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Homework 2

Solutions

Problem 1 [13.2.14] Prove that if [F (α) : F ] is odd then F (α) = F (α2).

Proof. If α /∈ F (α2) then F (α2) is a proper subfield of F (α). Moreover α satisfies x2−α2 ∈ F (α2),
so [F (α) : F (α2)] = 2. However,

[F (α) : F ] = [F (α) : F (α2)][F (α2) : F ] = 2 · [F (α2) : F ],

which contradicts the fact that [F (α) : F ] is odd. Thus α ∈ F (α2), and therefore F (α) = F (α2).

Problem 2. Let F be a field and let f ∈ F [X] with a splitting field E over F .

(a) Show that for any element α of some extension of F , E(α) is a splitting field of f over F (α).

(b) Show that every irreducible polynomial g ∈ F [X] with a root in E has all roots in E.

Proof. (a) Since E is the splitting field of f over F , it is generated over F by the roots of f .
Consequently, E(α) is generated by the roots as an extension of F (α), so E(α) is the splitting field
of f over F (α).

(b) Assume that β is a root of g in E, and let γ be any other root of g in an algebraic closure of
E. Since β and γ are roots of the same irreducible polynomial g, it follows from Theorem 8, Sec.
13.1, that F (β) ∼= F (γ). Since E is a splitting field of f over F , it follows (by (a)) that E(β) is a
splitting field of f over F (β), and F (γ) is a splitting field of f over F (γ). Hence, by Theorem 27,
Sec. 13.4, the F -isomorphism from F (β) onto F (γ) can be extended to an isomorphism from E(β)
onto E(γ). By assumption, β ∈ E, thus E ∼= E(β) ∼= E(γ), showing that γ ∈ E.

Remark. The converse of part (b) also holds, namely: If any irreducible polynomial g ∈ F [X] with
a root in a finite extension E of F has all of its roots in E then E is a splitting field over F . Indeed,
set E = F (α1, . . . , αn) and let fi be the minimal polynomial of αi. Since each fi has a root in E,
the hypothesis implies that each fi splits completely in E[X]. Hence, it is easy to see that E is the
splitting field of f =

∏n
i=1 fi over F .

Problem 3 [13.4.6] Let K1 and K2 be finite extensions of F contained in the field K, and assume
both are splitting fields over F .

(a) Prove that their composite K1K2 is a splitting field over F .

(b) Prove that K1 ∩K2 is a splitting field over F .
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Proof. (a) Let K1 be the splitting field of f ∈ F [x], and K2 the splitting field of g ∈ F [x]. Then
K1K2 contains the roots of both f and g. Therefore K1K2 is the splitting field of the polynomial
h = fg over F .

(b) Let g(x) ∈ F [x] be an irreducible polynomial with a root in K1 ∩ K2. This means that g
has a root in K1 and also a root in K2. Since both K1 and K2 are splitting fields, we can use the
previous remark to conclude that g splits completely in K1 and in K2. Hence g splits completely
in K1 ∩K2, showing that K1 ∩K2 is a splitting field over F .

Problem 4. Let α and β be two algebraic elements over a field F . Assume that the degree of the
minimal polynomial of α over F is relatively prime to the degree of the minimal polynomial of β
over F . Prove that the minimal polynomial of β over F is irreducible over F (α).

Proof. We know that degmα,F (x) = [F (α) : F ] and degmβ,F (x) = [F (β) : F ]. Also

[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ]

= [F (α, β) : F (β)][F (β) : F ].

Since gcd
(
degmα,F (x), degmβ,F (x)

)
= 1 it follows that [F (β) : F ] divides [F (α, β) : F (α)]. Equiv-

alently, the degree of the minimal polynomial of β over F (α) is divisible by the degree of the minimal
polynomial of β over F . Considering that the former polynomial divides the latter polynomial (by
Proposition 9, Sec 13.2) we infer that the two polynomials are in fact equal. In other words, mβ,F (x)
remains irreducible over F (α), as desired.

Problem 5. Let E and K be finite field extensions of F such that [EK : F ] = [E : F ][K : F ].
Show that K ∩ E = F .

Solution 1. Let L = K ∩ E, then

[EK : F ] = [E : F ][K : F ] = [E : L][L : F ][K : L][L : F ]

= [E : L][K : L][L : F ]2

≥ [EK : L][L : F ]2 by Proposition 21, Sec 13.2

= [EK : F ][L : F ].

In conclusion [L : F ] = 1 and hence L = F , as desired.

Solution 2. Let α1, . . . , αn be an F -basis for E and let β1, . . . , βm be an F -basis for K. By the
proof of Proposition 21, Sec. 13.2, we conclude that the equality [EK : F ] = [E : F ][K : F ] implies
that the set B = {αiβj} is a basis for EK over F . Clearly we can choose the above bases such that
α1 = β1 = 1 ∈ F . Then S := {1, α2, . . . , αn, β2, . . . , βm} ⊂ B so the elements of this set are linearly
independent over F .

Now if γ ∈ E ∩K then we can write γ =
∑n

i=1 aiαi =
∑m

j=1 bjβj for ai, bj ∈ F . It yields that

0 = (a1− b1) ·1+
∑n

i=2 aiαi−
∑m

j=2 bjβj . By the above, the elements of S are linearly independent
over F . Therefore a1 = b1 and ai = bj = 0 for i, j ≥ 2. Consequently γ = a1 = b1 ∈ F implying
that E ∩K ⊆ F and thus E ∩K = F .
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