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On the Teaching of the Lumped Model for Unsteady 
Heat Conduction: Natural Convection Versus Forced 

Convection  
 

Antonio Campo1 

Abstract –Within the lumped model platform for unsteady heat conduction, the Biot number criterion between a solid body and a 

surrounding fluid requires that Bi = 









S

V

k

h

s

 < 0.1. Although not clearly stated, this holds true mostly for forced convection where the 

mean convective coefficient h  is affected by the impressed fluid velocity.  Conversely, when heat is exchanged by natural 

convection, the Biot number criterion involves a mean convective coefficient h  that depends on the temperature difference between 

the body and the fluid. Consequently, the above-cited Biot number criterion must be modified to incorporate the variability of the 

mean convective coefficient h   with the temperature difference. This situation gives rise to a new Bimax = 







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s

max  < 0.1 where maxh  

is the maximum mean convective coefficient that, in the case of cooling, happens at the initial temperature Ti and time t = 0. In this 

paper on engineering education, the exact mean temperature distribution T (t) is deduced for a case study wherein the solid body is a 

sphere being cooled by natural convection in quiescent air under the premises of the lumped model. A physics-based equivalence of 

Bimax interweaves the solid thermal conductivity, the fluid thermal conductivity and the extended Grashof number embracing the 

initial–to–fluid temperature difference. 
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NOMENCLATURE 

a, b   coefficients in eq. (9a) 

Bi   Biot number for lumped body,









S

V

k

h

s

, dimensionless  

Bimax    modified Biot number for lumped body with natural 

convection cooling,









S

V

k

h

s

max , dimensionless 

cp   specific heat capacity at constant pressure, J/kg.C  

cv   specific heat capacity at constant volume, J/kg.C  

D   diameter of sphere, m  

g   gravitational acceleration, m/s
2
 

GrD   Grashof number for sphere, 
2

2




g ( T  Ts  ) D

3
, 

dimensionless  

i,DGr    extended Grashof number for sphere, 
2

2




g

 

( T  Ti  ) D
3
, dimensionless 

h    mean convective coefficient, W/m
2
.C 

maxh    maximum mean convective coefficient, W/m
2
.C 

 

k   thermal conductivity, W/m.C 

DNu    mean Nusselt number for sphere,

fk

Dh , dimensionless 

Pr   Prandtl number,

f

fp

k

c , , dimensionless 

R   radius of sphere, m 

RaD   Rayleigh number for sphere, GrD Pr, dimensionless 

i,DRa    extended Rayleigh number for sphere, i,DGr Pr, 

dimensionless 

S   surface area, m
2
 

t   time, s 

T   mean temperature, C 

Ti   initial temperature, C 
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Ts   surface temperature, C 

T   fluid temperature, C 

V   volume, m
3
 

GREEK LETTERS 

β  coefficient of volumetric thermal expansion, 1/K 

θ  temperature excess, T  T  , C  

μ  dynamic viscosity, N.s/m
2
 

ρ  density, kg/m
3
 

SUBSCRIPTS 

f  fluid 

s   solid 

INTRODUCTION 

 

The heat interaction between a solid body immersed in an 

infinite fluid at a different temperature normally occurs by 

either forced convection or natural convection [1-15]. In a 

solid body absent of internal heat generation, the conductive 

heat is dependent upon two resistances: (1) the internal 

conductive resistance inside the body and (2) the surface 

convective resistance between the body surface and the fluid. 

Within these possibilities, there are two limiting cases of 

importance. The first limiting case deals with negligible 

internal conductive resistance and the second limiting case 

deals with negligible surface convective resistance. The 

former case is associated with a small temperature difference 

between the center and the surface of the body and a large 

temperature difference between the body surface and the 

infinite fluid. Putting this statement in perspective, it connotes 

that during a cooling period, the solid body can be considered 

as a "lump" with nearly uniform temperature at any instant of 

time. In other words, the unsteady heat conduction takes place 

in a lumped body whose mean temperature decreases 

gradually with time. This rationale sets the groundwork for the 

primary assumption underlying the resourceful lumped model.  

 With regards to the teaching of unsteady heat 

conduction in regular or irregular solid bodies exposed to a 

neighboring fluid, textbooks on heat transfer explain the 

lumped model with various degrees of depth [1–15]. 

Conceptually, the lumped model subscribes to the notion that 

the surface convective resistance dominates the internal 

conductive resistance. This resistance imbalance is responsive 

to the so–called Biot number criterion Bi = 









S

V

k

h

s

 < 0.1. More 

specifically, in practice the lumped model is satisfied by bodies 

of small size, and/or solids possessing large thermal 

conductivity, and/or convective environments owning weak 

mean convective coefficients. Qualitatively, the interior 

temperatures in a large plate, long cylinder and sphere are quasi–

uniform at any given time because the surface–to–center 

temperature ratios lie within an approximate 5% error band [1-

15].  

Intriguingly, what all textbooks on heat transfer habitually 

omit to mention with regards to the lumped model is that the 

heat exchange between the body and the surrounding fluid has 

to be ensued by forced convection. Since forced convection is 

a linear mode of heat transfer (practically impervious to 

temperature changes), the Biot number criterion Bi = 









S

V

k

h

s

 < 

0.1 depends on a mean convective coefficient h  that remains 

constant during the entire cooling period. On the contrary, 

when natural convection is the heat exchange mode, the heat 

transfer is nonlinear and the corresponding mean convective 

coefficient h  does not stay constant; instead h  varies with 

the instantaneous space–mean temperature. Thereby, to 

comply with the lumped model for natural convection, the Biot 

number criterion must be viewed through a different 

perspective. This forcibly implies that the Biot number criterion 

must be modified, being rewritten as Bimax = 









S

V

k

h

s

max  < 0.1 

where maxh  for cooling denotes the maximum mean convective 

coefficient occurring at the initial temperature Ti and time t = 0. 

Regardless of the heat transfer mode (either forced or natural 

convection), h  is evaluated from appropriate correlation 

equations for the mean Nusselt number which are tied up to the 

shape and orientation of the solid bodies [1–15].  

The objective of this engineering education paper is two–

fold. The first objective is to develop the exact mean temperature 

distribution T (t) for a case study involving unsteady heat 

conduction in a solid sphere cooled by natural convection in still 

atmospheric air. The second objective is to seek a material‟s 

alternative for the new Biot number criterion, which will be 

expressed in terms of the thermophysical properties of the solid 

and the air. 

NATURAL CONVECTION 

Natural convection from a hot solid body to an extensive 

quiescent fluid induces an upward flow by heating a portion of 

the fluid in the vicinity of the body. The heated fluid expands, 

becomes less dense than the cooler fluid and rises due to 

gravitational buoyancy effects. Parallel to this, the cooler fluid 

descends cyclically to replace the space occupied by the 

heated fluid.  

Application of dimensional analysis to natural convection 

heat transfer establishes a relation between the mean Nusselt 

number Nu , the Rayleigh number Ra and the Prandtl number 

Pr, via the double–valued function [1–15]: 

 

iablevar
tindependen

ondarysec

iablevar
tindependen

primary

)Pr,Ra(fNu                (1) 

For the estimation of Nu , modern correlation equations 

have been developed by Churchill and coworkers (Churchill 

[16]) using theoretical, numerical and experimental data for 

vertical plates, horizontal cylinders and spheres. Typical 

uncertainties in the prediction of h  by correlation equations are 

within %10  to %20  margin (Holman [10]). 
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LUMPED HEAT EQUATION 

Consideration is given to a heated solid body at a uniform 

temperature Ti immersed in a cold stagnant fluid at a different 

uniform temperature T∞ as shown in Figure 1. In general, the 

applicable lumped heat equation is 

isv
T = (0)T         ),T  (T  Sh  = 

dt

dT
 V c

,
                            (2) 

which obeys the Biot criterion 









S

V

k

h

s

 < 0.1. The characteristic 

length corresponds to the volume–to–surface area ratio 
S

V  . 

Let us take the solid sphere as a case study where 
S

V  = 
6

D . 

Then, eq. (2) is particularized to 

isv
T = (0)T       ),T  (T h   = 

dt

dT
 

D
  

6
c

,
                             (3) 

and since 
3

R
V  , the Bi criterion becomes 

sk

Rh
 < 0.3. 

The mean Nusselt number DNu for a solid sphere cooled 

in a natural convection environment is obtained from the 

correlation equation due to Churchill [10] 

(Pr)f

Ra
 0.58 +  = Nu D

D

4/1

90.2     for RaD < 10
11 

          (4) 

where f (Pr) is the so–called “universal” Prandtl number 

function  




















 

Pr

0.469
 + 1  = (Pr)f

9/16
4/9

           (4a) 

Here, the intervening thermophysical properties of the fluid 

are evaluated at the film temperature )(
2

1
 TTT sf

. 

At this stage, it is worth pointing out that the solid sphere 

constitutes an interesting configuration. First, the mean Nusselt 

number DNu in eq. (4) has a specifiable conductive lower 

bound DNu    2 as RaD  0 by virtue of a combination of 

factors, such as high viscosity μ  , small density ρ  0, or 

small diameter D  0. 

Isolating the mean natural convective coefficient h  in eq. 

(4), h  is expressed in terms of primitive quantities by the two–

term expression: 

)T  (T )(g g 
D

k
 0. + 

D

k
 2 = h

1/4

1/4

1/4

ff









Pr589

2

2




           (5) 

where the new grouping 
4/3Pr

1
(Pr) g  is introduced for 

convenience. It is recognizable in eq. (5) that h  entails to a 

nonlinear, single–valued function of the temperature difference 

(T  T). As time evolves (t > 0), the contribution of the second 

term in eq. (5) weakens, and the mean temperature T gradually 

decreases from the initial temperature Ti to the equilibrium fluid 

temperature T. For large time t  , the second term in eq. (5) 

vanishes resulting in the lowest value of 
D

k
2histhat,h f

min  . 

Under these circumstances, this signifies that the transfer of heat 

from a hot solid sphere to a cold fluid happens by pure 

conduction through a stagnant layer of fluid coating the sphere. 

For visualization purposes, Figure. 2 displays the variation of h
with temperature T for the natural convection cooling of an 

aluminum sphere in still air where the diameter D is the 

parameter. In numbers, for a large diameter D = 0.5 m and T∞ = 

29 C, maxh  = 5 W/m
2
. C, and minh = 0.1 W/m

2
.C (there is a 

large factor of 50 between the two h ‟s), whereas for a small 

diameter D = 0.01 m, maxh  = 21.6 W/m
2
.C and minh = 5.2 

W/m
2
.C (there is a small factor of 4 between the two h ‟s). 

Further inspection of eq. (5) indicates that the largest value of 

,h say maxh , happens at the initial temperature T = Ti when t = 

0. Consequently, maxh is represented by 

)T  (T )(g g 
D

k
 0. + 

D

k
 2 = h

1/4

i2

1/4

1/4

ff














Pr589

2

max




         (5a) 

Introducing eq. (5) into eq. (3) delivers the following 

nonlinear differential equation of first order  

i

5/4

2

1/4

1/4

ff

sv
TT)T  (T )(g g 

D

k
   )T  (T 

D

k
 12 = 

dt

dT
 D 













  )0(,Pr53.3c

2

,





 (6) 

Now, to comply with the lumped model for a sphere, the 

applicable Biot criterion must be rewritten as 

        Bimax =

s

max

k

Rh
 < 0.3                             (7) 

where maxh being linked to T = Ti , t = 0 is determined from eq. 

(5a). Upon defining the temperature excess  

T  T                                    (8) 

eq. (6) can be homogenized into the compact form 

i
5/4  = (0)       0, =  b   a  

dt

d
     


                        (9) 

where the pair of coefficients “a” and “b” are computed from:  
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D
 = a

2

1/4

f

sv

f

sv 






















































Pr

c

153.3

c

112 2

,

4/5

,

2







 (9a) 

In here, it is seen that “a” and “b”, vary inversely proportional 

with the sphere diameter D. 

In principle, eq. (9) belongs to the general class of nonlinear 

differential equations  

 

1 n 0, =  b   a  
dt

d
 n




                                   (10) 

which is named Bernoulli equation (Polyanin and Zaitsev [17]). 

The exact analytic solution of eq. (9) delivers the following 

mean temperature distribution T (t): 

 



























a

b
  t

4

a
  

a

b
 + 1 = 

T T

T  (t)T
 

4

i

exp                                   

(11) 

 

where “a” and “b” are taken from eq. (9a). The reader should 

notice that the structure of this exact solution for natural 

convection with variable h  is quite different from the structure 

of the exact solution for forced convection with constant h , 

 

 t
R

h
= 

T T

T  (t)T
     

svi























c

3
exp

,


                                  (12) 

ALTERNATE MODIFIED BIOT CRITERION 

At this point, let us move back to the prevalent Biot criterion 

for a sphere. Combining eqs. (5a) and (7), the Biot criterion can 

be re-expressed in a convenient alternate manner by way of the 

dimensionless inequality 

 

3.0Pr295
2

4/3 












 )T  (T )(g g D

k

k
 0. + 

k

k
 

1/4

i2

1/4

s

f

s

f




    (13a) 

 

The interpretation of this inequality suggests that the region 

of validity for the lumped heat equation (2) embodies the 

interplay between the sphere diameter D (a geometric quantity) 

and various thermophysical properties, such as 1) the solid 

thermal conductivity ks, 2) three fluid thermophysical properties 

kf, , μ as well as 3) the prescribed initial–to–air temperature 

difference T  Ti  . 

Next, isolating the solid–to–fluid thermal conductivity ratio 

f

s

k

k
in eq. (13a) results in 

 TTggD 
k

k
i

f

s

























 

4/1

4/1

2

2
4/3 )(Pr)(295.01333.3






   (13b) 

 

 

 

Its equivalent abbreviated form is 

4/1

,(Pr)983.0333.3 iD

f

s Grg 
k

k
                          (13c) 

Here, the subscript „i‟ in the extended Grashof number 

i,DGr signals to the initial–to–fluid temperature difference 

T  Ti   and g(Pr) is found in eq. (4a). When eq. (7) is 

compared against eq. (13c), it is crystal clear that despite ks 

being common to both equations, maxh  (the derived quantity) is 

supplanted by the fluid thermal conductivity kf (a primitive 

quantity), accompanied by the two dimensionless groups 

characterizing a natural convection environment, i.e., Gr D, i and 

Pr.  

PRACTICAL EXAMPLE 

To put things in engineering perspective, let us analyze a 

solid sphere of small diameter D at an initial temperature Ti 

immersed in extensive quiescent air at a different temperature 

T∞. The question that needs to be addressed is: What solid 

materials make the lumped model acceptable for the solid sphere 

when natural convection is the heat transfer mechanism?  

For air at an ambient temperature of 20C, the thermal 

conductivity stays around kf = 0.028 W/m. C and Pr = 0.71 

(Incropera and DeWitt [12]). From eq. (13c), it is imminent that 

the thermal conductivity of the solid ks has to satisfy the 

inequality 

 
4/1

i,Ds Gr018.0087.0k                                       (14) 

 

Obviously, two practical limits for i,DGr are physically 

plausible. First, in the lower conductive limit for vanishing 

i,DGr → 0, the answer is simply ks > 0.087 W/m.C (nearly 

zero!!!). Second, setting the upper convective limit for a large 

i,DGr at the critical laminar–turbulent value cr,i,DGr   ≈ 10
9
, it 

turns out that ks > 3.3 W/m.C (a small number!!!). Upon 

consulting the Tables of Thermophysical Properties in [10], the 

interpretation of the two numbers 0.087 W/m.C and 3.3 W/m.C 

provides the sought answer right away. As a reference, the 

smallest thermal conductivity of a metal is ks = 12 W/m.C for 

Nichrome (80% Ni, 20% Cr). As a consequence, all metals 

fulfill the lumped model requirement for a sphere/air ensemble 

with natural convection cooling in quiescent air. 

Despite that the above analysis was geared toward a solid 

sphere exposed to air, notwithstanding the simple analysis can 

be easily extended to a large plate or long cylinder when 

articulated with the three basic fluids: air, water and oil. 

Thereby, the nature of the permissible solid materials can be 

readily obtained for each body/fluid combination is a 

straightforward manner. 
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CONCLUSIONS 

A practical example has been delineated for a sphere 

undergoing natural convection cooling in air and the 

corresponding temperature-time distribution has been obtained. 

Beginning with the new modified Biot criterion written as Bimax 

= 








S

V

k

h

s

max  < 0.1, and using an appropriate mean Nusselt 

number correlation equation for ambient air at 20C, the Bimax 

inequality translates into the alternate inequality 
4/1

i,Ds Gr018.0087.0k  where ks is the thermal 

conductivity of the solid, and i,DGr stands for the extended 

Grashof number accounting for the largest temperature 

difference, TTi , i.e., the initial–to–fluid temperature 

difference. From a practical perspective, the main conclusion 

that can be drawn from this engineering education paper is that 

all metals fulfill the lumped model requirement for the sphere/air 

ensemble. Exploiting this finding, it turns out that no 

calculations have to be made for the Biot number criterion. 

Needless to say, similar inequalities for
sk linked to i,DGr

can be easily constructed for the large plate and long cylinder 

immersed in standard fluids, such as air, water and oil. 
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FIGURE CAPTIONS 

Figure 1 – A solid sphere immersed in an infinite fluid at 

rest 

 

Figure 2 – Variation of the mean convective coefficient h
(W/m

2
.C) with temperature T (C) for an aluminum sphere 

undergoing natural convection cooling in quiescent air at 29C.  

The sphere diameter D is a parameter varying from 0.01m to 

0.5m  

 

 


