n≥1

(−1)n−1 ([α]− 1)n

n

=
∑
n≥1

(−1)n−1([α]− 1)(n mod k) ([α]− 1)bn/kc

n

=
∑
n≥1

(−1)n−1([α]− 1)(n mod k) p
bn/kc

n

([α]− 1)bn/kc

pbn/kc

and this convergen in B+
max = Amax[1/p] since vp(

pbn/kc

n )→∞. Therefore log([α]) ∈ B+
max and ϕ(log([α])) =

p log([α]) the same way we showed that ϕ(t) = pt.
Now x − (log[α])k ∈ ker θ (since θ(x) = (log(α))k). Thus we may write x − (log[α])k = ty for some

y ∈ B+
dR. By induction, there exists z ∈ (B+

max)ϕ=pk−1

mapping to y, i.e., z ≡ y (mod tk−1 B+
dR). Now

(log[α])k + tz ≡ x (mod tk BdR) and

ϕ((log[α])k + tz) = pk((log[α])k + tz)

and so (log[α])k + tz ∈ (B+
max)ϕ=pk .

5.2.5 The fundamental sequence for Bmax

We will prove the fundamental exact sequence for Bmax instead of Bcris, the latter being more technically
involved.

Theorem 5.20. The following sequences are exact

0 // Qp // Bϕ=1
max

// BdR /B+
dR

// 0

and

0 // Qp // Fil0 Bmax

ϕ−1 // Bmax
// 0

Proof. Dividing by tk in Proposition 5.19 gives

0 // Qp // (t−k B+
max)ϕ=1 // t−k B+

dR /B+
dR

// 0

and taking a limit over k gives the first exact sequence.
Exactness in the middle in the first sequence gives

Qp = ker(ϕ− 1 : Bmax → BdR /B+
dR)

= ker(ϕ− 1 : Bmax → BdR) ∩ B+
dR

= (Bmax)ϕ=1 ∩ B+
dR

= (Bmax ∩B+
dR)ϕ=1

= (Fil0 Bmax)ϕ=1

49



which gives exactness in the middle for the second sequence. We only need to show that 1−ϕ : Fil0 Bmax →
Bmax is surjective. Let’s first show that 1 − ϕ : Bmax → Bmax is surjective. Since Bmax = ∪it−i B+

max

it is enough to show that 1 − ϕ : t−i B+
max → t−i B+

max is surjective which is equivalent to showing that
1− p−iϕ : B+

max → B+
max is surjective.

Formally we have

1

1− p−iϕ
=
∑
k≥0

(p−iϕ)k

− 1

p−iϕ(1− piϕ−1)
= − 1

p−iϕ

∑
k≥0

(piϕ−1)k

= −
∑
k≥1

(piϕ−1)k

and so
1

1− p−iϕ
= −

∑
k≥1

(piϕ−1)k

Now if x ∈ B+
max written as x =

∑
xn

[p̃]n

pn then the previous formal equation gives

x0 = −(1− p−iϕ)
∑
k≥1

(piϕ−i)k(x0)

= (1− p−iϕ)(A)

which converges in the p-adic topology.
Similarly ∑

n≥1

xn
[p̃]n

pn
= (1− p−iϕ)

∑
n≥1

∑
k≥0

(p−iϕ)k(xn
[p̃]n

pn
)

= (1− p−iϕ)
∑
n≥1

∑
k≥0

ϕk(xn)
[p̃]p

kn

pik+n

= (1− p−iϕ)
∑
n≥1

∑
k≥0

ϕk(xn)
[p̃]p

kn

ppkn
pp
kn−ik−n

and this sum converges in B+
max. Therefore

∑
n≥1 xn

[p̃]n

pn = (1 − p−iϕ)(B) and we deduce that x = (1 −
p−iϕ)(A+B) with A+B ∈ B+

max.
To see that the second exact sequence is exact we need to show that 1 − ϕ : Bmax ∩B+

dR → Bmax is
surjective. Let x ∈ Bmax and let y ∈ Bmax such that (1 − ϕ)(y) = x. Also let z ∈ Bϕ=1

max mapping to
y ∈ Bmax ⊂ BdR in the first exact sequence. Then y − z ∈ B+

dR and (1− ϕ)(y − z) = (1− ϕ)(y) = x and so
y − z is a preimage in Fil0 Bmax as desired.

Remark 23. It turns out that ϕ(Bmax) ⊂ Bcris ⊂ Bmax.
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5.3 Bst

5.3.1 Definition

Definition 5.21. Let B+
st = B+

cris[X] and Bst = Bcris[X] endowed with Frobenius

ϕ(
∑

anX
n) =

∑
ϕ(an)pnXn

Galois action
g(
∑

anX
n) =

∑
g(an)(X + c(g)t)n

where g(p̃) = p̃εc(g) and monodromy N = −d/dX.

Lemma 5.22. On Bst we have Nϕ = pϕN .

5.3.2 Filtrations

Let log : Cp → Cp given by log(p) = 0. Then

log([p̃]) = log(
[p̃]

p
) = −

∑
n≥1

(1− [p̃]/p)n

n
∈ B+

dR

Take for granted the following theorem:

Theorem 5.23. The map K ⊗K0 Bst → BdR given by a⊗ P (X) 7→ aP (log([p̃])) is injective.

Remark 24. This map is not canonical, depending on log([p̃]). However, it is GK-equivariant.

Definition 5.24. Write Filk Bst = Bst ∩Filk BdR and Filk B+
st = B+

st ∩Filk BdR.

5.3.3 Regularity

Proposition 5.25. The ring Bst is (Qp, GK)-regular with BGKst = K0.

Proof. The first condition of regularity follows as in the case of Bcris via Theorem 5.23. Now pick b ∈ Bst

different from 0 such that Qp ·b is GK-stable. Write b = b0 +b1X+ · · ·+brXr with br 6= 0. Let ψ : GK → Q×p
be the character encoding the GK action on Qp · b. Then

g(b) = ψ(g)

r∑
i=0

biX
i

=

r∑
i=0

g(bi)(X + c(g)t)i

and comparing leading terms we get ψ(g)br = g(br) which implies that ψ is continuous by looking at the
image in Cp. Moreover, it follows that Qp · br ⊂ Bcris is GK-stable and so b−1

r ⊗ eψ ∈ DBcris(Qp(η)) and
Proposition 5.8 implies that ψ = χncyclµ for some unramified character µ. Replacing b by bt−n we may assume

that ψ is unramified. This implies that br ∈ BIKcris = K̂ur
0 , which is the maximal unramified subfield of K̂ur.

Comparing the coefficients of Xr−1 in the formula we get

ψ(g)br−1 = g(br−1) + rg(br)c(g)t

If g ∈ IK then ψ(g) = 1 and g(br) = br so this becomes

br−1 = g(br−1) + rbrc(g)t
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which can be rewritten as
br−1

rbr
− g

(
br−1

rbr

)
= c(g)t

But g(X)−X = c(g)t and so this becomes

g

(
X +

br−1

rbr

)
= X +

br−1

rbr

which implies that X + br−1

rbr
∈ BIKst = BIKcris ⊂ Bcris. But br−1

rbr
∈ Bcris yet X /∈ Bcris and this contradiction

implies that r = 0 and so b = b0 ∈ Bcris and so b is invertible by the regularity of Bcris.

5.4 Filtered modules with Frobenius and monodromy

We now construct additive/abelian categories tha will be natural target categories for Dcris and Dst.

5.4.1 Isocrystals

Definition 5.26. Let ModϕK0
be the category of isocrystals over K0. The objects are pairs (D,ϕD) of a

finite dimensional K0-vector space D and a bijective Frobenius-semilinear map ϕD : D → D, i.e., if α ∈ K0

and v ∈ D then ϕD(αv) = σ(α)ϕD(v), where σ ∈ GK0/Qp is a choice of Frobenius; the morphisms are
morphisms of vector spaces commuting with the ϕD.

Remark 25. The category ModϕK0
is abelian, with tensors and duals defined as follows:

• If (D,ϕD), (D′, ϕD′) ∈ ModϕK0
then (D ⊗K0

D′, ϕD ⊗ ϕD′) ∈ ModϕK0
.

• If (D,ϕD) ∈ ModϕK0
then (D∨, ϕD∨) ∈ ModϕK0

where ϕD∨(λ)(v) = σ(λ(ϕ−1
D (v))).

Example 5.27. The basic example of isocrystal is obtained as follows: If r > 0 and s are integers let

DK0,r,s = K0[X]/(K0[X](Xr − ps))

Then DK0,r,s is a finite dimensional K0-vector space (the division algorithm), and ϕDK0,r,s
: DK0,r,s →

DK0,r,s defined by ϕDK0,r,s
(P (X)) = Xσ(P (X)) is a bijection.
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Remark 26. If D is an isocrystal and e1, . . . , en is a basis on which ϕD acts via the matrix A, and if f = Be
is another basis then ϕD acts on the basis f via the matrix σ(B)AB−1. Therefore it does not make sense to
talk about the characteristic polynomial of ϕD, and thus of eigenvalues of ϕD. In fact the eigenvalues of the
matrix of ϕD relative to some basis don’t even have vp-valuations independent of the choice of basis. The

isocrystals DQ̂ur
p ,r,s

over Q̂ur
p will function as “valuation s

r” eigenspaces for Frobenius.

Take the following theorem for granted:

Theorem 5.28. The category Modϕ
Q̂ur
p

is semisimple and the simple objects are (isomorphic to) DQ̂ur
p ,r,s

for

(r, s) = 1. We will denote ∆ s
r

:= DQ̂ur
p ,r,s

.

Definition 5.29. For D ∈ ModϕK0
, let D̂ := D⊗K0

Q̂ur
p together with ϕD̂(d⊗x) := ϕD(d)⊗σQ̂ur

p
(x) giving an

object in Modϕ
Q̂ur
p

. The above theorem implies that we get a decomposition D̂ = ⊕D̂( sr ) where D̂( sr ) = ∆
er,s
s
r

for some nonnegative integer er,s. A rational s
r such that D̂( sr ) 6= 0 is said to be a slope of D; the isocrystal

D is said to be isoclinic if it has only one slope.
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Proposition 5.30 (Slope decomposition). Every D ∈ ModϕK0
decomposes as a direct sum ⊕αD(α) where

α ∈ Q and D(α) is isoclinic with slope α.

Proof. We have seen that there is a decomposition D̂ = ⊕D̂(α) over Q̂ur
p . There is a natural semilinear

action of GkK = GK/IK on the Q̂ur
p -isocrystal ∆α. Let D(α) := D̂(α)GkK . By Galois descent (Lemma 4.39)

it follows that D(α) ⊗K0 Q̂ur
p
∼= D̂(α) (as Q̂ur

p

GkK = K0). A dimension count now show that D = ⊕D(α)
and that D(α) is isoclinic of slope α.

5.4.2 Newton Polygons

Definition 5.31. For D ∈ ModϕK0
let α0 < α1 < . . . < αn be the slopes with multiplicities µ0, . . . , µn. The

Newton polygon PN (D) of D is the convex polygon starting at (0, 0), consisting of n + 1 segments, such
that the i-th segment (for i = 0, . . . , n) has horizontal length µi and slope αi. We denote by tN (D) the
y-coordinate of the rightmost endpoint of PN (D).

Figure 1: Figure copied from [3]

Lemma 5.32. If D ∈ ModϕK0
then the vertices of the Newton polygon tN are integral.

Proof. Let D ⊗K0
Q̂ur
p = ⊕∆µi

αi . If αi = si
ri

then dimQ̂ur
p

∆µi
αi = riµi and so the segment of slope αi and

horizontal length riµi will have vertical length siµi ∈ Z.

Lemma 5.33. If (r, s) = 1 and (m,n) = 1 then ∆ s
r
⊗Q̂ur

p
∆ n

m
is isoclinic.

Proof. Write ∆ s
r

∼= Q̂ur
p [X]/(Xr − ps) and ∆ n

m

∼= Q̂ur
p [Y ]/(Y m − pn). Then

∆ s
r
⊗Q̂ur

p
∆ n

m

∼= Q̂ur
p [X,Y ]/(Xr − ps, Y m − pn)

=

(r,m)−1⊕
i=0

Y iQ̂ur
p [XY ]/((XY )[r,m] − p[r,m]( sr+ n

m ))

∼= ∆
(r,m)
s
r+ n

m

Proposition 5.34. We have

1. tN (D ⊗K0
D′) = dimK0

D · tN (D′) + tN (D) · dimK0
D′,

2. tN (D) = tN (detD),

3. tN (D∨) = −tN (D), and

4. if 0→ D → D′ → D′′ → 0 is exact in ModϕK0
then tN (D′) = tN (D) + tN (D′′).
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Proof. 1. It is clear from the definition that tN (D ⊕D′) = tN (D) + tN (D′). Therefore, by induction, it
is enough to show this for isoclinic isocrystals. But then by Lemma 5.33 we have

tN (∆ s
r
⊗K0 ∆ n

m
) = (r,m)tN (∆ s

r+ n
m

)

= (r,m) dimK0 ∆ s
r+ n

m
(
s

r
+
n

m
)

= (r,m)[r,m](
s

r
+
n

m
)

= sm+ rn

= dimK0 ∆ s
r
· tN (∆ n

m
) + tN (∆ s

r
) · dimK0

∆ n
m

2. If D is isoclinic of slope α = s
r and dimension rd then D⊗rd is isoclinic of slope sd by Lemma

5.33 and so detD, a one dimensional subspace of D⊗rd, will be isoclinic of slope sd. Therefore
tN (detD) = sd = tN (D). In general, if D = ⊕Dα where Dα is isoclinic of dimension dα then
detD = ∧

∑
dα(⊕Dα) = ⊗α ∧dα Dα and the result follows from the first part.

3. From the previous part it is enough to show this for one dimensional isocrystals of the form ∆ s
r
. But

from the definition of duals in the category ModϕK0
it follows that 〈

∑
αiX

i,
∑
βiY

i〉 =
∑
αiβi gives a

well-defined Frobenius equivariant perfect pairing K0[X]/(Xr − ps)⊗K0[Y ]/(Y r − p−s)→ K0 which
implies that ∆∨s

r

∼= ∆− sr . The conclusion follows.

4. Theorem 5.28 implies that the exact sequence splits over Q̂ur
p and the conclusion follows since the

Newton polygon depends only on the isocrystal over Q̂ur
p .

5.4.3 Filtered ϕ-modules and (ϕ,N)-modules

Definition 5.35. The category MFϕK of filtered ϕ-modules consists of triples (D,ϕD,Fil•DK) such that
(D,ϕD) ∈ ModϕK0

and (DK ,Fil•DK) ∈ FilVectK , where DK := D ⊗K0
K. (Note that no compatibility

between ϕD and Fil•DK is required; in fact it wouldn’t make sense to do so) Morphisms in the category are
morphisms in the category ModϕK0

such that the base change to K gives a morphism in FilVectK .

Remark 27. The category MFϕK is not abelian, but the fact that ModϕK0
is abelian and §3.1.3 implies that

in MFϕK there exist kernels, cokernels, image, coimage, short exact sequences, tensor products and duals.

Definition 5.36. A morphism in a category with image and coimage is said to be strict if the natural map
from the coimage to the image is an isomorphism

Definition 5.37. The category MFϕ,NK consists of tuples (D,ϕD, ND,Fil•DK) where (D,ϕD,Fil•DK) ∈
MFϕK and ND : D → D is a K0-linear morphism (called monodromy) such that NDϕD = pϕDND. Mor-
phisms in the category are morphisms in the category MFϕK which commute with ND.

Remark 28. Much like MFϕK , the category MFϕK is not abelian, but there exist kernels, cokernels, image,
coimage, and short exact sequences. To define tensor products and duals, in addition to the construction in
MFϕK we need to define these operations on the monodromy operator: ND⊗K0

D′ = ND ⊗ 1 + 1 ⊗ND′ and
ND∨ = −N∨D.

Remark 29. If (D,ϕD,Fil•DK) ∈ MFϕK then (D,ϕD, ND = 0,Fil•DK) ∈ MFϕ,NK and so many theorems
need only be proven for (ϕ,N)-modules and the analogs will follow for ϕ-modules.

Lemma 5.38. The slope decomposition D = ⊕D(α) in ModϕK0
extends to a decomposition in MFϕK by

endowing each direct summand with the subspace filtration over K. In MFϕ,NK each ⊕α≤α0
D(α) is stable

under N .
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Proof. Consider ∆ s
r

= Q̂ur
p [X]/(Xr − ps) on which φr = ps. Then by Nφ = pφN we have

φrNv = p−rNφrv

= ps−rNv

and so Nv ∈ ∆ s
r−1. This shows that N(∆α) ⊂ ∆α−1 and so the conclusion follows.

Lemma 5.39. The monodromy operator on any object in MFϕ,NK is nilpotent.

Proof. We have seen that N(D(α)) ⊂ D(α − 1) and the result follows from the fact that an isocrystal has
finitely many weights.
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5.4.4 Hodge polygons

Definition 5.40. For (D,Fil•D) ∈ FilVectK let i0 < i1 < . . . < in be the integers such that griD 6= 0, i.e.,
the indices where the jumps in the filtration occur. The Hodge polygon PH(D) of (D,Fil•D) is the convex
polygon in the plane, starting at (0, 0) and whose k-th segment has horizontal length dimK grik D and slope
ik. We denote by tH(D) the y-coordinate of the rightmost endpoint of PH(D).

Proposition 5.41. We have

1. tH(D ⊗K D′) = dimK D · tH(D′) + tH(D) · dimK D
′,

2. tH(D) = tH(detD),

3. tH(D∨) = −tH(D), and

4. if 0→ D → D′ → D′′ → 0 is an exact sequence in FilVectK then tH(D′) = tH(D) + tH(D′′).

Proof. These follow from the definitions.

Definition 5.42. If (D,ϕD,Fil•DK) ∈ MFϕK then we define tH(D) := tH(DK ,Fil•DK).

Lemma 5.43. Let D ∈ FilVectK .

1. If D′ ⊂ D in FilVectK then PH(D′) lies above PH(D).

2. If f : D′ → D is a morphism in FilVectK which is an isomorphism in VectK then tH(D′) ≤ tH(D)
with equality if and only if f is an isomorphism in FilVectK , i.e., it respect filtrations.

Proof. 1. This follows form the fact that the filtration on D′ is the restriction of the filtration on D and
the slopes of PH(D) and PH(D′) are the same except the length of each segment in PH(D′) is shorter
so the conclusion follows.

2. The morphism f is an isomorphism in FilVectK if and only if it induces an isomorphism det f : detD′ →
detD in FilVectK . Now det f : Fili detD′ → Fili detD so if i = tH(detD′) is the unique index such
that gri detD′ 6= 0 then grj detD = 0 for j < i which implies that tH(detD) ≥ tH(detD′) and the
conclusion follows from Proposition 5.41
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5.4.5 Weakly admissible modules

The categories MFϕK and MFϕ,NK will be the target categories of Dcris and Dst, respectively, but since they
are not abelian, while the category of representations is, the two Dieudonne functors (which we’ll prove to be
fully faithful) cannot be essentially surjective, and so we must seek abelian subcategories which are natural
target categories for the two functors.

Lemma 5.44. Let D ∈ MFϕK (MFϕ,NK ). Then the following two statements are equivalent:

1. For all subobjects D′ ⊂ D in MFϕK (MFϕ,NK ) the Newton polygon PN (D′) ≥ PH(D′).

2. For all subobjects D′ ⊂ D in MFϕK (MFϕ,NK ) we have tN (D′) ≥ tH(D′).

Moreover, if L/K is unramified then D satisfies the above properties in MFϕK (MFϕ,NK ) if and only if D⊗K0
L0

satisfies them in MFϕL (MFϕ,NK ).

Proof. Note that we only need to prove the version for (ϕ,N)-modules as the one for ϕ-modules can be
deduced by setting N = 0.

The first statement implies the second. Suppose now the second is true but for some subobject D′ of D the
Newton polygon PN (D′) does not necessarily sit above PH(D′). Since tN (D′) ≥ tN (D′) it follows that some
vertex v of coordinates (x, PN (D′)(x)) of the polygon PN (D′) has to lie below PH(D′). Let α0 be the slope of
the segment to the left of this vertex. Let D′′ = ⊕α≤α0D

′(α), which is then a subobject of D (by Lemma 5.38)
so tN (D′′) ≥ tH(D′′). But tN (D′′) = PN (D′)(x) and since the filtration on D′′ is inherited from that on D′ it
follows that PH(D′′) lies above PH(D′) and so tH(D′′) = PH(D′′)(x) ≥ PH(D′)(x) > PN (D′)(x) = tN (D′′)
giving a contradiction.

For the second statement note that if D′ is a subobject of D over K0 then D̂′ is a subobject of D̂ over

Q̂ur
p and PN (D′) = PN (D̂′) and PH(D′) = PH(D̂′) so the conditions are satisfied over Q̂ur

p . Now suppose

that D̂′ is a subobject of D̂ over Q̂ur
p such that tN (D̂′) < tH(D̂′). Again Galois descent produces a subobject

D′ of D such that D̂′ = D′ ⊗K0 Q̂ur
p and the conclusion follows.

Definition 5.45. An object D ∈ MFϕK (MFϕ,NK ) is weakly admissible if for all subobjects D′ ⊂ D in MFϕK
(MFϕ,NK ) we have tN (D′) ≥ tH(D′) with equality if and only if D = D′. Let MFϕ,wa

K (MFϕ,N,wa
K ) be the full

subcategory of MFϕK (MFϕ,NK ) consisting of weakly admissible objects.

Lemma 5.46. An object D ∈ MFϕK (MFϕ,NK ) is weakly admissible if and only if for every quotient D →→ D′

we have tN (D′) ≤ tH(D′).

Proof. Let D′′ := ker(D →→ D′) so we get an exact sequence 0 → D′′ → D → D′ → 0. Assuming D is
weakly admissible we get tN (D) = tH(D) and tN (D′′) ≥ tH(D′′) thus tN (D′) ≤ tH(D′). The converse is
obtained by following the above going in reverse.

Proposition 5.47. If D ∈ MFϕK (MFϕ,NK ) then D is weakly admissible if and only if D∨ is.

Proof. This is not vacuous as slopes swap signs under duality. Again, we will show this for (ϕ,N)-modules and
set N = 0 to get the result for ϕ-modules. Suppose (D∨)′ ⊂ D∨, then D →→ D′′ := ((D∨)′)∨ is a surjection.
Lemma 5.46 implies that tN (D′′) ≤ tH(D′′). But tN (D′′) = −tN ((D∨)′) and tH(D′′) = −tH((D∨)′) and so
tN ((D∨)′) ≥ tH((D∨)′) with equality occuring if and only if (D∨)′ = D∨. Thus D∨ is weakly admissible.
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Proposition 5.48. If 0→ D′ → D → D′′ → 0 is an exact sequence in MFϕK (MFϕ,NK ) and any two of the
objects are weakly admissible then the third one is also weakly admissible.

56



Proof. Assume D and D′′ are weakly admissible. If D1 ⊂ D′ then it is also a subobject of D and so
tN (D1) ≥ tH(D1) and if D1 = D′ then tN (D′) = tN (D) − tN (D′′) = tH(D) − tH(D′′) = tH(D′) and so D′

is weakly admissible.
Assume D and D′ are weakly admissible. Then 0 → (D′′)∨ → D∨ → (D′)∨ → 0 is an exact sequence

with D∨ and (D′)∨ weakly admissible by Proposition 5.47 and so (D′′)∨ is weakly admissible which implies
that D′′ also is.

Assume D′ and D′′ are weakly admissible. Then tN (D) = tN (D′)+tN (D′′) = tH(D′)+tH(D′′) = tH(D).
Let D1 ⊂ D. We need to check that tN (D1) ≥ tH(D1). Let D′1 = D1 ∩D with the subobject filtration on
(D′1)K coming from D′K (which is the same as the one coming from (D1)K), and let D′′1 = D1/D

′
1 endowed

with the quotient filtration from D1 (which need not be the same as the subspace filtration from D′′). Also

let D
′′
1 be the image of D′′1 in D′′ together with the subspace filtration from D′′. Then D′′1 → D

′′
1 is a

morphism in FilVectK which is an isomorphism in VectK and so by Lemma 5.43 we have tH(D′′1 ) ≤ tH(D
′′
1).

Moreover, tN (D′′1 ) = tN (D
′′
1) since the vector space isomorphism respects ϕ.

Since D′1 ⊂ D′ which is weakly admissible we get that tN (D′1) ≥ tH(D′1). Since D
′′
1 ⊂ D′′ which is weakly

admissible we get that tN (D′′1 ) = tN (D
′′
1) ≥ tH(D

′′
1) ≥ tH(D′′1 ). But 0 → D′1 → D1 → D′′1 → 0 is exact so

combining the two we get the desired conclusion.

Theorem 5.49. The categories MFϕ,N,wa
K and MFϕ,wa

K are abelian.

Proof. We only need to prove that MFϕ,N,wa
K is abelian as then MFϕ,wa

K is automatically also abelian. The
category is clearly additive (hom sets are abelian groups and finite direct sums and products exist) so we only
need to check that kernels and cokernels exist and the natural map from coimage to image is an isomorphism.
Kernels, cokernels, images and coimages exist in MFϕ,NK so if f : D → D′ is a morphism in MFϕ,N,wa

K then

in MFϕ,MK we have

0 // ker f // D // coim f //

uulllllllllllllll
0

0 // im f // D′ // coker f // 0

Now D and D′ are weakly admissible so using the definition and Lemma 5.46 we get tN (ker f) ≥ tH(ker f),
tN (coim f) ≤ tH(coim f), tN (im f) ≥ tH(im f) and tN (coker f) ≤ tH(coker f). Now the morphism coim f →
im f is an isomorphism in VectK (which is abelian) so Lemma 5.43 implies that tH(coim f) ≤ tH(im f) and
combining we get tN (coim f) ≤ tH(coim f) ≤ tH(im f) ≤ tN (im f). But the category ModϕK0

is abelian
and so the map coim f → im f is an isomorphism in ModϕK0

and so tN (coim f) = tN (im f) implying that
tH(coim f) = tH(im f) and so coim f and im f are weakly admissible. Another application of Lemma 5.43

now gives that coim f → im f is an isomorphism in FilVectK as well, and so in MFϕ,NK . Finally Proposition
5.48 gives that ker f and coker f are weakly admissible as well.

5.5 Crystalline and semistable representations

Definition 5.50. A representation is said to be crystalline if it is Bcris-admissible and semistable if it is
Bst-admissible. We denote the categories Repcris

Qp (GK) and Repst
Qp(GK).

5.5.1 Dcris and Dst

Definition 5.51. If V ∈ RepQp(GK) let ϕ := ϕ⊗ σ act on Dcris(V ) and ϕ and N := N ⊗ 1 act on Dst(V ).

Lemma 5.52. Let V ∈ Repst
Qp .

1. Dcris(V ) = Dst(V )N=0 and so crystalline representations are semistable;

2. Dcris goes into MFϕK and Dst goes into MFϕ,NK , they are faithful and exact;
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3. Dcris on Repcris
Qp (GK) and Dst on Repcris

Qp (GK) respect tensor products, duals, symmetric and exterior
powers;

4. if V is semistable then K ⊗K0
Dst(V ) ∼= DdR(V ) and so V is de Rham;

5. if L/K is complete and unramified then L0 ⊗K0
Dst,K(V ) ∼= Dst,L(V ).

Proof. 1. Dst(V )N=0 = (Bst⊗QpV )GK ,N=0 = (BN=0
st ⊗QpV )GK = (Bcris⊗QpV )GK = Dcris(V ). Now Bst

and Bcris are regular so if V is crystalline then dimQp V = dimK0 Dcris(V ) ≤ dimK0 Dst(V ) ≤ dimQp V
so V is also semistable.

2. We need to check only that ϕ is an isomorphism, which follows from Theorem 5.12.

3. This follows from Proposition 4.36.

4. Since K⊗K0 Bst ↪→ BdR it follows that K⊗K0 Dst(V ) ↪→ DdR(V ) as K-vector spaces. Now a dimension
count in the case when V is semistable gives an isomorphism as vector spaces and so V is de Rham.
Finally, the isomorphism is also one of filtered vector spaces since K ⊗K0

Bst carries the subspace
filtration from BdR.

5. L0⊗K0
Dst,K(V )→ Dst,L(V ) is a morphism in MFϕ,NL . Now using Proposition 4.40 we get L⊗L0

L0⊗K0

Dst,K(V ) ∼= L⊗K DdR,K(V ) ∼= DdR,L(V ) ∼= L⊗L0 Dst,L(V ) and so L0 ⊗K0 Dst,K(V )→ Dst,L(V ) is an

isomorphism in MFϕ,NL .

Corollary 5.53. Every semistable continuous character η : GK → Q×p is also crystalline.

Proof. Since N is nilpotent it follows N = 0.

Example 5.54. Dcris(Qp(n)) = K0 · t−n, ϕ(xt−n) = σK0/Qp(x)p−nt−n and FiliK · t−n is K · t−n for i ≤ −n
and 0 for i > −n.

Lemma 5.55. The homomorphism x 7→ σ(x)/x on W(Fp
×

) is surjective.

Proof. The map x 7→ xp−1 is surjective on Fp and so on W(Fp)×/(1 + pW(Fp)). Therefore it is enough
to show that x 7→ σ(x)/x is surjective on 1 + pW(Fp). If u = 1 + pnv with v ∈ W(Fp let z ∈ Fp such
that zp − z = v mod p. Let z = [z] in which case σ(z) − z ≡ v (mod p). Letting w = 1 + pnz we have
σ(w)/w ≡ 1 + pn(σ(z)− z) ≡ u (mod pn+1). We denote fn(u) := w.

Suppose u1 = u ∈ 1 + pW(Fp) and w1 = 1. We recursively construct un, wn ∈ 1 + pn W(Fp) by setting
wn = fn(un) and un+1 = un(σ(wn)/wn)−1. By construction wn ∈ 1+pn W(Fp) and un+1 ∈ 1+pn+1 W(Fp).
Then w =

∏
wn converges to an element of 1 + pW(Fp) and u = σ(w)/w.

Theorem 5.56. We get functors Dcris : Repcris
Qp (GK)→ MFϕ,wa

K and Dst : Repst
Qp(GK)→ MFϕ,st,wa

K .

Proof. We only need to show that if V ∈ Repst
Qp(GK) then D := Dst(V ) is weakly admissible.

(a) First, assume that dimQp V = 1 and so by Corollary 5.53 and Proposition 5.8 there exist an integer n and

an unramified character µ such that V = Qp(χncyclµ). Then D̂ = D
st,K̂ur(V ) = D

st,K̂ur(Qp(n)) = Q̂ur
p · t−n.

To show that D̂ is weakly admissible note that D̂ is isoclinic with slope −n and gri D̂ = 0 unless i = −n in
which case it is one dimensional, which implies that PH(D̂) = PN (D̂). Now Lemma 5.44 shows that D is
weakly admissible.
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(b) If D is any dimensional but dimK0 D
′ = 1 let e′ be a choice of basis with respect to which ϕ(e′) = λe′,

in which case tN (D′) = vp(λ). Let v1, . . . , vn be a basis of V and consider e′ =
∑
bi ⊗ vi ∈ (Bst⊗QpV )GK .

But ϕ(e′) = λe′ and N(e′) = 0 implies that ϕ(bi) = λbi and N(bi) = 0. Therefore bi ∈ BN=0
st = Bcris. Let s

be such that e′ ∈ Fils DdR(V )−Fils+1 DdR(V ), in which case tH(D′) = s. This implies that all bi ∈ Fils Bcris

but not all are in Fils+1. Let bj /∈ Fils+1 Bcris. We need to show that s ≤ vp(λ).

Assume, for the sake of contradiction, that s ≥ vp(λ) + 1. Let b = bjt
−vp(λ) ∈ Fils−vp(λ) Bcris ⊂ Fil1 Bcris

in which case ϕ(b) = ub where u ∈ W(Fp)×. Lemma 5.55 gives w ∈ W(Fp)× such that σ(w)/w = u which
gives b/w ∈ (Fil1 Bcris)

ϕ=1. But (Fil1 Bcris)
ϕ=1 = Fil1 Bcris ∩(Fil0 Bcris)

ϕ=1 = Fil1 Bcris ∩Qp = 0 where we
used (Fil0 Bcris)

ϕ=1 = Qp from the fundamental sequence in Theorem 5.13.

(c) If D is any dimensional, detD is one dimensional and we deduce tN (D) = tN (detD) = tH(detD) =
tH(D). Moreover, for every subobject D′ ⊂ D of dimension d′ we need to show that tN (D′) ≥ tH(D′). But
tH(D′) = tH(detD′) and tN (D′) = tN (detD′). Lemma 5.52 implies that ∧d′D is semistable and detD′ is a
one dimensional subobject of a semistable representation and the conclusion follows from the previous cases.

Lecture 24
2012-03-05

5.5.2 Vcris and Vst

Definition 5.57. For D ∈ MFϕK define Vcris(D) := Fil0(Bcris⊗K0
D)ϕ=1 and for D ∈ MFϕ,NK let Vst(D) :=

Fil0(Bst⊗K0
D)ϕ=1,N=0.

Theorem 5.58. The functors Dcris (Dst) is fully faithful and the inverse on its essential image is Vcris

(Vst).

Proof. We show this for Dst. That V ∼= Vst(Dst(V )) follows from the fundamental exact sequence and
before. Let V, V ′ ∈ Repst

Qp(GK) and let D = Dst(V ) and D′ = Dst(V
′). We already know that Dst is faithful,

as Bst is regular, so we only need to show that HomQp[GK ](V
′, V ) → HomMFϕ,NK

(D′, D) is surjective. Let

T : D′ → D respecting ϕ, N , as well as filtrations over K. Then 1 ⊗ T : Bst⊗K0D
′ → Bst⊗K0D and

using the comparison isomorphisms αst,D : Bst⊗K0
D ∼= Bst⊗QpV and αst,D′ : Bst⊗K0

D′ ∼= Bst⊗QpV
′ we

get T̃ := αst,DTα
−1
st,D′ : Bst⊗K0

V ′ → Bst⊗K0
V . We already know that the comparison isomorphism is an

isomorphism of filtered vector spaces over K by Proposition 4.36, and it respect ϕ and N so T̃ respects ϕ,N
and filtrations over K as well. Taking ϕ and N invariants we get (Bst⊗QpV

′)ϕ=1,N=0 → (Bst⊗QpV )ϕ=1,N=0

which gives a map Bϕ=1,N=0
st ⊗QpV

′ → Bϕ=1,N=0
st ⊗QpV . Tensoring with K and restricting to Fil0 gives

(since (Fil0 Bst)
ϕ=1,N=0 = (Fil0 Bcris)

ϕ=1 = Qp) a map V ′ → V .

5.5.3 The main theorems: admissibility and the p-adic monodromy conjecture

The main results are the following:

Theorem 5.59. The functors Dcris : Repcris
Qp (GK) → MFϕ,wa

K and Dst : Repst
Qp(GK) → MFϕ,N,wa

K are
equivalences of categories.

Theorem 5.60. If V ∈ RepdR
Qp (GK) there exists a finite extension L/K such that V |GL ∈ Repst

Qp(GL), in
other words, de Rham representations are potentially semistable.

5.6 Bloch-Kato

The reference for this section is [2].
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5.6.1 H1
e , H

1
f and H1

g

Definition 5.61. For V ∈ RepQp(GK) define

H1(K,V ) = H1(GK , V )

H1
g (K,V ) = ker(H1(GK , V )→ H1(GK ,BdR⊗QpV ) “geometric”

H1
f (K,V ) = ker(H1(GK , V )→ H1(GK ,Bcris⊗QpV ) “finite”

H1
e (K,V ) = ker(H1(GK , V )→ H1(GK ,B

ϕ=1
cris ⊗QpV ) “exponential”

Note that H1
e (K,V ) ⊂ H1

f (K,V ) ⊂ H1
g (K,V ) ⊂ H1(K,V ).

Lemma 5.62. If V ∈ RepdR
Qp (GK) then H1(K,B+

dR⊗QpV ) ↪→ H1(K,BdR⊗QpV ).

Proof. The exact sequence 0 → B+
dR → BdR → BdR /B+

dR → 0 gives the exact sequence 0 → B+
dR⊗QpV →

BdR⊗QpV → BdR /B+
dR⊗QpV → 0 which in turn gives the exact sequence

0→ H0(K,B+
dR⊗QpV )→ H0(K,BdR⊗QpV )→ H0(K,BdR /B+

dR⊗QpV )

But then

dimK DdR(V ) = dimK H
0(K,BdR⊗QpV )

≤ dimK H
0(K,B+

dR⊗QpV ) + dimK H
0(K,BdR /B+

dR⊗QpV )

Now 0→ ti+1 B+
dR → ti B+

dR → Cp(i)→ 0 gives

0→ H0(K, ti+1 B+
dR⊗QpV )→ H0(K, ti B+

dR⊗QpV )→ H0(K,Cp(i)⊗Qp V )

and we deduce that

dimK H
0(K, ti B+

dR⊗QpV ) ≤ dimK H
0(K, ti+1 B+

dR⊗QpV ) + dimK H
0(K,Cp(i)⊗Qp V )

Similarly for i < 0

dimK H
0(K, ti B+

dR /B+
dR⊗QpV ) ≤ dimK H

0(K, ti+1 B+
dR /B+

dR⊗QpV ) + dimK H
0(K,Cp(i)⊗Qp V )

SinceH0(K,B+
dR⊗QpV ) = lim−→H0(K,B+

dR⊗QpV ) such that for i ≥ i∞ we have Fili DdR(V ) = (ti B+
dR⊗QpV )GK =

0. Moreover, since H0(K,BdR /B+
dR⊗QpV ) = lim−→H0(K, ti B+

dR /B+
dR⊗QpV ) is finite dimensional it fol-

lows that there exists an integer i−∞ ≤ 0 such that for i ≤ i−∞ we have H0(K,BdR /B+
dR⊗QpV ) =

H0(K, ti B+
dR /B+

dR⊗QpV ). Inductively we have

dimK H
0(K,B+

dR⊗QpV ) ≤ dimK H
0(K, ti∞ B+

dR⊗QpV ) +

i∞∑
i=0

dimK H
0(K,Cp(i)⊗Qp V )

≤
∞∑
i=0

dimK H
0(K,Cp(i)⊗Qp V )

and

dimK H
0(K,BdR /B+

dR⊗QpV ) = dimK H
0(K, ti−∞ B+

dR /B+
dR⊗QpV )

≤
−1∑

i=i−∞

dimK H
0(K,Cp(i)⊗Qp V )

≤
−1∑

i=−∞
dimK H

0(K,Cp(i)⊗Qp V )
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Combining the two we have

dimK DdR(V ) ≤
∞∑
−∞

dimK H
0(K,Cp(i)⊗Qp V )

= dimK DHT(V )

and the two are equal since V is assumed to be de Rham. Therefore the map H0(K,BdR⊗QpV ) →
H0(K,BdR /B+

dR⊗QpV ) is surjective which in the long exact sequence gives that the mapH1(K,B+
dR⊗QpV )→

H1(K,BdR⊗QpV ) is injective as desired.

Proposition 5.63. If V is de Rham then the following diagram is commutative and the two rows are exact:

0 // H0(K,V )
α // Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )

β //
� _

��

DdR(V ) //

(0,id)

��

H1
e (K,V ) //

� _

��

0

0 // H0(K,V )
α // Dcris(V )⊕ Fil0 DdR(V )

γ // Dcris(V )⊕DdR(V ) // H1
f (K,V ) // 0

where

α(x) = (x, x)

β(x, y) = x− y
γ(x, y) = (x− ϕ(x), x− y)

Proof. We may rewrite the exact sequences in Theorem 5.13 as

0 // Qp α // Bϕ=1
cris ⊕B+

dR

β // BdR
// 0

0 // Qp α // Bcris⊕B+
dR

γ // Bcris⊕BdR
// 0

From the first one we get the exact sequence

0→ Qp → Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )→ DdR(V )→ H1(K,V )→

→ H1(K,Bϕ=1
cris ⊗V )⊕H1(K,B+

dR⊗V )→ H1(K,BdR⊗V )

Lemma 5.62 shows thatH1(K,B+
dR⊗V )→ H1(K,BdR⊗V ) is injective so the kernel of the mapH1(K,Bϕ=1

cris ⊗V )⊕
H1(K,B+

dR⊗V )→ H1(K,BdR⊗V ) is the same as the kernel of the mapH1(K,Bϕ=1
cris ⊗V )→ H1(K,BdR⊗V ).

But the image of H1(K,V )→ H1(K,Bϕ=1
cris ⊗V )⊕H1(K,B+

dR⊗V )→ H1(K,BdR⊗V ) is in this kernel and

so the map factors through H1(K,V ) → H1(K,Bϕ=1
cris ⊗V ). But then the map DdR(V ) → H1(K,V ) has

image in H1
e (K,V ) = ker(H1(K,V )→ H1(K,Bϕ=1

cris ⊗V )).
The second exact sequence in the proposition follows analogously from the second fundamental sequence.

Indeed, we get
0→ H0(K,V )→ Dcris(V )⊕ Fil0 DdR(V )→ Dcris(V )⊕DdR(V )→

→ H1(K,V )→ H1(K,Bcris⊗V )⊕H1(K,B+
dR⊗V )→ H1(K,Bcris⊗V )⊕H1(K,BdR⊗V )

Again, sinceH1(K,B+
dR⊗V ) ↪→ H1(K,BdR⊗V ) we deduce that the kernel of the last map lies inH1(K,Bcris⊗V )

and so the image of H1(K,V ) lies in H1(K,Bcris⊗V ). But that implies that the image of Dcris(V )⊕DdR(V )
lies in the kernel H1

f (K,V ) of H1(K,V )→ H1(K,Bcris⊗V ).
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Corollary 5.64. If V is de Rham then

1. dimQp H
1
f (K,V ) = dimQp(DdR(V )/Fil0 DdR(V )) + dimQp H

0(K,V ) and

2. H1
f (K,V )/H1

e (K,V ) ∼= Dcris(V )/(1− ϕ) Dcris(V ).

Proof. 1. From the second exact sequence in Proposition 5.63 we compute

dimQp H
1
f (K,V ) = dimQp H

0(K,V )− dimQp Dcris(V )⊕ Fil0 DdR(V ) + dimQp Dcris(V )⊕DdR(V )

= dimQp(DdR(V )/Fil0 DdR(V )) + dimQp H
0(K,V )

2. In the diagram in Proposition 5.63 we rewrite the map β : Dcris(V )ϕ=1 ⊕ Fil0 DdR(V ) → DdR(V ) as
γ : Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )→ 0⊕DdR(V ). We have

0 // H0(K,V ) // Dcris(V )ϕ=1 ⊕ Fil0 DdR(V ) //
� _

��

γ(Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )) //

��

0

0 // H0(K,V ) // Dcris(V )⊕ Fil0 DdR(V ) // γ(Dcris(V )⊕ Fil0 DdR(V )) // 0

and the snake lemma gives

γ(Dcris(V )⊕ Fil0 DdR(V ))

γ(Dcris(V )ϕ=1 ⊕ Fil0 DdR(V ))
∼= γ

(
Dcris(V )⊕ Fil0 DdR(V )

Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )

)
∼= γ(Dcris(V )/Dcris(V )ϕ=1)
∼= (1− ϕ) Dcris(V )

The snake lemma applied to the diagram

0 // γ(Dcris(V )ϕ=1 ⊕ Fil0 DdR(V )) //

��

0⊕DdR(V ) //

��

H1
e (K,V ) //

� _

��

0

0 // γ(Dcris(V )⊕ Fil0 DdR(V )) // Dcris(V )⊕DdR(V ) // H1
f (K,V ) // 0

gives

0→ γ(Dcris(V )⊕ Fil0 DdR(V ))

γ(Dcris(V )ϕ=1 ⊕ Fil0 DdR(V ))︸ ︷︷ ︸
(1− ϕ) Dcris(V )

→ Dcris(V )→ H1
f (K,V )/H1

e (K,V )→ 0

which implies the statement.

5.6.2 Tate duality

First, we start with the setup. Twisting by t in Theorem 5.13 gives

0→ Qp(1)→ Bϕ=p
cris ⊕tB+

dR → BdR → 0

which when restricted to Fil0 gives

0→ Qp(1)→ (Bϕ=p
cris ∩B+

dR)⊕ tB+
dR → B+

dR → 0
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or
0→ Qp(1)→ (Bϕ=p

cris ∩B+
dR)→ B+

dR /tB+
dR → 0

which is
0→ Qp(1)→ Fil0 Bϕ=p

cris → Cp → 0

Lemma 5.65. 2 Let V be a de Rham representation and γ : H1(K,Cp) → H2(K,Qp(1)) ∼= Qp be the
connecting homomorphism obtained from the exact sequence 0 → Qp(1) → Fil0 Bϕ=p

cris → Cp → 0. Then the

composite H1(K,Cp ⊗Qp V )×H0(K,Cp ⊗Qp V
∗)

^→ H1(K,Cp)
γ→ H2(K,Qp(1)) ∼= Qp is a perfect pairing.

Proof. The representation V is Hodge-Tate so we only need to prove the statement for V = Qp(n) as the
general V is a direct sum of these. But when n 6= 0 the two cohomology groups vanish so we only need to
show that H1(K,Cp) ×H0(K,Cp) → Qp is perfect. But H1(K,Cp) = K · logχcycl and H0(K,Cp) = K so
we only need to show that γ 6= 0.

If δ : H0(K,Cp)→ H1(K,Qp(1)) is the connecting homomorphism in degree 0 then there is a commuta-
tive diagram

H1(K,Qp)⊗H0(K,Cp)
id⊗δ //

^

��

H1(K,Qp)⊗H1(K,Qp(1))

^

��
H1(K,Cp)

γ // H2(K,Qp(1))

Since the right vertical map is the (nondegenerate) Tate pairing, to show that γ does not vanish it is enough
to show that δ does not vanish. Suppose x ∈ K = H0(K,Cp) such that δ(x) = 0. Then in the exact sequence

H0(K,Fil0 Bϕ=p
cris )→ H0(K,Cp)

δ→ H1(K,Qp(1))

x would have to be the image in H0(K,Cp) of some y ∈ H0(K,Fil0 Bϕ=p
cris ). But

H0(K,Fil0 Bϕ=p
cris ) = Fil0 BGK ,ϕ=p

cris

= Fil0Kϕ=p
0

= Kϕ=p
0

but on K0 Frobenius is σK0 ∈ GK0/Qp which preserves valuation and so Kϕ=p
0 = 0. Therefore y = 0 so x = 0

and thus δ is injective.

Proposition 5.66. Let V ∈ RepdR
Qp (GK) and let V ∗ = HomQp[GK ](V,Qp). Via the perfect Tate pairing

H1(K,V )×H1(K,V ∗(1))→ H2(K,Qp(1)) ∼= Qp

the following are annihilators of each other:

1. H1
f (K,V ) and H1

f (K,V ∗(1))

2. H1
e (K,V ) and H1

g (K,V ∗(1)).

Proof. We first remark that Tate duality implies that dimQp H
0(K,V ∗(1)) = dimQp H

2(K,V ) while dimQp H
0(K,V )−

dimQp H
1(K,V ) + dimQp H

2(K,V ) = −[K : Qp] dimQp V by the local Euler-Tate characteristic formula.
Therefore dimQp H

1(K,V ) = dimQp H
0(K,V )+dimQp H

0(K,V ∗(1))+[K : Qp] dimQp V . Since (V ∗(1))∗(1) ∼=
V and dimV = dimV ∗(1) it follows that dimQp H

1(K,V ) = dimQp H
1(K,V ∗(1)).

2not covered in class
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1. Let α ∈ H1
f (K,V ). Note that the fundamental sequence 0 → Qp → Bcris⊕B+

dR → Bcris⊕BdR → 0

gives a connecting homomorphism ε : H1(K,Bcris⊗V ⊗V ∗(1))⊕H1(K,BdR⊗V ⊗V ∗(1))→ H2(K,V ⊗
V ∗(1)) and together with the bottom exact sequence of Proposition 5.63 we get a commutative diagram

Dcris(V
∗(1))⊕DdR(V ∗(1)) // //

^α

��

H1
f (K,V ∗(1))

^α

��
H1(K,Bcris⊗V ⊗ V ∗(1))⊕H1(K,BdR⊗V ⊗ V ∗(1))

ε // H2(K,V ⊗ V ∗(1))

Since the image of α in H1(K,BdR⊗V ) is trivial the left vertical map vanishes and so H1
f (K,V ∗(1)) ^

α = 0 which implies that H1
f (K,V ) annihilates H1

f (K,V ∗(1)).

To show that they are exact annihilators it is enough to show that dimQp H
1
f (K,V )+dimQp H

1
f (K,V ∗(1)) =

dimQp H
1(K,V ). But Corollary 5.64 implies that

dimQp H
1
f (K,V ) = dimQp DdR(V )/Fil0 DdR(V ) + dimQp H

0(K,V )

dimQp H
1
f (K,V ∗(1)) = dimQp DdR(V ∗(1))/Fil0 DdR(V ∗(1)) + dimQp H

0(K,V ∗(1))

But dimQp DdR(V ) = dimQp DdR(V ∗(1)) = [K : Qp] dimQp V by the fact that V and V ∗(1) are de
Rham. Moreover (cf. the proof of Lemma 5.62)

dimQp Fil0 DdR(V ) = dimQp gr Fil0 DdR(V )

=
∑
n≥0

dimQp H
0(K,Cp(n)⊗ V )

dimQp Fil0 DdR(V ∗(1)) =
∑
n≥0

dimQp H
0(K,Cp(−n− 1)⊗ V )

=
∑
n≤−1

dimQp H
0(K,Cp(n)⊗ V )

which implies that

dimQp Fil0 DdR(V ) + dimQp Fil0 DdR(V ∗(1)) = dimQp DHT(V )

= [K : Qp] dimQp V

Therefore

dimQp H
1
f (K,V ) + dimQp H

1
f (K,V ∗(1)) = [K : Qp] dimQp V + dimQp H

0(K,V ) + dimQp H
0(K,V ∗(1))

= dimQp H
1(K,V )

by the computations at the beginning of this proof.

2. Let δ : DdR(V ∗(1)) →→ H1
e (K,V ∗(1)) be the boundary map from the first row of Proposition 5.63

applied to V ∗(1), and let ε : H1(K,BdR⊗Qp(1)) → H2(K,Qp(1)) be the boundary map obtained

from the exact sequence 0→ Qp(1)→ (Bϕ=1
cris ⊕B+

dR)⊗Qp(1)→ BdR⊗Qp(1)→ 0. Then the following
diagram is commutative

H1(K,V )⊗DdR(V ∗(1))
(id,δ) // //

��

H1(K,V )⊗H1
e (K,V ∗(1))

� � // H1(K,V )⊗H1(K,V ∗(1))

^

��
H1(K,BdR⊗V )⊗DdR(V ∗(1))

^ // H1(K,BdR⊗Qp(1))
ε // H2(K,Qp(1)) ∼= Qp
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Let α ∈ H1(K,V ) and let αdR be its image in H1(K,BdR⊗V ). Since the right vertical map is the
perfect Tate pairing, it follows that α annihilates H1

e (K,V ∗(1)) if and only if α annihilates DdR(V ∗(1))
under the composite pairing, if and only if αdR annihilates DdR(V ∗(1)) under ε◦^. We will show that
ε◦ ^ is a perfect pairing, which implies that αdR = 0 and so α annihilates H1

e (K,V ∗(1)) if and only
if α ∈ H1

g (K,V ∗(1)).

We now show that ε◦ ^ is a perfect pairing3. Suppose that α ∈ H1(K, tn B+
dR⊗V ) annihilates

DdR(V ∗(1)). There exists a commutative diagram (the reason the diagram is commutative is that to
obtain the bottom row we multiplied by t the fundamental sequence, whereas for the top row we did
not)

H1(K, tn B+
dR⊗V )

����

⊗ DdR(V ∗(1)) // H2(K,Qp(1)) ∼= Qp

H1(K,Cp(n)⊗ V ) Fil−n−1 DdR(V ∗(1)) = Fil−n DdR(V ∗)t−1

����

?�

OO

H1(K,Cp ⊗ V (n)) ⊗ H0(K,Cp ⊗ V (n)∗) // Qp

where the surjection Fil−n DdR(V ∗) = H0(K,B+
dR⊗V (n)∗) →→ H0(K,Cp ⊗ V (n)) follows from the

proof of Lemma 5.62 and the surjection H1(K, tn B+
dR⊗V ) →→ H1(K,Cp(n) ⊗ V ) from Proposition

4.34. Since α annihilates DdR(V ∗(1)), its image in the bottom row annihilates H0(K,Cp ⊗ V ∗). But
the bottom row is perfect by Lemma 5.65 applied to V (n), so it follows that the image of α is zero and
so α is in fact in H1(K, tn+1 B+

dR⊗V ). Now let α ∈ H1(K,BdR⊗V ) annihilate DdR(V ∗(1)). Let i ∈ Z
such that α ∈ H1(K, ti B+

dR⊗V ). Inductively we get that α ∈ H1(K, tn B+
dR⊗V ) for all n ≥ i. But for

n >> 0 we have H1(K, tn B+
dR⊗V ) = 0 so α = 0.

Now suppose that β ∈ DdR(V ∗(1)) annihilates H1(K, tn B+
dR⊗V ). Then since the top left map is

surjective we would get that the image of β in H0(K,Cp ⊗ V (n)∗) annihilates H1(K,Cp ⊗ V (n)) and
by perfectness of the bottom pairing we deduce that the image of β is trivial. But that would imply
that β ∈ (tn+1 B+

dR⊗V )GK and inductively we again deduce that β = 0.

Lecture 26
2012-03-09

5.6.3 Computations

Proposition 5.67. Let r ∈ Z. We have the following table of dimensions
r dimH1

e (K,Qp(r)) dimH1
f (K,Qp(r)) dimH1

g (K,Qp(r)) dimH1(K,Qp(r))
r < 0 0 0 0 [K : Qp]
r = 0 0 1 1 [K : Qp] + 1
r = 1 [K : Qp] [K : Qp] [K : Qp] + 1 [K : Qp + 1
r > 1 [K : Qp] [K : Qp] [K : Qp] [K : Qp]

Proof. We denote h• = dimQp H
•. First, we have that h0(K,Qp(r)) = δr=0 and h0(K,Qp(r)∗(1)) =

h0(K,Qp(−r + 1)) = δr=1 and so by the Tate characteristic formula

h1(K,Qp(r)) = [K : Qp] + h0(K,Qp(r)) + h0(K,Qp(r)∗(1))

= [K : Qp] + δr=0 + δr=1

3not covered in class
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This gives the fourth column. Moreover,

h1
f (K,Qp(r)) = dimQp DdR(Qp(r))/Fil0 DdR(Qp(r)) + h0(K,Qp(r))

and since gr−r DdR(Qp(r)) = K we deduce that DdR(Qp(r)) = Fil0 DdR(Qp(r)) when r ≤ 0 and otherwise
Fil0 DdR(Qp(r)) = 0 giving DdR(Qp(r))/Fil0 DdR(Qp(r)) ∼= K having Qp dimension [K : Qp]. This gives the
second column.

We know from Corollary 5.64 that h1
f (K,Qp(r))−h1

e(K,Qp(r)) = dimQp Dcris(Qp(r))/(1−ϕ) Dcris(Qp(r)).
But the exact sequence 0→ Dcris(V )ϕ=1 → Dcris(V )→ Dcris(V )→ Dcris(V )/(1−ϕ) Dcris(V )→ 0 show that

h1
f (K,Qp(r))− h1

e(K,Qp(r)) = dimQp Dcris(Qp(r))ϕ=1

But Dcris(Qp(r))ϕ=1 = (K0t
−r)ϕ=1 = K

σK0
=pr

0 which is 0 when r 6= 0 as σK0
preserves vp on K0. If r = 0

then K
σK0

=1
0 = Qp and so h1

f (K,Qp)− h1
e(K,Qp) = 1, giving the first column from the second one.

Finally, Proposition 5.66 gives that

h1
g(K,V ) = h1(K,V ∗(1))− h1

e(K,V
∗(1))

giving the third column.

5.6.4 Extensions

Remark 30. Let V ∈ RepQp(GK). Extensions 0→ V →W → Qp → 0 are in bijection with elements of cW ∈
H1(K,V ). The representation W is de Rham (crystalline) if and only if cW ∈ Hg(K,V ) (cW ∈ H1

f (K,V )).

Corollary 5.68. 1. There exists a (necessarily Hodge-Tate) extension 0 → Qp(−1) → V → Qp → 0
which is not de Rham.

2. When r ≥ 1 all extensions 0→ Qp(r)→ V → Qp → 0 are de Rham.

3. When r ≥ 2 all extensions 0→ Qp(r)→ V → Qp → 0 are crystalline.

4. There exists a de Rham but not crystalline extension 0→ Qp(1)→ V → Qp → 0.

Proof. 1. Follows from Remark 30 since dimH1(K,Qp(−1)) = [K : Qp] > 0 and Hg(K,Qp(−1)) = 0.

2. Follows from the fact that dimH1(K,Qp(r)) = dimH1
g (K,Qp(r)).

3. Follows from the fact that dimH1(K,Qp(r)) = dimH1
f (K,Qp(r)).

4. Follows from the fact that dimH1
g (K,Qp(1)) > dimH1

f (K,Qp(1)).

Example 5.69. If E/Qp is an elliptic curve with multiplicative reduction then (using Tate curves) we get
an extension 0 → Qp(1) → VpE → Qp → 0, and so VpE is necessarily de Rham (even semistable using
Perrin-Riou).

5.7 Ordinary representations

Corollary 5.68 implies that all extensions 0 → Qp(1) → V → Qp → 0 are de Rham. Perrin-Riou computed

extensions in MFϕ,N,wa
K to show that in fact all such extensions are semistable (cf. also [3, Lemma 8.3.9]). The

main complication in [5] is the lack of availability at the time of the equivalence of categories Repst
Qp(GK) ∼=

MFϕ,N,wa
K . Assuming this, showing that such extensions are semistable is straightforward.

Lemma 5.70. We have
Ext1

Repst
Qp (GK)(Qp,Qp(1)) ∼= K ×Qp
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Proof. From the equivalence of categories we deduce:

Ext1
Repst

Qp (GK)(Qp,Qp(1)) ∼= Ext1
MFϕ,N,wa

K

(Dst(Qp),Dst(Qp(1)))

∼= Ext1
MFϕ,N,wa

K

(K0,K0〈−1〉)
∼= Ext1

MFϕ,N,wa
K

(K0〈1〉,K0)

Extensions D ∈ Ext1
MFϕ,N,wa

K

(K0〈1〉,K0) have a basis e0, e1 such that “K ′′0 = K0e0 and “K0〈1〉′′ = K0e1, i.e.,

ϕ(e0) = e0 with slope 0 (D(0) = K0e0) and ϕ(e1) = pe1 with slope 1 (D(1) = K0e1). Since N decreases slope
by 1 we deduce that there exists α ∈ K0 such that Ne1 = αe0 and Ne0 = 0. But ϕNe1 = ϕ(αe0) = σK0

(α)e0

and Nϕe1 = Npe1 = pαe0. Since Nϕ = pϕN we deduce that α = σK0(α) and so α ∈ Qp.
The Hodge-Tate weights are 0 and 1 and so Fil0DK = DK , Fil2DK = 0 and Fil1DK ⊂ Ke0 ⊕Ke1 is

a K-line. If Fil1DK = Ke0 then K0e0 is a subobject of D in MFϕ,NK with tH(K0e0) = 1 > 0 = tN (K0e0).
Therefore Fil1DK = K(e1−Le0) for some L ∈ K. So to D we attached (L, α) ∈ K ×Qp and one can check
that all L ∈ K and α ∈ Qp give weakly admissible, and hence admissible D.

Proposition 5.71. If 0→ Qp(1)→ V → Qp → 0 then V is semistable.

Proof. It is enough, by the previous lemma, to give an isomorphism H1(GK ,Qp(1)) ∼= K×Qp. But Kummer
theory gives H1(GK ,Zp(1)) ∼= lim←−K

×/(K×)p
n

and so H1(GK ,Qp(1)) ∼= lim←−K
×/(K×)p

n ⊗Qp.

If vp(x) >
1

p− 1
then exp(x) converges and in that case exp(px) = exp(x)p. Consider the map K×Qp →

lim←−K
×/(K×)p

n ⊗ Qp taking (x, q) to $pnq
K exp(pnx) ⊗ p−n for n large enough to make the exponential

convergent and pnq ∈ Zp. This map is clearly injective so we only need surjectivity. Note that K× =
$Z
K × k

×
K × (1 + mK) and so (since p - #k×K)

lim←−K
×/(K×)p

n ∼= $
Zp
K × lim←−(1 + mK)/(1 + mK)p

n

which via the log map (normalized such that log$K = 0) goes to lim←−mK/p
nmK = mK which is complete.

The map lim←−K
×/(K×)p

n ⊗ Qp → K × Qp given by x ⊗ q 7→ (q log x, qvp(x)) is an inverse to (x, q) 7→
$pnq
K exp(pnx)⊗ p−n.
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