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Abstract

This note contains a very short and elegant proof of the Seifert–Van
Kampen theorem that is due to Grothendieck.

The Seifert–Van Kampen theorem [S, VK] says how to decompose the
fundamental group of a space in terms of the fundamental groups of the con-
stituents of an open cover of the space. The usual proof of it (as given for
instance in Hatcher’s book [H]) is tedious: one decomposes a loop in the space
in terms of loops in the various open sets and then performs a rather involved
combinatorial manipulation. In this note, we give a remarkably efficient alter-
nate proof of it that we learned from Fulton’s book [F]. This proof has the
following properties:

• it is short and memorable, and

• it directly verifies the universal property in the Seifert–Van Kampen
theorem rather than relying on generators and relations, and

• it uses techniques (covering space theory and descent) that are useful in
many other contexts.

Its one downside is that it only works for spaces that have universal covers;
however, spaces without universal covers are degenerate enough that their
fundamental groups are of limited utility, so this is not a serious restriction.
Fulton attributes this proof to Grothendieck. While it does not seem to appear
explicitly in Grothendieck’s work, it owes a lot to some of the elementary
notions in Grothendieck’s theory of the etalé fundamental group [SGA].

Remark. As we said, the proof uses covering spaces. This makes it difficult
to include in a course that covers the fundamental group before discussing
covering spaces. However, it is not hard to design a course in which covering
spaces are discussed at the same time as the fundamental group; see Fulton’s
book [F] for one way to do this.

The statement of the Seifert–Van Kampen theorem is as follows. Say that
a space is reasonable if it has a universal cover, that is, if it is semilocally
simply connected.
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Seifert–Van Kampen Theorem. Let X be a reasonable topological space
and let X = U1∪U2 be an open cover of X. Assume that U1 and U2 and U1∩U2
are all non-empty, path-connected, and reasonable. Then for all p ∈ U1 ∩ U2,
the commutative diagram

..
..π1(U1 ∩ U2, p) ..π1(U1, p)

..π1(U2, p) ..π1(X, p)

....

is a pushout diagram.

Saying that the above diagram is a pushout diagram means that for all
groups G and all commutative diagrams

..

..π1(U1 ∩ U2, p) ..π1(U1, p) .

..π1(U2, p) ..π1(X, p) .

. . ..G

.....

we can find a unique homomorphism π1(X, p) → G such that the diagram

..

..π1(U1 ∩ U2, p) ..π1(U1, p) .

..π1(U2, p) ..π1(X, p) .

. . ..G

......

commutes. The key to this is to find a geometric avatar for a homomorphism
coming out of the fundamental group of a space. This is provided by the
following standard lemma, which summarizes a large amount of covering space
theory.

Lemma 1. Let Z be a reasonable nonempty path-connected space, let G be a
group, and let p ∈ Z. Then there is a natural bijection

{homomorphisms π1(Z, p) → G} ↔ {based regular G-covers (Y, q) → (Z, p)}.
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Remark. The covers in the right hand side of Lemma 1 need not be connected;
indeed, they will be connected exactly when the corresponding homomorphism
is surjective. For instance, the trivial homomorphism corresponds to the prod-
uct cover (Z × G, (p, 1)) → (Z, p).
Proof of Seifert–Van Kampen theorem. Consider a group G and a commuta-
tive diagram

..

..π1(U1 ∩ U2, p) ..π1(U1, p) .

..π1(U2, p) ..π1(X, p) .

. . ..G

.....

Using Lemma 1, we can associate to the homomorphisms π1(U1, p) → G and
π1(U2, p) → G based regular G-coverings f1 : (Ũ1, p̃1) → (U1, p) and f2 :
(Ũ2, p̃2) → (U2, p). For i = 1, 2, let Ṽi = f−1

i (U1 ∩ U2), so (Ṽi, p̃i) → (U1 ∩ U2, p)
is a based regular G-covering representing the homomorphism

π1(U1 ∩ U2, p) → π1(Ui, p) → G.

Since the homomorphisms

π1(U1 ∩ U2, p) → π1(U1, p) → G and π1(U1 ∩ U2, p) → π1(U2, p) → G

are equal, we see that (Ṽ1, p̃1) → (U1 ∩ U2, p) and (Ṽ2, p̃2) → (U1 ∩ U2, p)
are isomorphic based regular G-coverings, and thus there exists a unique G-
equivariant homeomorphism ϕ : (Ṽ1, p̃1) → (Ṽ2, p̃2). Using ϕ, we can glue
f1 : (Ũ1, p̃1) → (U1, p) and f2 : (Ũ2, p̃2) → (U2, p) together to obtain a based
regular G-covering (X̃, p̃) → (X, p). Using Lemma 1 one final time, we see that
this represents the desired homomorphism π1(X, p) → G making the diagram

..

..π1(U1 ∩ U2, p) ..π1(U1, p) .

..π1(U2, p) ..π1(X, p) .

. . ..G

......

commute. The uniqueness of this homomorphism follows from the uniqueness
in each step of the above proof.
Remark. The gluing together of covers in the above proof is a (trivial) ex-
ample of descent. See [Q] and the references therein for more sophisticated
examples of this.
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