
Experimental Uncertainties (Errors) 
 

Sources of Experimental Uncertainties (Experimental Errors): 

 All measurements are subject to some uncertainty as a wide range of errors and 
inaccuracies can and do happen.  Measurements should be made with great care and with 
careful thought about what you are doing to reduce the possibility of error as much as 
possible.   

  There are three main sources of experimental uncertainties (experimental errors):  

1.  Limited accuracy of the measuring apparatus - e.g., the force sensors that we use in 
experiment M2 cannot determine applied force with a better accuracy than  ±0.05 N.   

2.  Limitations and simplifications of the experimental procedure - e.g., we commonly 
assume that there is no air friction if objects are not moving fast.  Strictly speaking, that 
friction is small but not equal to zero.   
3.  Uncontrolled changes to the environment.  For example:  small changes of the 
temperature and the humidity in the lab.   

 In this laboratory, we keep to a very simple form of error analysis, our purpose being 
more to raise your awareness of errors than to give you expertise in sophisticated methods for 
handling error analysis.  If you ever need more information on error analysis, please check 
the literature1-4.   

 In the Analysis section of the lab report, you should identify significant sources of 
experimental errors.  Do not list all possible sources of errors there.  Your goal is to identify 
only those significant for that experiment!  For example, if the lab table is not perfectly 
leveled, then for the collision experiments (M6 – Impulse and Momentum) when the track is 
supposed to be horizontal, results will have a large, significant error.  On the contrary, for the 
constant acceleration motion on the intentionally inclined track, the table leveling is not 
going to make a large contribution to the experimental error.   

 Do not list your mistakes as experimental errors.  These mistakes should have already 
been detected and eliminated during the preparation of the lab report.  A calculator should 
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not be listed as a source of experimental error.  You may always use more significant figures 
(c.f. the next section) during calculations to reduce round-off error.  In other words, you may 
always make all calculations with a better accuracy then you can do lab measurements.   
 

Absolute and Relative Errors:  

 In order to learn the meaning of certain terms, consider an experiment in which we use 
the ultrasonic motion sensor to measure the position x of an object.  The accuracy of the 
motion sensor has been specified by the manufacturer as ±1 mm.  The absolute error of our 
measurements is thus ±1 mm.  Note that the absolute error carries the same unit as the 
measured quantity.   

 Suppose the value measured in our first trial was equal to 50.6 cm.  Then the relative 
error is equal to:  (1 mm)/(50.6 cm) = (0.1 cm)/(50.6 cm) ≈ 0.002.  The relative error is 
dimensionless.  It is often expressed in percentage, as:  100%* (0.1 cm)/(50.6 cm) ≈ 0.2%.   

 We may express the above result using either absolute error or relative error, as follows:   

  x = 50.6 ± 0.1 (cm)   (usually preferred)   or   x = 50.6 cm ± 0.2%    

 If we know the accepted value of the measured quantity (e.g., the temperature of melting 
point for water is equal to 0˚C or 273K), then we can calculate the percentage error as:   
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Relative error =  
Experimental value -  Accepted value

Accepted value
 "  100%   

When comparing experimental data with the theoretical values, then the relative error is 

given by a similar formula:   

! 

Relative error =  
Experimental value -  Theoretical value

Theoretical value
 "  100% 

 If we do not know the accepted value of the measured quantity, but the measurements 
have been repeated several times for the same conditions, one can use the spread of the 
results themselves to estimate the experimental error.   
 

Average Values and the Standard Deviation:  

 Consider the following results of velocity measurements:  0.38, 0.38, 0.35, 0.44, 0.43, 
0.42 m/s.  The average  value of these six velocity measurements is equal to:  v = (0.38 + 
0.38 + 0.35 + 0.44 + 0.43 + 0.42) / 6 = 0.40 m/s.  Next, one needs to calculate the deviations 



from the average velocity:  0.38 - 0.40 = 0.02 m/s; 0.38 - 0.40 = 0.02 m/s; 0.40 - 0.35 = 0.05 
m/s; 0.40 - 0.44 = -0.04 m/s; 0.40 - 0.43 = -0.03 m/s; 0.40 - 0.42 = -0.02 m/s.   

 The general formula for calculation of the average value xAV (sometimes also called 
mean value) is as follows:   
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 where n is the number of repeated measurements (for this example n = 6).   

 The values of the deviation from the average value are used to calculate the 
experimental error.  The quantity that is used to estimate these deviations is known as the 
standard deviation 
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 The standard deviation squared - 
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2 is the sum of squares of deviations from the average 
value divided by (n - 1).  The subscript usually indicates the quantity that the standard 
deviation is calculated for, e.g., sv stands for the standard deviation of velocity measurements, 
whereas sa is the standard deviation for acceleration data.   

 For the previously discussed example of velocity measurements we have:   
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 We use the standard deviation as the value of the experimental error.  The final result of 
measurements and error analysis should be written as:   

 v = vAV ± sv = 0.40 ± 0.04 (m/s)   (do not forget to write the appropriate units!)  

 The general format for presenting experimental results with experimental error is given 
by one of the following expressions:   

“final result”  =  “average value”  ±  “standard deviation” 

x = xAV ± sx units    or    x = xAV ± sx (units)    or    x = (xAV ± sx) units  

  Obviously, the average value and the standard deviation must have the same units.   
 
 
 



Agreement Between Two Results:  

 Error estimates are necessary to be able to say whether the two independent 
measurements of the same thing agree within the stated errors or disagree.  For example, two 
students measured the melting point temperature of ice and obtain results of -0.3˚C and 
0.8˚C.  Without an estimate of error, we cannot say whether these measurements agree.  
Suppose the results had been stated with errors:  Tmelt  = -0.3 ± 1.0˚C  and  Tmelt  = 0.8 ± 
1.0˚C.  Since the first result admits values between -1.3˚C and 0.7˚C and the second between 
-0.2˚C and 1.8˚C, there is an overlap (between -0.2˚C and 0.7˚C) and the results are in 
agreement within experimental errors.   

0.8±1.0˚C

0˚C 1˚C 2˚C-1˚C-2˚C

overlap
-0.3±1.0˚C

  If one cannot find an overlap between the error bands, then the results do not agree with 

each other.   

 

Experimental Uncertainty (Experimental Error) for a Product of Two Measurements:  

 Sometimes it is necessary to combine two (or even more than two) measurements to get a 

needed result.  A good example is a determination of work done by pulling a cart on an 

incline that requires measuring the force and the distance independently.  Then the value of 

work can be calculated from a simple formula:  W = F × s = F ×  ∆x  (more precisely:  W = 

FAV ×  ∆xAV).   

 Then, the absolute error for work W is given by the following formula:  
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where, sF and sx  are standard deviations of force and distance measurements.  FAV and ∆xAV 

represent average values of force and traveled distance, respectively.  It is quite common that 

one of the two measurements is more precise, i.e., has a much smaller standard deviation.  In 

the discussed case of work measurements, we usually know the traveled distance with a 



much smaller experimental error, i.e., sx ≅ 0.  Therefore, we should be able to use the 

approximate formula:   

! 

s
W
" #x

AV
$ s

F
  

 The final result of work measurements should be written as:  

W = FAV ×  ∆xAV ± sW ( J ) = FAV × ∆xAV ± ∆xAV × sF (J)  

“work” = “average force” ×   ”average distance” ±  “average distance” ×   ”standard 

deviation of force” (in Joules) 

 

 Numerical example:   Distance traveled   Δx = |x1 - x2| = ∆xAV = 1.04 ( m )  

 Measured Force  F 
(  N  )  

Deviations from the average 
force:  ∆F = F - FAV 

(  N  ) 

Squared deviations from the 
average force:  (∆F)2 

(  N2  ) 

1 0.170 -0.007 4.9×10−5 

2 0.161 -0.016 25.6×10−5 

3 0.152 -0.025 62.5×10−5 

4 0.197 0.020 40.0×10−5 

5 0.204 0.027 72.9×10−5 

Average 0.177   

 

 Average force:  FAV  = 0.177 (  N  )  
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Standard deviation of the force measurements:    sF = 0.023 (  N  )  

Standard deviation of the work done: 
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