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Abstract

We calculate the first homology group of the mapping class group with coefficients in the first rational
homology group of the universal abelian Z/L-cover of the surface. If the surface has one marked point,
then the answer is Qτ(L), where τ(L) is the number of positive divisors of L. If the surface instead has one
boundary component, then the answer is Q. We also perform the same calculation for the level L subgroup
of the mapping class group. Set HL = H1(Σg;Z/L). If the surface has one marked point, then the answer is
Q[HL], the rational group ring of HL. If the surface instead has one boundary component, then the answer
is Q.

1 Introduction
Let Σn

g,b be an oriented genus g surface with b boundary components and n marked points and let Modn
g,b be

its mapping class group. This is the group of homotopy classes of orientation-preserving diffeomorphisms
of Σn

g,b that act as the identity on the boundary components and marked points. We will usually omit the
b and the n if they vanish. The homology groups of Modn

g,b, which play important roles in both algebraic
geometry and low-dimensional topology, have been studied intensely for the past 40 years. The culmination
of much recent work is the resolution of the Mumford conjecture by Madsen and Weiss [17], which identifies
H∗(Modn

g,b;Q) in a stable range.

Twisted coefficient systems. For many applications, it is important to know the homology groups of Modn
g,b

with respect to various twisted coefficient systems. For simplicity, assume that (b,n) ∈ {(0,0),(1,0),(0,1)}.
A lot is known about coefficient systems that factor through the standard symplectic representation of Modn

g,b.
This is the natural representation Modn

g,b → Sp2g(Z) that arises from the action of Modn
g,b on H1(Σn

g,b;Z). Its
target is the symplectic group because the action preserves the algebraic intersection form. For any rational
representation V of the algebraic group Sp2g, Looijenga [15] has completely determined H∗(Modg;V ) as
a module over H∗(Modg;Q) in a stable range. Over Z, a bit less is known. Morita [18] has calculated
H1(Modn

g,b;H1(Σn
g,b;Z)) for g ≥ 3. For b ≥ 1, this was later generalized by Kawazumi [14], who calculated

H∗(Modn
g,b;(H1(Σn

g,b;Z))⊗k) as a module over H∗(Modn
g,b;Z) in a stable range.

Fix some L ≥ 2. In this paper, we calculate the first homology group of the mapping class group with
coefficients in the first rational homology group of the universal abelian Z/L-cover of the surface (see below
for the definition). We remark that this representation does not factor through Sp2g(Z). Our techniques also
give results for certain finite-index subgroups of the mapping class group. These results play an important
technical role in a recent pair of papers by the author [20, 21] that study the second cohomology group and
Picard group of the moduli space of curves with level L structures.
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Universal abelian Z/L-cover. Let Kg be the kernel of the natural map π1(Σg)→ H1(Σg;Z/L). The group
Kg is the fundamental group of the universal abelian Z/L-cover of Σg. Since Mod1

g fixes a basepoint on Σg, it
acts on π1(Σg). This action preserves Kg. We thus obtain an action of Mod1

g on H1(Kg;Q), the first homology
group of the universal abelian Z/L-cover of Σg. This representation has been previously studied by Looijenga
[16], who essentially determined its image.

Remark. In [16], Looijenga more generally studied the actions of appropriate finite-index subgroups of Mod1
g

on the first rational homology groups V of arbitrary finite abelian covers of Σg. Letting Mod1
g(L) denote the

level L subgroup of Mod1
g (see below), we can choose L so that Mod1

g(L) acts on V . It then follows from
Lemma 2.2 below that V appears a direct summand in the Mod1

g(L)-module H1(Kg;Q), so one can use our
results to study V as well.

Statements of theorems. Let τ(L) be the number of positive divisors of L (including 1 and L). Our first
theorem is as follows.

Theorem A. For g ≥ 4 and L ≥ 2, we have H1(Mod1
g;H1(Kg;Q))∼=Qτ(L).

In fact, our proof of Theorem A also gives a result for the level L subgroup of Mod1
g, denoted Mod1

g(L).
This is the kernel of the action of Mod1

g on H1(Σ1
g;Z/L). Far less is known about its homology. The only

previous result of which the author is aware is a paper of Hain [9] that calculates H1(Modn
g,b(L);V ) for

rational representations V of the algebraic group Sp2g. Our theorem is as follows.

Theorem B. For g ≥ 4 and L ≥ 2, we have H1(Mod1
g(L);H1(Kg;Q))∼=Q[HL], where HL equals H1(Σg;Z/L)

and Q[HL] is the rational group ring of the abelian group HL.

Remark. Both H1(Mod1
g(L);H1(Kg;Q)) and Q[HL] possess natural Mod1

g-actions. The action of Mod1
g on

H1(Mod1
g(L);H1(Kg;Q)) comes from conjugation, and the action on Q[HL] factors through the symplectic

group. The isomorphism in Theorem B is equivariant with respect to these actions.

Somewhat surprisingly, things are quite different for surfaces with boundary. Define Modg,1(L) to be the
kernel of the action of Modg,1 on H1(Σg,1;Z/L). Fixing a basepoint for π1(Σg,1) on ∂Σg,1, the groups Modg,1
and Modg,1(L) act on π1(Σg,1). Define Kg,1 to be the kernel of the map π1(Σg,1)→ H1(Σg,1;Z/L). The group
Kg,1 is the fundamental group of the universal abelian Z/L-cover of Σg,1 and is preserved by the actions of
Modg,1 and Modg,1(L). We then have the following theorem.

Theorem C. For g ≥ 4 and L ≥ 2, we have

H1(Modg,1;H1(Kg,1;Q))∼= H1(Modg,1(L);H1(Kg,1;Q))∼=Q.

Remark. The group Modg does not act on the universal abelian Z/L-cover of Σg. Each individual mapping
class can be lifted to a diffeomorphism of the cover, but a fixed basepoint is necessary to make this lift
canonical and thereby provide a representation of the entire group. The best one can achieve is as follows.
There is a Birman exact sequence (see §2.3) of the form

1 −→ π1(Σg)−→ Mod1
g −→ Modg −→ 1. (1)

Since Mod1
g acts on H1(Kg;Q), the group Modg acts on the (H1(Kg;Q))π1(Σg). However, using the transfer

map (see Lemma 2.3 below) one can show that this ring of coinvariants is simply H1(Σg;Q), so no new
representation is obtained.

Comments on the proofs. The key observation underlying the proofs of our theorems is as follows. The
group Mod1

g contains a natural copy of π1(Σg), known as the “point-pushing subgroup” (see §2.3 below).
This fits into the Birman exact sequence (1) above. While the action of Mod1

g on Kg is very complicated, the
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action of π1(Σg) on Kg ▹π1(Σg) is simply conjugation. Moreover, it turns out that in some vague sense the
action of Mod1

g on H1(Kg;Q) is “concentrated” in the action of π1(Σg) on H1(Kg;Q). Intuitively, this happens
because (as noted in the remark above) the quotient of Mod1

g by π1(Σg), namely Modg, does not act in any
natural way on Kg. We prove our theorems by carefully examining all of these groups and actions.

Some related results. Some additional related results should be mentioned. First, Ivanov [12] has proven a
homological stability result for the homology of Modg,1 with respect to very general systems of coefficients
(those of “bounded degree”; the system H1(Kg,1;Z) satisfies this condition). This generalizes Harer’s [10]
well-known untwisted homological stability theorem for the mapping class group. Ivanov’s theorem has been
extended to Σg,b for b > 1 by Boldsen [5]. We remark that such a result is false for closed surfaces. Indeed,
in [18, Corollary 5.4], Morita showed that

H1(Modg;H1(Σg;Z))∼= Z/(2g−2)Z

for g≥ 2. In a somewhat different direction, a recent series of papers by Anderson and Villemoes [1, 2, 3] cal-
culate the first homology groups of Modn

g,b with coefficients in certain spaces of functions on representations
varieties of Modn

g,b.

Outline of paper. In §2, we discuss some background results about group cohomology and the mapping
class group. Next, in §3 we introduce a number of groups and group actions that will play important roles in
our paper. At the end of this section, we state two key technical lemmas whose proofs are postponed until
later. In §4, we prove our main theorems (assuming the truth of these two technical lemmas). In §5, we give
the outline of the proof of our two key technical lemmas, reducing them to two other results, the first of which
is proven in §7 (using some preliminary calculations that are first done in §6) and the second in §8.

Notation and conventions. We will denote by i(x,y) ∈ Z/L the algebraic intersection number of x,y ∈
H1(Σg;Z/L). All surfaces we mention will contain a basepoint unless otherwise specified, and all maps
between surfaces will respect this basepoint. Also, if G is a group, then we define [g1,g2] = g1g2g−1

1 g−1
2 and

gg2
1 = g2g1g−1

2 for g1,g2 ∈ G.

Acknowledgments. I wish to thank an anonymous referee who pointed out Lemma 3.2 below to me. This
dramatically simplified my original proofs.

2 Preliminaries

2.1 Group homology
We begin by reviewing some facts about group homology and establishing some notation (see [6] for more
details).

Degree zero. Let G be a group and M be a G-module. The coinvariants of M, denoted MG, is the quotient
M/K, where K is the submodule spanned by the set {g · x− x | x ∈ M, g ∈ G}. We have H0(G;M) = MG.

The five-term exact sequence. Let

1 −→ K −→ G −→ Q −→ 1

be a short exact sequence of groups and let M be a G-module. We then have a 5-term exact sequence

H2(G;M)−→ H2(Q;MK)−→ (H1(K;M))Q −→ H1(G;M)−→ H1(Q;MK)−→ 0.
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The long exact sequence. Let G be a group and let

0 −→ M1 −→ M2 −→ M3 −→ 0

be a short exact sequence of G-modules. Then there is a long exact sequence of the form

· · · −→ Hk(G;M1)−→ Hk(G;M2)−→ Hk(G;M3)−→ Hk−1(G;M1)−→ ·· · .

The transfer map. If G2 < G1 are groups satisfying [G1 : G2] < ∞ and M is a G1-module, then for all k
there exists a transfer map of the form t : Hk(G1;M) → Hk(G2;M) (see, e.g., [6, Chapter III.9]). The key
property of t (see [6, Proposition III.9.5]) is that if i : Hk(G2;M) → Hk(G1;M) is the map induced by the
inclusion, then i◦ t : Hk(G1;M)→ Hk(G1;M) is multiplication by [G1 : G2]. In particular, if M is a G1-vector
space over Q, then we obtain a right inverse 1

[G1:G2]
t to i. This yields the following standard lemma.

Lemma 2.1. Let G2 < G1 be groups satisfying [G1 : G2]< ∞ and let M be a G1-vector space over Q. Then
the map Hk(G2;M)→ Hk(G1;M) is surjective for all k ≥ 0.

Assume now that M =Q and that Γ is a group acting on G2 and G1 such that the inclusion is Γ-equivariant.
The induced map Hk(G2;M) → Hk(G1;M) is therefore Γ-equivariant. Moreover, the map t : Hk(G1;M) →
Hk(G2;M) is also Γ-equivariant, so the surjection Hk(G2;M)→ Hk(G1;M) splits in a Γ-equivariant manner.
We obtain the following lemma.

Lemma 2.2. Fix k ≥ 0, and let G2 < G1 be groups satisfying [G1 : G2]< ∞. Let Γ be a group acting on G1
and G2 such that the inclusion map G2 → G1 is Γ-equivariant. Define C to be the kernel of the surjection
Hk(G2;Q)→ Hk(G1;Q). We then have a Γ-invariant splitting Hk(G2;Q)∼= Hk(G1;Q)⊕C.

Finally, for finite-index normal subgroups, the Hochschild-Serre spectral sequences implies the following
strengthening of Lemma 2.1.

Lemma 2.3. Let G2 ▹G1 be groups satisfying [G1 : G2] < ∞ and let M be a G1-vector space over Q. Then
Hk(G1;M)∼= (Hk(G2;M))G1 for all k ≥ 0.

2.2 Rational group rings
Let G be a finite group and let Q[G] be the rational group ring of G. We will consider Q[G] to be a left
G-module. Let ε : Q[G]→Q be the augmentation map, i.e. the unique linear map such that ε(g) = 1 for all
g ∈ G. The map ε is a map of G-modules, where Q has the trivial G-action. Its kernel is the augmentation
ideal I(G). We thus have a short exact sequence of G-modules

0 −→ I(G)−→Q[G]
ε−→Q−→ 0. (2)

Set θ = ∑g∈G g ∈ Q[G]. The element θ is invariant under G, and the exact sequence (2) splits via the G-
equivariant map ψ : Q→Q[G] defined by ψ(1) = 1

|G|θ . The associated projection ϕ : Q[G]→ I(G) satisfies
ker(ϕ) = ⟨θ⟩. From these considerations, we obtain the following lemma.

Lemma 2.4. Let G be a finite group. Then Q[G] ∼= Q⊕ I(G), where I(G) is isomorphic to the quotient of
Q[G] by ⟨θ⟩.

2.3 The mapping class group
Dehn twists. We will denote by Tγ the left Dehn twist about a simple closed curve γ on a surface.
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a b c

γ γ1 γ2

Figure 1: a. γ ∈ π1(Σ
p
g,b,∗) can be realized by a simple closed curve. b. The effect of the “point-pushing” map ργ .

c. ργ = Tγ1 T−1
γ2

The Birman exact sequence. For simplicity, assume that g ≥ 2. The Birman exact sequence describes the
effect on the mapping class group of deleting a marked point or gluing a disc to a boundary component. The
first version, due to Birman (see [4]), is of the form

1 −→ π1(Σp
g,b,∗)−→ Modp+1

g,b −→ Modp
g,b −→ 1. (3)

Here ∗ is a marked point and the map Modp+1
g,b → Modp

g,b comes from deleting ∗. For γ ∈ π1(Σp
g,b,∗), the

associated mapping class in the kernel of (3) “pushes” the deleted marked point around the path γ . For this
reason, the kernel π1(Σp

g,b,∗) is known as the “point-pushing subgroup”. If γ ∈ π1(Σp
g,b,∗) can be realized

by a simple closed curve, then there is a nice formula for the associated “point-pushing” mapping class ργ .
Namely, let γ1 and γ2 be the boundary components of a regular neighborhood of γ (see Figure 1.c). Assume
that γ1 lies to the left of γ and γ2 to the right. Then as is clear from Figure 1.a–b, we have ργ = Tγ1 T−1

γ2
.

The second form of the Birman exact sequence, due to Johnson [13], is of the form

1 −→ π1(UΣp
g,b)−→ Modp

g,b+1 −→ Modp
g,b −→ 1. (4)

Here UΣp
g,b is the unit tangent bundle of Σp

g,b and the map Modp
g,b+1 → Modp

g,b comes from gluing a disc to
a boundary component β of Σp

g,b+1 and extending mapping classes by the identity. The fiber of the kernel
π1(UΣp

g,b) corresponds to the mapping class Tβ .
The group Modp

g,b+1 acts on H1(Σp
g,b+1;Q). Restrict this action to π1(UΣp

g,b)< Modp
g,b+1. Since Tβ acts

trivially on H1(Σp
g,b+1;Q), the action of π1(UΣp

g,b) on H1(Σp
g,b+1;Q) factors through an action of π1(Σp

g,b,∗).
This action has the following simple description.

Lemma 2.5. The above action of π1(Σp
g,b,∗) on H1(Σp

g,b+1;Q) is given by the formula

γ(v) = v+ i([γ],v) · [β ] (γ ∈ π1(Σp
g,b,∗), v ∈ H1(Σp

g,b+1;Q)),

where the boundary component β is oriented such that the interior of the surface is to its right.

Proof. It is enough to check this for elements γ ∈ π1(Σp
g,b,∗) that can be realized by simple closed curves.

For such curves, this formula is immediate from Figure 1.a–b.

The level L subgroup. Now assume that b = p = 0 and fix some L ≥ 2. The kernels of (3) and (4) both lie
in the level L subgroup of the mapping class group. We thus have short exact sequences

1 −→ π1(Σg)−→ Mod1
g(L)−→ Modg(L)−→ 1

and
1 −→ π1(UΣg)−→ Modg,1(L)−→ Modg(L)−→ 1.

We will also refer to these as Birman exact sequences.
We will need two cohomological results about the level L subgroups of the mapping class group, both

of which are due to Hain. To simplify their statements, we will denote the whole mapping class group by
Modg,1(1) and Mod1

g(1).
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Theorem 2.6 (Hain, [9]). For g ≥ 3 and L ≥ 1, we have H1(Modg,1(L);Q) = 0.

Theorem 2.7 (Hain, [9]). For g ≥ 3 and L ≥ 1, we have

H1(Modg,1(L);H1(Σg;Q))∼= H1(Mod1
g(L);H1(Σg;Q))∼=Q.

Remark. In fact, in [9] Hain calculated H1(Modp
g,b(L);M) for all rational representations M of the algebraic

group Sp2g.

3 The cast of characters

3.1 Homology groups of abelian covers
As in the introduction, define

Kg = ker(π1(Σg)→ H1(Σg;Z/L)) and Kg,1 = ker(π1(Σg,1)→ H1(Σg,1;Z/L)).

Here the basepoint for π1(Σg,1) lies on ∂Σg,1. Also, let SK
g (resp. SK

g,1) be the cover of Σg (resp. Σg,1) cor-
responding to Kg (resp. Kg,1). We will identify H1(Kg;Q) and H1(Kg,1;Q) with H1(SK

g ;Q) and H1(SK
g,1;Q),

respectively.
We have actions of Mod1

g and Modg,1 on Kg and Kg,1, respectively. Define

Cg = ker(H1(Kg;Q)→ H1(Σg;Q)) and Cg,1 = ker(H1(Kg,1;Q)→ H1(Σg,1;Q)).

By Lemma 2.2, we have mapping class group invariant decompositions

H1(Kg;Q)∼= H1(Σg;Q)⊕Cg and H1(Kg,1;Q)∼= H1(Σg,1;Q)⊕Cg,1.

The surjective map π1(Σg,1)→ π1(Σg) induced by gluing a disc to the boundary component of Σg,1 restricts
to a surjection Kg,1 → Kg. Let Ig be its kernel, so we have a short exact sequence

0 −→ Ig −→ Kg,1 −→ Kg −→ 0. (5)

We now prove the following.

Lemma 3.1. For g ≥ 1 and L ≥ 2, the vector space Ig is isomorphic as a Modg,1-module to the augmentation
ideal of Q[HL], where HL = H1(Σg,1;Z/L).

Proof. Let ∗ ∈ ∂Σg,1 be the basepoint and ∗̃ ∈ SK
g,1 be a lift of ∗, so Kg,1 = π1(SK

g,1, ∗̃). The subgroup Ig <

H1(SK
g,1;Q) is exactly the subgroup generated by the homology classes of the boundary components of SK

g,1.
The group of deck transformations HL acts on these boundary components. Let γ ∈ π1(Σg,1,∗) be the simple
closed curve that goes once around the boundary component with the surface to its right. Since γ lifts to a
simple closed curve γ̃ ∈ π1(SK

g,1, ∗̃), the action of HL on the boundary components of Σ̃ is free. For v ∈ HL, letJvK ∈ Ig denote the homology class of the v-translate of γ̃ . The only relation between the homology classes of
the boundary components of a surface with boundary is that their sum is 0. We conclude that Ig is isomorphic
to the quotient of the Q-vector space with basis the formal symbols {JvK | v ∈ HL} by the 1-dimensional
subspace generated by ∑v∈HLJvK. This is exactly the augmentation ideal of Q[HL], and we are done.

Throughout the rest of this paper, we will denote by JvK the element of Ig corresponding to v ∈ HL as in
the proof above.

Remark. It is clear that Ig <Cg,1, so the exact sequence (5) restricts to a short exact sequence

0 −→ Ig −→Cg,1 −→Cg −→ 0.
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3.2 Actions on homology groups of abelian covers
It is clear that Modg,1 acts on Kg,1 and Mod1

g acts on Kg. Letting β be the boundary component of Σg,1, these
two mapping class groups are related by a short exact sequence

1 −→ Z−→ Modg,1 −→ Mod1
g −→ 1,

where Z is generated by Tβ . Since the loop around β lies in Kg,1, the action of Tβ on H1(Kg,1;Q) is trivial.
This implies that the action of Modg,1 on H1(Kg,1;Q) factors through an action of Mod1

g.
Let π1(Σg) < Mod1

g be the point-pushing subgroup. The action of Mod1
g on H1(Kg;Q) restricts to the

action of π1(Σg) on H1(Kg;Q) induced by conjugation. Restricting this action further to Kg < π1(Σg) thus
yields the trivial action. However, if we instead restrict the action of Mod1

g on H1(Kg,1;Q) to Kg, we do not
get a trivial action.

For γ ∈ Kg, denote by ⟨⟨γ⟩⟩ the associated element of H1(Kg;Q). Since Kg < Mod1
g acts trivially on the

kernel and cokernel of the short exact sequence

0 −→ Ig −→ H1(Kg,1;Q)
ρ−→ H1(Kg;Q)−→ 0,

the action of Kg on H1(Kg,1;Q) is of the form

γ(x) = x+ω(⟨⟨γ⟩⟩,ρ(x)) (γ ∈ Kg and x ∈ H1(Kg,1;Q))

for some Ig-valued bilinear form ω(·, ·) on H1(Kg;Q). This bilinear form has the following nice description.
Let ⟨·, ·⟩K be the algebraic intersection pairing on H1(Kg;Q) = H1(SK

g ;Q). The group HL = H1(Σg;Z/L) acts
on H1(SK

g ;Q) via deck transformations. The bilinear pairing in the following lemma first appeared in work
of Reidemeister [22, 23] and has since been studied by many people (see, e.g., [7, 11, 16]). We will call it the
Reidemeister pairing.

Lemma 3.2. For γ ∈ Kg and x ∈ Kg, we have

ω(⟨⟨γ⟩⟩,x) = ∑
v∈HL

⟨v · ⟨⟨γ⟩⟩,x⟩KJvK.
Proof. An immediate consequence of Lemma 2.5.

3.3 A key technical lemma
One of the linchpins of our proofs of our main theorems is the following lemma about the action of Kg on
Cg,1 < Kg,1. Its proof is lengthy and is given in §5.

Lemma 3.3. For g ≥ 4 and L ≥ 2, the map H1(Kg;Cg,1)→ H1(Mod1
g(L);Cg) is the zero map.

Remark. The map H1(Kg;Cg,1)→ H1(Mod1
g(L);Cg) factors through H1(Kg;Cg), and most of our hard work

is devoted to characterizing the image of H1(Kg;Cg,1) in H1(Kg;Cg). It would be much easier if we could
instead prove that the map H1(Kg;Cg)→ H1(Mod1

g(L);Cg) was the zero map, but alas a careful examination
of our proof of Theorem B shows that this is not true.

In the course of proving Lemma 3.3, we will also prove the following.

Lemma 3.4. For g ≥ 3 and L ≥ 2, we have (Cg)π1(Σg) = (Cg,1)π1(Σg) = 0.

One useful consequence of Lemma 3.4 is the following.

Lemma 3.5. For g ≥ 3 and L ≥ 2, the natural map H1(Modg,1(L);Cg) → H1(Mod1
g(L);Cg) is an isomor-

phism.
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Proof. Let β be the boundary component of Σg,1. We have a short exact sequence

1 −→ Z−→ Modg,1(L)−→ Mod1
g(L)−→ 1,

where Z= ⟨Tβ ⟩. The last 3 terms of the associated 5-term exact sequence with coefficients Cg are

(Cg)Mod1
g(L)

−→ H1(Modg,1(L);Cg)−→ H1(Mod1
g(L);Cg)−→ 0.

By Lemma 3.4, we have (Cg)Mod1
g(L)

= 0, and the lemma follows.

4 Proofs of the main theorems
We now turn to the proofs of our main theorems. In this section, we will assume the truth of Lemmas 3.3 and
3.4, which are proven in subsequent sections.

4.1 Surfaces with boundary
We begin with Theorem C, which asserts that if g ≥ 4 and L ≥ 2, then

H1(Modg,1;H1(Kg,1;Q))∼= H1(Modg,1(L);H1(Kg,1;Q))∼=Q.

As was noted in §3, we can use Lemma 2.2 to obtain a Modg,1-invariant decomposition

H1(Kg,1;Q)∼= H1(Σg,1;Q)⊕Cg,1.

This implies that

H1(Modg,1;H1(Kg,1;Q))∼= H1(Modg,1;H1(Σg,1;Q))⊕H1(Modg,1;Cg,1),

and similarly for Modg,1(L). Theorem 2.7 says that

H1(Modg,1;H1(Σg,1;Q))∼= H1(Modg,1(L);H1(Σg,1;Q))∼=Q.

To prove Theorem C, therefore, it is enough to prove the following theorem.

Theorem 4.1. For g ≥ 4 and L ≥ 2, we have

H1(Modg,1;Cg,1)∼= H1(Modg,1(L);Cg,1) = 0.

Proof. Since Modg,1(L) is a finite-index subgroup of Modg,1, Lemma 2.1 implies that it is enough to prove
that H1(Modg,1(L);Cg,1) = 0. Associated to the Birman exact sequence

1 −→ π1(UΣg)−→ Modg,1(L)−→ Modg(L)−→ 1

is a 5-term exact sequence in homology with coefficients in Cg,1. The last 3 terms of this are

(H1(π1(UΣg);Cg,1))Modg,1(L)
f−→ H1(Modg,1(L);Cg,1)−→ H1(Modg(L);(Cg,1)π1(UΣg))−→ 0.

Lemma 3.4 says that
(Cg,1)π1(UΣg) = (Cg,1)π1(Σg) = 0.

To prove the theorem, therefore, it is enough to show that f = 0. This is equivalent to showing that the map

f ′ : H1(π1(UΣg);Cg,1)→ H1(Modg,1(L);Cg,1)
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is the zero map.
Our goal is to deduce the fact that f ′ = 0 from Lemma 3.3. To do this, we perform a series of reductions.

From the short exact sequence
0 −→ Ig −→Cg,1 −→Cg −→ 0

of Modg,1(L)-modules we obtain a long exact sequence in homology. This long exact sequence contains the
segment

H1(Modg,1(L); Ig)−→ H1(Modg,1(L);Cg,1)−→ H1(Modg,1(L);Cg).

Since Modg,1(L) acts trivially on Ig, Theorem 2.6 implies that H1(Modg,1(L); Ig) = 0. It follows that the
map H1(Modg,1(L);Cg,1) → H1(Modg,1(L);Cg) is injective. Lemma 3.5 says that H1(Modg,1(L);Cg) ∼=
H1(Mod1

g(L);Cg), so we deduce that to prove that f ′ = 0, it is enough to prove that the map

H1(π1(UΣg);Cg,1)−→ H1(Mod1
g(L);Cg)

is the zero map. This map factors through the map

H1(π1(Σg);Cg,1)−→ H1(Mod1
g(L);Cg). (6)

Since Kg is a finite-index subgroup of π1(Σg), Lemma 2.1 says that the map H1(Kg;Cg,1)−→H1(π1(Σg);Cg,1)
is surjective. Thus to show that the map in (6) vanishes, it is enough to show that the map

H1(Kg;Cg,1)→ H1(Mod1
g(L);Cg)

vanishes, which is exactly the content of Lemma 3.3.

4.2 Closed surfaces
We now turn to Theorems A and B, which assert that if g ≥ 4 and L ≥ 2, then

H1(Mod1
g;H1(Kg;Q))∼=Qτ(L) and H1(Mod1

g(L);H1(Kg;Q))∼=Q[HL].

Here τ(L) is the number of positive divisors of L and HL ∼= H1(Σg;Z/L). Also, the second isomorphism
should be equivariant with respect to Mod1

g actions on H1(Mod1
g(L);H1(Kg;Q)) and Q[HL]. We begin by

deriving Theorem A from Theorem B.

Proof of Theorem A, assuming Theorem B. Lemma 2.3 implies that

H1(Mod1
g;H1(Kg;Q))∼= (H1(Mod1

g(L);H1(Kg;Q)))Mod1
g
.

Applying Theorem B, we must show that (Q[HL])Mod1
g
∼= Qτ(L). The vector space Q[HL] has a basis that is

permuted by the action of Mod1
g, namely the elements of HL. It is enough, therefore, to show that there are

τ(L) orbits of the action of Mod1
g on HL. This action factors through the surjection Mod1

g → Sp2g(Z/L). Let
v ∈ HL be a fixed primitive vector, and set

X = {cv | c is a positive divisor of L} ⊂ HL.

The set X has cardinality τ(L), and clearly no two elements of X are in the same Sp2g(Z/L)-orbit. Also, if
w ∈ HL, then there is a primitive vector w′ and a positive divisor c of L such that w = cw′. Since Sp2g(Z/L)
acts transitively on the set of primitive vectors, there is some ϕ ∈ Sp2g(Z/L) such that v = ϕ(w′). Thus w
is in the same Sp2g(Z/L)-orbit as cv ∈ X . We conclude that X contains a unique representative from every
Sp2g(Z/L)-orbit, and we are done.
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Finally, we discuss Theorem B. Lemma 2.2 implies that there is a Mod1
g-invariant decomposition

H1(Kg;Q)∼= H1(Σg;Q)⊕Cg,

so we have a Mod1
g-invariant decomposition

H1(Mod1
g(L);H1(Kg;Q))∼= H1(Mod1

g(L);H1(Σg;Q))⊕H1(Mod1
g(L);Cg).

Also, Theorem 2.7 says that
H1(Mod1

g(L);H1(Σg;Q))∼=Q,

so we obtain a Mod1
g-invariant decomposition

H1(Mod1
g(L);H1(Kg;Q))∼=Q⊕H1(Mod1

g(L);Cg).

By Lemma 2.4, we have Q[HL] ∼= Q⊕ I, where I is the augmentation ideal of Q[HL]. Lemma 3.1 says that
Ig is isomorphic to the augmentation ideal of Q[HL], so we conclude that it is enough to prove the following
theorem.

Theorem 4.2. For g ≥ 4 and L ≥ 2, we have a Mod1
g-equivariant isomorphism H1(Mod1

g(L);Cg)∼= Ig.

Proof. Lemma 3.5 says that there is an isomorphism

H1(Modg,1(L);Cg)∼= H1(Mod1
g(L);Cg). (7)

The action of Modg,1 on H1(Modg,1(L);Cg) factors through Mod1
g, and it is easy to see that the isomor-

phism in (7) is Mod1
g-equivariant. We deduce that it is enough to construct a Modg,1-equivariant isomorphism

H1(Modg,1(L);Cg) ∼= Ig. The long exact sequence in Modg,1(L)-homology associated to the short exact se-
quence

0 −→ Ig −→Cg,1 −→Cg −→ 0

of Modg,1(L)-modules contains the segment

H1(Modg,1(L);Cg,1)−→ H1(Modg,1(L);Cg)−→ Ig −→ (Cg,1)Modg,1(L).

Here we are using the fact that Modg,1(L) acts trivially on Ig, so

H0(Modg,1(L); Ig) = (Ig)Modg,1(L) = Ig.

Theorem 4.1 says that H1(Modg,1(L);Cg,1) = 0, and Lemma 3.4 implies that (Cg,1)Modg,1(L) = 0. We obtain
an isomorphism H1(Modg,1(L);Cg) ∼= Ig, which is easily verified to be Modg,1-equivariant. The theorem
follows.

5 Skeleton of the proof of Lemma 3.3
This section sets the stage for the remainder of the paper by reducing the proof of Lemma 3.3 to two further
lemmas which are proven in the remaining sections. It also proves Lemma 3.4. This is all done in §5.2.
Before that, §5.1 sets up some notation which will be used in the remainder of the paper.

10



5.1 Notation for Kg

In this section, we will introduce notation for elements of H1(Kg;Q). Let ρ : Kg → H1(Kg;Q) be the abelian-
ization map. Recall that the notation gg2

1 stands for g2g1g−1
2 . Observe that if a ∈ Kg and x,y ∈ π1(Σg) are such

that xy−1 ∈ Kg, then

ρ(ax) = ρ(a(xy−1)y) = ρ((xy−1)(ay)(xy−1)−1) = ρ(xy−1)+ρ(ay)−ρ(xy−1) = ρ(ay).

This implies that for a ∈ Kg and x,y ∈ π1(Σg) and v ∈ HL, we may unambiguously define

⟨⟨a⟩⟩v = ρ(aṽ) and ⟨⟨x,y⟩⟩v = ρ([x,y]ṽ),

where ṽ ∈ π1(Σg) is any lift of v under the map π1(Σg)→ HL.
As another bit of notation, for x ∈ π1(Σg) denote by x the associated element of HL = H1(Σg;Z/L).
With this notation, we have the following identities.

Lemma 5.1.

1. For a ∈ Kg and x ∈ π1(Σg), we have ⟨⟨a,x⟩⟩= ⟨⟨a⟩⟩−⟨⟨a⟩⟩x.

2. For x,y ∈ π1(Σg), we have ⟨⟨x,y⟩⟩=−⟨⟨y,x⟩⟩.

3. For x,y,z ∈ π1(Σg), we have ⟨⟨xy,z⟩⟩= ⟨⟨x,z⟩⟩+ ⟨⟨y,z⟩⟩x.

4. For x,y ∈ π1(Σg), we have ⟨⟨x−1,y⟩⟩=−⟨⟨x,y⟩⟩−x.

Proof. Items 1 and 2 are obvious, item 3 follows from the commutator identity [xy,z] = [x,z][y,z]x, and item
4 follows from item 3.

5.2 Skeleton of the proof of Lemma 3.3
Recall that we want to prove that the map

H1(Kg;Cg,1)→ H1(Mod1
g(L);Cg)

is the zero map. This map factors through H1(Kg;Cg). Since Kg acts trivially on Cg, this latter group is
isomorphic to H1(Kg;Z)⊗Cg.

Our first order of business is to characterize the image of H1(Kg;Cg,1) in H1(Kg;Cg). The long exact
sequence in Kg-homology associated to the short exact sequence

0 −→ Ig −→Cg,1 −→Cg −→ 0

of Kg-modules contains the segment

H1(Kg;Cg,1)−→ H1(Kg;Z)⊗Cg
∂−→ Ig. (8)

Here we have used the fact that H0(Kg; Ig) = (Ig)Kg = Ig. The image of H1(Kg;Cg,1) in H1(Kg;Cg) is the
kernel of ∂ . It turns out that ∂ is closely related to the Reidemeister pairing ω(·, ·) from Lemma 3.2.

Lemma 5.2. The map ∂ : H1(Kg;Z)⊗Cg → Ig is the restriction of the linear map H1(Kg;Q)⊗H1(Kg;Q)→ Ig
induced by the bilinear Reidemeister pairing ω(·, ·).

Proof. Consider f ⊗ y ∈ H1(Kg;Z)⊗Cg. Tracing through the construction of the long exact sequence (see,
e.g., [6, §III.7]), we can calculate ∂ ( f ⊗ y) as follows. Lift y to ỹ ∈Cg,1. Then

∂ ( f ⊗ y) = f (ỹ)− ỹ ∈ Ig.

The lemma then follows from Lemma 3.2.
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x y
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y z x

y

Figure 2: a. x and y are strongly essentially separate b. {x,y} is strongly essentially separate from {x,z}. c. x
and y are essentially separate but not strongly essentially separate

We thus want to determine which pairs of elements evaluate to zero under ω(·, ·). This will require the
following definitions.

Definition. Consider sets of curves s = {x1, . . . ,xn} ⊂ π1(Σg) and s′ = {y1, . . . ,ym} ⊂ π1(Σg).

• The sets s and s′ are essentially separate if there exist connected subsurfaces X and X ′ of Σg with the
following properties.

– Both X and X ′ contain the basepoint.

– Σg = X ∪X ′ and X ∩X ′ = ∂X = ∂X ′.

– s ⊂ Im(π1(X)→ π1(Σg)) and s′ ⊂ Im(π1(X ′)→ π1(Σg)).

• The sets s and s′ are strongly essentially separate if we can choose X and X ′ as above such that both X
and X ′ have exactly one boundary component (which necessarily contains the basepoint).

See Figure 2 for examples of curves that are essentially separate and strongly essentially separate.
This brings us to the following key definition. Recall that HL = H1(Σg;Z/L).

Definition. Define Sg ⊂H1(Kg;Q)×Cg to equal Sg(1)∪Sg(2), where the Sg(i) are as follows. To simplify
our notation, we will denote π1(Σg) by π .

Sg(1) = {(⟨⟨x⟩⟩v,⟨⟨y⟩⟩v′) | v,v′ ∈ HL, x ∈ Kg, y ∈ [π,π], and x and y are essentially separate},

Sg(2) = {(⟨⟨x⟩⟩v,⟨⟨y,zL⟩⟩v′) | v,v′ ∈ HL, x ∈ Kg, y,z ∈ π , z can be realized by a simple
closed nonseparating curve, and {z} and {x,y} are
strongly essentially separate}.

We now prove the following.

Lemma 5.3. For (x,y) ∈ Sg, we have ω(x,y) = 0.

Proof. We must deal with both Sg(1) and Sg(2).

Step 1. ω(⟨⟨x⟩⟩v,⟨⟨y⟩⟩v′) = 0 for (⟨⟨x⟩⟩v,⟨⟨y⟩⟩v′) ∈ Sg(1).

Since x and y are essentially separate, they can be freely homotoped to disjoint curves. This implies
that any two lifts of x and y to the cover of Σg corresponding to Kg can be homotoped so as to be disjoint.
Examining the formula for ω(·, ·) in Lemma 3.2, this immediately implies that ω(⟨⟨x⟩⟩v,⟨⟨y⟩⟩v′) = 0, as desired.

Step 2. ω(⟨⟨x⟩⟩v,⟨⟨y,zL⟩⟩v′) = 0 for (⟨⟨x⟩⟩v,⟨⟨y,zL⟩⟩v′) ∈ Sg(2).

Recall that if w ∈ π1(Σg), then w denotes the element of HL = H1(Σg;Z/L) associated to w. By Lemma
5.1, we have

⟨⟨y,zL⟩⟩v′ = ⟨⟨zL⟩⟩v′+y −⟨⟨zL⟩⟩v′ .

Since x and zL are essentially separate, an argument similar to the argument in Step 1 shows that

ω(⟨⟨x⟩⟩v,⟨⟨y,zL⟩⟩v′) = ω(⟨⟨x⟩⟩v,⟨⟨zL⟩⟩v′+y)−ω(⟨⟨x⟩⟩v,⟨⟨zL⟩⟩v′) = 0−0 = 0,

as desired.
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Remark. In Step 2 of the above, we only used the fact that z is essentially separate from x. The remainder of
the assumptions on elements of Sg(2) will be later used in the proof of Lemma 5.5.

It follows that the set {x⊗ y | (x,y) ∈ Sg} is contained in ker(∂ ). This is not everything, however. Since
Mod1

g(L) acts trivially on Ig, the kernel of ∂ also contains x⊗ y− f (x)⊗ f (y) for x ∈ H1(Kg;Z) and y ∈ Cg

and f ∈ Mod1
g(L). Define Kg < H1(Kg;Z)⊗Cg be the span of the set

{x⊗ y | (x,y) ∈ Sg}∪{x⊗ y− f (x)⊗ f (y) | x ∈ H1(Kg;Z), y ∈Cg, f ∈ Mod1
g(L)}

and let Qg = H1(Kg;Z)⊗Cg/Kg. Since Kg ⊂ ker(∂ ), the map ∂ : H1(Kg;Z)⊗Cg → Ig induces a map
ψ : Qg → Ig. Following preliminary results in §6, we will prove the following lemma in §7.

Lemma 5.4. For g ≥ 3, the map ψ is an isomorphism.

It follows that
Kg = ker(∂ ) = Im(H1(Kg;Cg,1)→ H1(Kg;Cg)).

To prove Lemma 3.3, which asserts that the map H1(Kg;Cg,1)→H1(Mod1
g(L);Cg) is the zero map, it therefore

suffices to prove the following lemma, whose proof is in §8.

Lemma 5.5. For g ≥ 4, the image of Kg in H1(Mod1
g(L);Cg) is zero.

This completes the outline of the proof of Lemma 3.3 (and our outline of the remainder of the paper).
However, we also owe the reader a proof of Lemma 3.4, which asserts that

(Cg)π1(Σg) = (Cg,1)π1(Σg) = 0

for g ≥ 3.

Proof of Lemma 3.4. We can extend the long exact sequence (8) to the right to get an exact sequence

H1(Kg;Z)⊗Cg
∂−→ Ig −→ (Cg,1)Kg −→Cg −→ 0.

Lemma 5.4 implies that ∂ is surjective, so we deduce that (Cg,1)Kg
∼= Cg. It is thus enough to prove that

(Cg)π1(Σg) = 0. Lemma 2.2 implies that there is a π1(Σg)-invariant decomposition

H1(Kg;Q)∼=Cg ⊕H1(Σg;Q).

Also, Lemma 2.3 implies that (H1(Kg;Q))π1(Σg)
∼= H1(Σg;Q). We conclude that (Cg)π1(Σg) = 0.

6 Generators and relations for Qg

This section contains preliminaries for the proof of Lemma 5.4. We begin in §6.1 by introducing the notion
of the intersection pattern of curves, which will play an important role in both this section and in §8. Next,
in §6.2, we introduce certain important elements X(v,w1,w2) of Qg. We calculate the image of X(v,w1,w2)
under ψ in §6.3. We show that the X(v,w1,w2) span Qg in §6.4. Finally, in §6.5, we determine some relations
between these elements.

Lemma 5.4 is proven in §7 below. The proof is essentially a lengthy calculation with generators and
relations.

Throughout this section, let η : H1(Kg;Z)⊗Cg → Qg be the projection.
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x

z y′

a b
Figure 3: The curves {x,y,z} in a have the same oriented intersection pattern as the curves {x,y′,z} in b.

6.1 Intersection patterns
We will have to perform some detailed calculations with elements of π1(Σg). These calculations will depend
on certain pictures of curves on the surface, and in this section we will establish some vocabulary for this.
We begin with the following definition.

Definition. Let S be a surface, possibly with boundary. Assume that S has a fixed basepoint. An embedding
i : S → Σg is a simple embedding if i takes the basepoint of S to the basepoint of Σg and all components of
Σg \ i(S) have one boundary component.

Remark. We allow S = Σg and i = id.
Remark. The key property of simple embeddings is as follows. Let i : S → Σg be a simple embedding. Then
if γ is a simple closed separating curve on S, then i(γ) is a simple closed separating curve on Σg.

Next, we make the following definition.

Definition. Let S be a surface, possibly with boundary, and let {x′1, . . . ,x
′
k} ⊂ π1(S). We will say that a

set {x1, . . . ,xk} ⊂ π1(Σg) of curves has the same unoriented intersection pattern as {x′1, . . . ,x
′
k} if there is a

simple embedding f : S → Σg such that f∗(x′i) = x±1
i for all 1 ≤ i ≤ k. If f can be chosen such that f (x′i) = xi

for all 1 ≤ i ≤ k, then we will say that that the curves have the same oriented intersection pattern.

Remark. In what follows, the surface S and the curves {x′1, . . . ,x
′
k} will often be given by pictures. To avoid

cluttering the pictures, we will often depict boundary components via gaps in their edges. For instance, there
are boundary components at the top and bottom of Figure 4.a below.

We will frequently assert without proof that a set of curves has a given (un)oriented intersection pattern.
In all these cases, the assertion will be a trivial consequence of the “change of coordinates” principle from
[8, §1.3]. Rather than give a formal description of this principle, we will illustrate it with a concrete example
(there are many more examples in [8, §1.3]). Namely, we will prove that the curves {x,y,z} in Figure 3.a
have the same oriented intersection pattern as the curves {x,y′,z} in Figure 3.b (we remark that y′ = y−1x).

The proof is as follows. The union of the curves in Figure 3.a (resp. Figure 3.b) forms an oriented
graph Γ1 (resp. Γ2) embedded in Σ2 with one vertex (the basepoint) and three loops labeled with {x,y,z}
(resp. {x,y′,z}). There is an isomorphism f : Γ1 → Γ2 taking the edge labeled x to the edge labeled x,
the edge labeled y to the edge labeled y′, and the edge labeled z to the edge labeled z. The embedding
of Γi in Σ2 induces a cyclic order on the oriented edges entering and leaving the single vertex, and the
isomorphism f respects these cyclic orderings. This implies that f extends to a diffeomorphism f ′ : N1 → N2,
where Ni is a regular neighborhood of Γi. An Euler characteristic computation shows that the components of
Σ2 \Ni are diffeomorphic, and we thus obtain a basepoint-preserving diffeomorphism f ′′ : Σ2 → Σ2 such that
( f ′′)∗(x) = x and ( f ′′)∗(y) = y′ and ( f ′′)∗(z) = z, as desired.

6.2 The elements X(v,w1,w2)

The purpose of this section is to introduce certain elements X(v,w1,w2) in Qg. The key will be the following
lemma. In it, recall that if x ∈ π1(Σg), then x denotes the element of HL = H1(Σg;Z/L) associated to x.

Lemma 6.1. Fix w ∈ HL = H1(Σg;Z/L). For 1 ≤ i ≤ 2, let xi,yi,zi ∈ π1(Σg) be such that {xi,yi,zi} has the
same oriented intersection pattern as the curves {x,y,z} in Figure 4.a. Assume that y1 = y2 and z1 = z2. Then
η(⟨⟨x1⟩⟩⊗⟨⟨y1,z1⟩⟩w) = η(⟨⟨x2⟩⟩⊗⟨⟨y2,z2⟩⟩w).
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x

z y

B1 B2

z2 y2

a b c
Figure 4: a. The configuration of curves such that ϕ(⟨⟨x⟩⟩⊗ ⟨⟨y,z⟩⟩v) = X(v,w1,w2). Also, the one-holed tori B1 and B2
will be needed in the proof of Lemma 6.3. The central four-holed sphere in the picture will be called A in that proof. b.
The curves f (x1) and x2 leave at the top and come back at the bottom. c. The product f (x1)x−1

2 is essentially disjoint
from [y2,z2]. The orientations of the “top” and “bottom” piece depend on the manner in which f (x1) and x2 leave and
come back to the basepoint

Proof. It is easy to see that there exists some f ∈ Mod1
g(L) such that f (y1) = y2 and f (z1) = z2 (the proof of

this is a slight variation on the proof of [20, Proposition 6.7], which proves the analogous result for unbased
curves). We then have

η(⟨⟨x1⟩⟩⊗⟨⟨y1,z1⟩⟩w) = η(⟨⟨ f (x1)⟩⟩⊗⟨⟨ f (y1), f (z1)⟩⟩w) = η(⟨⟨ f (x1)⟩⟩⊗⟨⟨y2,z2⟩⟩w).

The curves { f (x1),y2,z2} have the same oriented intersection pattern as the curves {x,y,z} in Figure 4.a.
Moreover (see Figures 4.b–c), the curves f (x1)x−1

2 and [y2,z2] are essentially separate, so we conclude that

η(⟨⟨ f (x1)⟩⟩⊗⟨⟨y2,z2⟩⟩w) = η(⟨⟨x2⟩⟩⊗⟨⟨y2,z2⟩⟩w),

as desired.

We will need the following definition. Let i(·, ·) be the Z/L-valued algebraic intersection pairing on HL.

Definition. A k-element set {w1, . . . ,wk} ⊂ HL will be said to be isotropic if i(wi,w j) = 0 for all 1 ≤ i, j ≤ k
and unimodular if ⟨w1, . . . ,wk⟩ is direct summand of HL that is isomorphic to a k-dimensional free Z/L-
submodule.

It is clear that if the curves {x,y,z} have the same oriented intersection pattern as the curves in Figure 4.a,
then {y,z} ⊂ HL is isotropic and unimodular. The converse is true as well. This will require the following
lemma.

Lemma 6.2. For some n,m ≥ 0, let {w1, . . . ,wn,w′
1, . . . ,w

′
m} ⊂ HL be a unimodular set. Assume that

i(wi,w j) = i(w′
i′ ,w

′
j′) = 0 and i(wi,wi′) =

{
1 if i = i′

0 if i ̸= i′

for 1 ≤ i, j ≤ n and 1 ≤ i′, j′ ≤ m. There then exists a set {α1, . . . ,αn,α ′
1, . . . ,α ′

m} of unbased oriented simple
closed curves on Σg with the following properties.

• The Z/L-homology class of αi is wi for 1 ≤ i ≤ n and the Z/L-homology class of α ′
i is w′

i for 1 ≤ i ≤ m.

• αi and α ′
i intersect once for 1 ≤ i ≤ min(n,m). Otherwise, the curves {α1, . . . ,αn,α ′

1, . . . ,α ′
m} are

pairwise disjoint.

Proof. Identical to the proof of [19, Lemma A.3].

If {w1,w2} ⊂ HL is isotropic and unimodular, then Lemma 6.2 says that we can find unbased, disjoint
simple closed curves Y and Z such that the Z/L-homology classes of Y and Z are w1 and w2, respectively.
Connecting Y and Z to the basepoint in an appropriate way, we find y,z ∈ π1(Σg) such that y = w1 and z = w2
and {y,z} has the same oriented intersection pattern as the curves in Figure 4.a. It is then clear that we can
find some x ∈ π1(Σg) such that {x,y,z} has the same oriented intersection pattern as the curves in Figure 4.a.

We now introduce notation for the elements of Qg we have been discussing.
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Definition. For v,w1,w2 ∈ HL such that {w1,w2} is isotropic and unimodular, define X(v,w1,w2) = η(⟨⟨x⟩⟩⊗
⟨⟨y,z⟩⟩v) ∈ Qg, where x,y,z ∈ π1(Σg) have the same oriented intersection pattern as the curves in Figure 4.a
and w1 = y and w2 = z.

The paragraph before the definition shows that we can find appropriate {x,y,z}, and Lemma 6.1 implies
that X(v,w1,w2) only depends on {v,w1,w2}.

6.3 The image of X(v,w1,w2) under ψ
Recall that ψ is the natural map Qg → Ig induced by the Reidemeister pairing ω(·, ·) from Lemma 3.2. We
now prove the following.

Lemma 6.3. Consider v,w1,w2 ∈HL such that {w1,w2} is isotropic and unimodular. Then ψ(X(v,w1,w2))=JvK− Jv+w1K− Jv+w2K+ Jv+w1 +w2K.

Proof. Let x,y,z ∈ π1(Σg) be curves with the same oriented intersection pattern as the curves in Figure 4.a
such that y = w1 and z = w2. We then have X(v,w1,w2) = η(⟨⟨x⟩⟩⊗ ⟨⟨y,z⟩⟩v), and the lemma is equivalent to
proving that

ω(⟨⟨x⟩⟩,⟨⟨y,z⟩⟩v) = JvK− Jv+ yK− Jv+ zK+ Jv+ y+ zK.
Let ρ : SK

g → Σg be the cover corresponding to Kg. The group of deck transformations is thus HL. Let B1 ⊂ Σg
(resp. B2 ⊂ Σg)) be the one-holed torus on the left (resp. right) side of Figure 4.a. Also, let A ⊂ Σg be the
four-holed sphere “between” B1 and B2 in Figure 4.a. We then have the following.

• ρ−1(A) is the disjoint union of |HL|= L2g four-holed spheres each of which projects homeomorphically
onto A.

• ρ−1(Bi) is the disjoint union of |HL|/L2 = L2g−2 components. If B̃i is one of those components, then
B̃i is an L2-holed torus and ρ|B̃i

: B̃i → Bi is a cover with deck group (Z/L)2.

The homology class ⟨⟨y,z⟩⟩v on SK
g can be realized by a simple closed curve γ as in Figure 5. If Ã is the

component of ρ−1(A) containing the basepoint, then this simple closed curve does the following.

• Beginning in the component JvK · Ã of ρ−1(A), it goes through a component of ρ−1(B2) to arrive inJv+ yK · Ã.

• It then goes through a component of ρ−1(B1) to arrive in Jv+ y+ zK · Ã.

• It then goes through a component of ρ−1(B2) to arrive in Jv+ zK · Ã.

• It finally goes through a component of ρ−1(B1) to arrive back in JvK · Ã.

Let x̃ be the lift of x contained in Ã. As is evident from Figure 5, the curve γ intersects four different HL-
translates of x̃, two with positive sign and two with negative sign. Examining these intersections, we see
that

ω(⟨⟨x⟩⟩,⟨⟨y,z⟩⟩v) = JvK− Jv+ yK− Jv+ zK+ Jv+ y+ zK,
as desired.
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Figure 5: The curve γ in SK
g whose homology class is ⟨⟨y,z⟩⟩v. The dark portions are the lifts of y±1 and the dashed

portions are the lifts of z±1. The numbers at the end of each segment indicate where the curve goes next. The 4-holed
spheres are components of ρ−1(A) and the L2-holed tori (depicted here for L = 2; the sides of the squares should be
glued up in the indicated ways) are components of ρ−1(B1) and ρ−1(B2). The curve γ intersects four lifts x̃1, . . . , x̃4 of
ρ−1(x). If x̃ is the lift of x starting at the basepoint, then x̃1 = JvK · x̃ and x̃2 = Jv+ yK · x̃ and x̃3 = Jv+ y+ zK · x̃ and
x̃4 = Jv+ zK · x̃
6.4 Qg is spanned by the X(v,w1,w2)

In this section, we prove that the X(v,w1,w2) span Qg. The proof will use the following lemma.

Lemma 6.4 ([19, Lemma A.1]). Fix g ≥ 1 and set π = π1(Σg). The group [π,π] is then generated by the set

{γ | γ ∈ π can be realized by a simple closed separating curve}.

We now prove our lemma.

Lemma 6.5. For g ≥ 1, the vector space Qg is spanned by the set

{X(v,w1,w2) | v,w1,w2 ∈ HL, {w1,w2} is isotropic and unimodular}.

Proof. Define
Cg(Z) = ker(H1(Kg;Z)−→ H1(Σg;Z)).

Our proof will have three steps. As notation, for q,q′ ∈ Qg, write q ≡ q′ if q and q′ are equal modulo
η(Cg(Z)⊗Cg).

Step 1. Let x,y,z ∈ π1(Σg) be such that z can be realized by a simple closed nonseparating curve and {z} is
strongly essentially separate from {x,y}. Also, let v ∈ HL. Then η(⟨⟨xL⟩⟩⊗⟨⟨y,z⟩⟩v)≡ 0.

Since Mod1
g(L) contains all inner automorphisms of π1(Σg), we can use the Mod1

g(L)-invariance of Qg to
deduce that

η(⟨⟨xL⟩⟩⊗⟨⟨y,z⟩⟩v+ j·z) = η(⟨⟨z− jxLz j⟩⟩⊗⟨⟨y,z⟩⟩v)≡ η(⟨⟨xL⟩⟩⊗⟨⟨y,z⟩⟩v).

for all j ∈ Z. Consequently,

η(⟨⟨xL⟩⟩⊗⟨⟨y,z⟩⟩v)≡ 1
L

L−1

∑
j=0

η(⟨⟨x⟩⟩L ⊗⟨⟨y,z⟩⟩v+ j·z) =
1
L

η(⟨⟨xL⟩⟩⊗⟨⟨y,zL⟩⟩v) = 0.

This last equality follows from the fact that (⟨⟨xL⟩⟩,⟨⟨y,zL⟩⟩v) ∈ Sg(2)
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α1 α3 α5

α2 α4 α6

Figure 6: a. A standard basis for π1(Σg) b. The curve [α1,α2].

Step 2. η(Cg(Z)⊗Cg) = Qg.

Our goal is to show that q ≡ 0 for all q ∈ Qg. To do this, it is enough to show that η(⟨⟨αL
1 ⟩⟩⊗ c) ≡ 0 for

all α1 ∈ π1(Σg) that can be realized by a simple closed nonseparating curve and all c ∈ Cg. Extend α1 to a
standard basis {α1, . . . ,α2g} for π1(Σg) as in Figure 6.a. The vector space Cg is spanned by the set

S = {⟨⟨αi,α j⟩⟩v | 1 ≤ i < j ≤ 2g, v ∈ HL}.

Consider ⟨⟨αi,α j⟩⟩v ∈ S. If i ≥ 3 or (i, j) = (1,2), then [αi,α j] is essentially separate from αL
1 (see Figure 6.b

for (i, j) = (1,2)) and thus η(⟨⟨xL⟩⟩⊗⟨⟨αi,α j⟩⟩v) = 0. Otherwise, i ∈ {1,2} and j > 2. It follows that {α j} is
strongly essentially separate from {α1,αi}, and thus Step 1 implies η(⟨⟨αL

1 ⟩⟩⊗⟨⟨αi,α j⟩⟩v)≡ 0.

Step 3. η(Cg(Z)⊗Cg) is generated by the set

{X(v,w1,w2) | v,w1,w2 ∈ HL, {w1,w2} is isotropic and unimodular}.

Set
S = {γ ∈ π1(Σg) | γ ̸= 1, γ can be realized by a simple closed separating curve}.

Lemma 6.4 implies that Cg(Z) is generated by {⟨⟨γ⟩⟩ | γ ∈ S}. Consider γ ∈ S. Let X1 and X2 be the two
surfaces into which γ cuts Σg. Order them so that X1 lies to the right of γ and X2 to the left. We can then find
a basis B1

γ ∪B2
γ for π1(Σg) with the following properties.

• For δ ∈ Bi
γ , we have δ ∈ Im(π1(Xi)→ π1(Σg)).

• Consider δ1 ∈ B1
γ and δ2 ∈ B2

γ . The curves {γ,δ1,δ2} then have the same oriented intersection pattern
as the curves in Figure 4.a.

It follows that Cg is spanned by the set Uγ ∪Vγ , where

Uγ = {⟨⟨δ1,δ2⟩⟩v | δi ∈ Bi
γ , v ∈ HL} and Vγ = {⟨⟨δ ,δ ′⟩⟩v | there exists i such that δ ,δ ′ ∈ Bi

γ , v ∈ HL}.

We then have that Cg(Z)⊗Cg is spanned by the set Z ∪W , where

Z = {⟨⟨γ⟩⟩⊗ c | γ ∈ S, c ∈Uγ} and W = {⟨⟨γ⟩⟩⊗ c | γ ∈ S, c ∈Vγ}.

For ⟨⟨γ⟩⟩⊗ ⟨⟨δ1,δ2⟩⟩v ∈ Z, we have η(⟨⟨γ⟩⟩⊗ ⟨⟨δ1,δ2⟩⟩v) = X(v,δ 1,δ 2). For ⟨⟨γ⟩⟩⊗ ⟨⟨δ ,δ ′⟩⟩v ∈W , the curves γ
and [δ ,δ ′] are essentially separate, so η(⟨⟨γ⟩⟩⊗⟨⟨δ ,δ ′⟩⟩v) = 0. The desired result follows.

6.5 Relations between the X(w,v1,v2)

The goal of this section is to prove the following lemma, which gives relations between the X(v,w1,w2).

Lemma 6.6. Let {w1,w2} ⊂ H1(Σg;Z/L) be an isotropic and unimodular set. Then the following hold for
all v ∈ H1(Σg;Z/L).

1. X(v,w1,w2) = X(v,w2,w1)
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y
y′

y′

a b
Figure 7: a. i(y,y′) = 0 and the sets of curves {x,y,z} and {x,y′,z} and {x,yy′,z} have the same oriented intersection
pattern as the curves in Figure 4.a b. i(y,y′) = −1 and the sets of curves {x,y,z} and {x,y′,z} and {x,yy′,z} and
{x,y(y′)−1,z} have the same oriented intersection pattern as the curves in Figure 4.a

2. X(v,−w1,w2) =−X(v−w1,w1,w2)

3. ∑L−1
i=0 X(v+ i ·w1,w1,w2) = 0 and ∑L−1

i=0 X(v+ i ·w2,w1,w2) = 0

4. Let w3 ∈ H1(Σg;Z/L) be such that {w1,w2,w3} is unimodular, such that i(w2,w3) = 0, and such that
−1 ≤ i(w1,w3)≤ 1. Then X(v,w1 +w3,w2) = X(v,w1,w2)+X(v+w1,w3,w2).

Remark. It is instructive to check (using the formula in Lemma 6.3) that each of these relations is taken to 0
by ψ .

Proof of Lemma 6.6. Let x,y,z∈ π1(Σg) be curves such that {x,y,z} has the same oriented intersection pattern
as the curves in Figure 4.a and such that y = w1 and z = w2. Hence X(v,w1,w2) = η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v).

For item 1, observe that if we flip y and z, then our curves no longer have the same oriented intersection
pattern as the curves in Figure 4.a (they do have the same unoriented intersection pattern). To restore the
correct orientations, we must reverse x. In other words,

X(v,w2,w1) = η(⟨⟨x−1⟩⟩⊗⟨⟨z,y⟩⟩v) = η((−⟨⟨x⟩⟩)⊗ (−⟨⟨y,z⟩⟩v)) = η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v) = X(v,w1,w2),

as desired.
For item 2, observe that the set of curves {x,y−1x,z} has the same oriented intersection pattern as {x,y,z}

(see the example in §6.1). Also, since x = 0, we have y−1x = −y = −w1. Thus we can apply Lemma 5.1 to
get that

X(v,−w1,w2) = η(⟨⟨x⟩⟩⊗⟨⟨y−1x,z⟩⟩v) = η(⟨⟨x⟩⟩⊗⟨⟨y−1,z⟩⟩v)+η(⟨⟨x⟩⟩⊗⟨⟨x,z⟩⟩v−w1)

=−η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v−w1)+η(⟨⟨x⟩⟩⊗⟨⟨x⟩⟩v−w1)−η(⟨⟨x⟩⟩⊗⟨⟨x⟩⟩v−w1+w2).

Since x is essentially separate from itself, the last two terms vanish and this equals

−η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v−w1) =−X(v−w1,w1,w2),

as desired.
For item 3, item 1 implies that it is enough to prove that ∑L−1

i=0 X(v+ i ·w2,w1,w2) = 0. Observe that
(⟨⟨x⟩⟩,⟨⟨y,zL⟩⟩v) ∈ Sg(2), so by Lemma 5.1 we have

0 = η(⟨⟨x⟩⟩⊗⟨⟨y,zL⟩⟩v) =
L−1

∑
i=0

η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v+i·z) =
L−1

∑
i=0

X(v+ i ·w2,w1,w2),

as desired.
We conclude with item 4. Here we will have to change our curves x and y and z. We will prove shortly

that we can find x,y,y′,z ∈ π1(Σg) with the following properties.
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• y = w1 and y′ = w3 and z = w2.

• The sets of curves {x,y,z} and {x,y′,z} and {x,yy′,z} each have the same oriented intersection pattern
as the curves in Figure 4.a.

See Figures 7.a,b. Assuming this for the moment, the proof is completed by appealing to Lemma 5.1 to
deduce that

X(v,w1 +w3,w2) = η(⟨⟨x⟩⟩⊗⟨⟨yy′,z⟩⟩v) = η(⟨⟨x⟩⟩⊗⟨⟨y,z⟩⟩v)+η(⟨⟨x⟩⟩⊗⟨⟨y′,z⟩⟩v+y)

= X(v,w1,w2)+X(v+w1,w3,w2).

It remains to prove the above claim. By Lemma 6.2, we can find unbased oriented simple closed curves Y
and Y ′ and Z on Σg with the following properties.

• The Z/L-homology classes of Y , Y ′, and Z are w1, w3, and w2, respectively.

• Z is disjoint from Y and Y ′. Also, Y and Y ′ are disjoint if i(w1,w3) = 0 and intersect once if i(w1,w3) =
±1.

We can then connect Y , Y ′, and Z to the basepoint to obtain curves y,y′,z ∈ π1(Σg) such that {y,y′,z} has the
same oriented intersection pattern as the curves in Figure 7.a (if i(w1,w3) = 0) or 7.b (if i(w1,w3) = −1) or
7.b with the orientation of the curve y′ reversed (if i(w1,w3) = 1). It is then clear that we can find x ∈ π1(Σg)
such that {x,y,y′,z} has the indicated oriented intersection pattern, as desired.

7 The map ψ : Qg → Ig is an isomorphism
The purpose of this section is to prove that the map ψ : Qg → Ig is an isomorphism. The actual proof is in
§7.2. This is proceeded by §7.1, which constructs a generating set V for Qg that is slightly smaller than the
generating set determined in §6.4.

Throughout this section, we will freely use the main results of §6 (i.e. Lemmas 6.3 and 6.5 and 6.6).

7.1 A smaller generating set
Fix a symplectic basis B = {a1,b1, . . . ,ag,bg} for HL. Define V =V1 ∪V2 ⊂ Qg, where the Vi are as follows.

V1 = {X(v,s1,s2) | v ∈ HL, s1,s2 ∈ B distinct, i(s1,s2) = 0},
V2 = {X(v,s1,s1 + es2) | v ∈ HL), s1,s2 ∈ B distinct, e ∈ {−1,1}, i(s1,s2) = 0},

The goal of this section is to prove the following.

Lemma 7.1. For g ≥ 4, the vector space Qg is spanned by V .

We begin with the following relations in Qg.

Lemma 7.2. Fix g ≥ 1, and let {s1,s2,s3} ⊂ HL be a unimodular set such that i(s1,s3) = i(s2,s3) = 0 and
−1 ≤ i(s1,s2)≤ 1. Then for all v ∈ HL we have the following two relations.

X(v,s2,s3) = X(v+ s1,s2,s3)+X(v,s1,s3)−X(v+ s2,s1,s3),

X(v− s1,s2,s3) = X(v,s2,s3)+X(v− s1,s1,s3)−X(v− s1 + s2,s1,s3).

Proof. The first relation follows from the fact that

X(v,s1 + s2,s3) = X(v,s1,s3)+X(v+ s1,s2,s3) and X(v,s1 + s2,s3) = X(v,s2,s3)+X(v+ s2,s1,s3).

The second follows from the first via the substitution v 7→ v− s1.
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We next show that ⟨V ⟩ contains several other classes of elements. Define

V3 = {X(v,s1 + es2,s3 + e′s4) | v ∈ HL, s1,s2,s3,s4 ∈ B distinct, e,e′ ∈ {−1,1},
i(s1,s3) =±1, i(s1 + es2,s3 + e′s4) = 0},

V4 = {X(v,s1 + es2,s1 + es2 + e′s3) | v ∈ HL, s1,s2,s3 ∈ B distinct, e,e′ ∈ {−1,1},
i(s1,s2) =±1, i(s1,s3) = i(s2,s3) = 0}.

We then have the following.

Lemma 7.3. For g ≥ 1, we have V3,V4 ⊂ ⟨V ⟩.

Proof. For x,y ∈ Qg, write x ≡ y if x and y are equal modulo ⟨V1,V2⟩. First consider X(v,w1,w2) ∈ V3. Our
goal is to show that X(v,w1,w2)≡ 0. For concreteness, we will do the case X(v,w1,w2) =X(v,ai+b j,bi+a j)
for some 1 ≤ i, j ≤ g with i ̸= j; the other cases are similar.

Observe first that Lemma 7.2 implies that

X(v,bi +a j,ai +b j) = X(v+ai,bi +a j,ai +b j)+X(v,ai,ai +b j)−X(v+bi +a j,ai,ai +b j).

Since X(v,ai,ai + b j),X(v+ bi + a j,ai,ai + b j) ∈ V2, we deduce that X(v,ai + b j,bi + a j) ≡ X(v+ ai,ai +
b j,bi+a j). In a similar manner, we have X(v+ai,ai+b j,bi+a j)≡X(v+(ai+b j),ai+b j,bi+a j). Iterating
this, we obtain X(v,ai +b j,bi +a j)≡ X(v+ k(ai +b j),ai +b j,bi +a j) for all k ∈ Z. But this implies that

X(v,ai +b j,bi +a j)≡
1
L

L−1

∑
k=0

X(v+ k(ai +b j),ai +b j,bi +a j) = 0,

as desired.
Now consider X(v′,w′

1,w
′
2)∈V4. We will show that X(v′,w′

1,w
′
2) can be written as a a linear combination

of elements of V1∪V2∪V3. For concreteness, we will do the case X(v′,w′
1,w

′
2) = X(v,ai+bi,ai+bi+a j) for

some 1 ≤ i, j ≤ g with i ̸= j; the other cases are similar. In this case, we have

X(v,ai +bi,ai +bi +a j) =X(v,(ai +b j)+(bi −b j),ai +bi +a j)

=X(v,ai +b j,ai +bi +a j)+X(v+ai +b j,bi −b j,ai +bi +a j)

=X(v,ai +b j,ai)+X(v+ai,ai +b j,bi +a j)

+X(v+ai +b j,bi −b j,bi)+X(v+ai +b j +bi,bi −b j,ai +a j),

as desired.

Next, say that v ∈ HL is a simple element of length at most k if it can be written as

v =
g

∑
i=1

(ciai +dibi)

for some ci,di ∈ {−1,0,1} such that at most k of the ci and di are nonzero. Define

V ′ = {X(v,w1,w2) | v,w1,w1 ∈ HL, {w1,w2} is isotropic and unimodular, and
w1 is a simple element of length at most 3

We then have the following

Lemma 7.4. For g ≥ 1, we have V ′ ⊂ ⟨V ⟩.

Proof. An easy case-by-case check shows that one can use the “bilinearity relations” (relations 1, 2, and 4 in
Lemma 6.6) to express every element of V ′ as a linear combination of elements of V ∪V3 ∪V4, and thus via
Lemma 7.3 as a linear combination of elements of V .

21



δ1
δ2

δ3 δg−1

δ2g δ2g+1

Figure 8: Generators for Mod1
g

We finally prove Lemma 7.1.

Proof of Lemma 7.1. The mapping class group Mod1
g acts on both HL and Qg. The action on HL is transitive

on pairs {w1,w2} of vectors that are isotropic and unimodular. It follows that the Mod1
g-orbit of the set V

contains every element X(v,w1,w2). Lemma 6.5 says that these generate Qg, so we conclude that it is enough
to show that ⟨V ⟩ is invariant under Mod1

g. Let {δ1, . . . ,δ2g+1} be the simple closed curves depicted in Figure
8. The set

S = {Tδi | 1 ≤ i ≤ 2g+1}

then generates Mod1
g (see [8]). It is enough to prove that s ·X(v,w1,w2)∈ ⟨V ⟩ for s∈ S±1 and X(v,w1,w2)∈V .

However, it is easy to see that s(w1) is a simple element of length at most 3, so s ·X(v,w1,w2) ∈ V ′ and the
desired result follows from Lemma 7.4.

7.2 ψ is an isomorphism
In this section, we prove Lemma 5.4, which we recall asserts that for g ≥ 3, the map ψ : Qg → Ig is an
isomorphism. Our proof is lengthy, but the basic idea is as follows.

• Using the relations in Qg, we will show that the set ⟨V ⟩ is generated by a set containing dimQ[HL]−1
elements.

• By carefully examining the image of ψ , we will show that Q[HL] = ψ(⟨V ⟩)+ ⟨J0K⟩.
A simple dimension count will then establish the lemma.

Some parts of our proof will be by induction on g. We will thus need notation for Q[HL] which takes g
into account, so define Bg =Q[H1(Σg;Z/L)].

To make the calculations a bit more palatable, we will break this down into several steps. We first deter-
mine what ψ does to V1.

Lemma 7.5. Fix g ≥ 1. Set B1
g = ⟨{Jcai +dbiK | c,d ∈ Z/L, 1 ≤ i ≤ g}⟩. Then the map ψ|⟨V1⟩ is injective

and Bg = ψ(⟨V1⟩)⊕B1
g .

Proof. The proof will by induction on g. For the base case g = 1, the set V1 is empty and the assertion is
trivial. Assume now that g ≥ 2 and that the lemma is true for all smaller g. Define

V I
1 = {X(v,s1,s2) ∈V1 | s1,s2 /∈ {ag,bg}},

V A
1 = {X(v,ag,s) | X(v,ag,s) ∈V1},

V B
1 = {X(v,bg,s) | X(v,bg,s) ∈V1},

so V =V I
1 ∪V A

1 ∪V B
1 . The proof will consist of three steps.

Step 1. Set B2
g = ⟨{Jcai +dbi + eag + f bgK | c,d,e, f ∈ Z/L, 1 ≤ i ≤ g−1}⟩. Then the map ψ|⟨V I

1 ⟩
is injec-

tive and Bg = ψ(⟨V I
1 ⟩)⊕B2

g .
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For e, f ∈ Z/L, define

Bg(e, f ) = ⟨{Jv+ eag + f bgK | v ∈ ⟨a1,b1, . . . ,ag−1,bg−1⟩}⟩,
B2

g(e, f ) = ⟨{Jcai +dbi + eag + f bgK | c,d ∈ Z/L, 1 ≤ i ≤ g−1}⟩,
V I

1 (e, f ) = {X(v+ eag + f bg,s1,s2) ∈V1 | s1,s2 /∈ {ag,bg}, v ∈ ⟨a1,b1, . . . ,ag−1,bg−1⟩}.

Observe that

Bg =
⊕

e, f∈Z/L

Bg(e, f ) and B2
g =

⊕
e, f∈Z/L

B2
g(e, f ) and V I

1 =
⊔

e, f∈Z/L

V I
1 (e, f ).

Moreover, for all e, f ∈ Z/L we have ψ(V I
1 (e, f )) ⊂ Bg(e, f ). We conclude that it is enough to prove that

ψ|ψ(⟨V I
1 (e, f )⟩)

is injective and Bg(e, f ) = ψ(⟨V I
1 (e, f )⟩)⊕B2

g(e, f ) for all e, f ∈ Z/L.
Consider e, f ∈ Z/L. The map JvK 7→ Jv+ eag + f bgK induces an isomorphism ρ : Bg−1 → Bg(e, f ) that

restricts to an isomorphism B1
g−1

∼= B2
g(e, f ). Let V1,g−1 ⊂ Qg−1 be the (g−1)-dimensional analogue of V1

and ψg−1 : Qg−1 → Bg−1 be the (g− 1)-dimensional analogue of ψ . The map X(v,w1,w2) 7→ X(v+ eag +
f bg,w1,w2) induces a homomorphism Qg−1 → Qg that restricts to a surjection ρ ′ : ⟨V1,g−1⟩ → ⟨V I

1 (e, f )⟩.
Observe that the diagram

⟨V1,g−1⟩
ψg−1−−−−→ Bg−1

ρ ′
y ρ

y
⟨V I

1 (e, f )⟩ ψ−−−−→ Bg(e, f )

commutes. By the induction hypothesis, ψg−1|⟨V1,g−1⟩ is injective and Bg−1 = ψg−1(⟨V1,g−1⟩)⊕B1
g−1. We

conclude that ρ ′ is injective and thus an isomorphism. Moreover, ψ|⟨V I
1 (e, f )⟩

is injective and Bg(e, f ) =

ψ(⟨V I
1 (e, f )⟩)⊕B2

g(e, f ), as desired.

Step 2. Set B3
g = ⟨{Jcai +dbi + f bgK, Jeag + f bgK | c,d,e, f ∈ Z/L, 1 ≤ i ≤ g−1}⟩. Then the map ψ|⟨V I

1 ,V
A
1 ⟩

is injective and Bg = ψ(⟨V I
1 ,V

A
1 ⟩)⊕B3

g .

Define

V A,1
1 = {X(cai +dbi + eag + f bg,ag,s) | 1 ≤ i ≤ g−1, c,d,e, f ∈ Z/L, s ∈ {ai,bi}} ⊂V A

1 .

We claim that ⟨V I
1 ,V

A
1 ⟩ = ⟨V I

1 ,V
A,1
1 ⟩. Indeed, consider X(w,ag,s) ∈ V A

1 . By Lemma 7.2, for any s′ ∈
{a1,b1, . . . ,ag−1,bg−1} with s′ ̸= s and i(s,s′) = 0, we have

X(w− s′,ag,s) = X(w,ag,s)+X(w− s′,s′,s)−X(w− s′+ag,s′,s).

Hence modulo ⟨V I
1 ⟩, we have X(w,ag,s) equal to X(w − s′,ag,s). Iterating this, modulo ⟨V I

1 ⟩ we have
X(w,ag,s) equal to an element of V A,1

1 , as desired.
For x ∈ Z/L, we will denote by |x| the unique integer representing x with 0 ≤ |x| < L− 1. Noting that

ψ(V A,1
1 ) ⊂ B2

g , we claim that B2
g = ψ(⟨V A,1

1 ⟩)+B3
g . Indeed, assume that there is some Jcai + dbi + eag +

f bgK ∈ B2
g that is not in ψ(⟨V A,1

1 ⟩)+B3
g . Choose Jcai +dbi + eag + f bgK such that |c|+ |d|+ |e| is minimal

among elements with this property. By assumption we must have |e| and one of |c| or |d| (say |c|) nonzero.
Setting w′ = cai +dbi + eag + f bg, we then have X(w′−ai −ag,ag,ai) ∈V A,1

1 and

Jw′K−ψ(X(w′−ai −ag,ag,ai)) = Jw′−aiK+ Jw′−agK− Jw′−ai −agK.
We conclude that one of Jw′− aiK, Jw′− agK, or Jw′− ai − agK is not in ψ(⟨V A,1

1 ⟩)+B3
g , contradicting the

minimality of |c|+ |d|+ |e|.
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Now define

V A,2
1 ={X(cai +dbi + eag + f bg,ag,ai) | 1 ≤ i ≤ g−1, c,d,e, f ∈ Z/L}

∪{X(dbi + eag + f bg,ag,bi) | 1 ≤ i ≤ g−1, d,e, f ∈ Z/L} ⊂V A,1
1 ,

V A,3
1 ={X(v,ag,s) ∈V A,2

1 | the s and ag-coordinates of v do not equal L−1} ⊂V A,2
1 .

We will prove that ⟨V A,3
1 ⟩= ⟨V A,1

1 ⟩. Using the third relation in Lemma 6.6, we see that ⟨V A,3
1 ⟩= ⟨V A,2

1 ⟩. It is
thus enough to prove that ⟨V A,1

1 ⟩= ⟨V A,2
1 ⟩. An element of V A,1

1 \V A,2
1 is of the form X(w′′,ag,bi). Lemma 7.2

says that
X(w′′−ai,bi,ag) = X(w′′,bi,ag)+X(w′′−ai,ai,ag)−X(w′′−ai +bi,ai,ag).

Iterating this, we conclude that modulo ⟨V A,2
1 ⟩, we have X(w′′,ag,bi) equal to an element of V A,2

1 , as desired.
We deduce from the above two paragraphs that B2

g = ψ(⟨V A,3
1 ⟩)+B3

g . Since V A,3
1 contains

(g−1)(L2(L−1)2 +L(L−1)2) = ((g−1)(L2 −1)L2 +L2)− ((g−1)(L2 −1)L+L2)

= dim(B2
g)−dim(B3

g)

elements, we obtain that ψ|⟨V A,3
1 ⟩ is injective and B2

g = ψ(⟨V A,3
1 ⟩)⊕B3

g . By Step 1, the fact that ⟨V I
1 ,V

A
1 ⟩=

⟨V I
1 ,V

A,1
1 ⟩, and the fact that ⟨V A,3

1 ⟩= ⟨V A,1
1 ⟩, we conclude that ψ|⟨V I

1 ,V
A
1 ⟩ is injective and Bg = ψ(⟨V I

1 ,V
A
1 ⟩)⊕

B3
g , as desired.

Step 3. Recall that B1
g = ⟨{Jcai +dbiK | c,d ∈ Z/L, 1 ≤ i ≤ g}⟩. The map ψ|⟨V I

1 ,V
A
1 ,V B

1 ⟩ is injective and Bg =

ψ(⟨V I
1 ,V

A
1 ,V B

1 ⟩)⊕B1
g .

The argument for this step is very similar to the argument in Step 2, so we only sketch it. Define

V B,1
1 ={X(cai +dbi + f bg,bg,s) | 1 ≤ i ≤ g−1, c,d, f ∈ Z/L, s ∈ {ai,bi}} ⊂V B

1 ,

V B,2
1 ={X(cai +dbi + f bg,bg,ai) | 1 ≤ i ≤ g−1, c,d, f ∈ Z/L}

∪{X(dbi + f bg,bg,bi) | 1 ≤ i ≤ g−1, d, f ∈ Z/L} ⊂V B,1
1 ,

V B,3
1 ={X(v,bg,s) ∈V B,2

1 | the s and bg-coordinates of v do not equal L−1} ⊂V B,2
1 .

Noting that ψ(V B,1
1 )⊂ B3

g , arguments similar to those in Step 2 show that ⟨V I
1 ,V

A
1 ,V B

1 ⟩= ⟨V I
1 ,V

A
1 ,V B,1

1 ⟩, that
B3

g = ψ(⟨V B,1
1 ⟩)+B1

g , that ⟨V B,1
1 ⟩= ⟨V B,2

1 ⟩, and that ⟨V B,2
1 ⟩= ⟨V B,3

1 ⟩.
We deduce that B3

g = ψ(⟨V B,3
1 ⟩)+B1

g . Since V B,3
1 contains

(g−1)((L−1)2L+(L−1)2) = ((g−1)(L2 −1)L+L2)− (g(L2 −1)+1)

= dim(B3
g)−dim(B1

g)

elements, we obtain that ψ|⟨V B,3
1 ⟩ is injective and B3

g = ψ(⟨V B,3
1 ⟩)⊕B1

g . By Step 2 and the identities

⟨V I
1 ,V

A
1 ,V B

1 ⟩= ⟨V I
1 ,V

A
1 ,V B,1

1 ⟩ and ⟨V B,3
1 ⟩= ⟨V B1

1 ⟩,

we conclude that ψ|⟨V I
1 ,V

A
1 ,V B

1 ⟩ is injective and Bg = ψ(⟨V I
1 ,V

A
1 ,V B

1 ⟩)⊕B1
g , as desired.

Our final lemma is a further relation in Qg.

Lemma 7.6. Let {a′1,b
′
1,a

′
2,b

′
2} be a unimodular subset of H1(Σg;Z/L) with i(a′1,b

′
1) = i(a′2,b

′
2) = 1 and

i(a′1,a
′
2) = i(a′1,b

′
2) = i(b′1,a

′
2) = i(b′1,b

′
2) = 0. Then for all v ∈ H1(Σg;Z/L) we have

X(v,a′1,a
′
2)−X(v+b′1,a

′
1,a

′
2)−X(v+b′2,a

′
1,a

′
2)+X(v+b′1 +b′2,a

′
1,a

′
2)

= X(v,b′1,b
′
2)−X(v+a′1,b

′
1,b

′
2)−X(v+a′2,b

′
1,b

′
2)+X(v+a′1 +a′2,b

′
1,b

′
2)
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Proof. The group Sp2g(Z) acts on Qg, and there exists some f ∈ Sp2g(Z) such that f (a′i) = ai and f (b′i) = bi
for i = 1,2. We can therefore assume that a′i = ai and b′i = bi for i = 1,2. But an easy calculation shows that
ψ takes both sides of our relation to the same element of Bg, so the lemma follows from Lemma 7.5.

We can now prove Lemma 5.4.

Proof of Lemma 5.4. Define Q′
g = Qg/⟨V1⟩ and B′

g =Bg/ψ(⟨V1⟩). We have an induced map ψ ′ : Q′
g →B′

g.
Using the direct sum decomposition of Lemma 7.5, we will identify B′

g with the subspace

⟨{Jcai +dbiK | c,d ∈ Z/L, 1 ≤ i ≤ g}⟩

of Bg. Letting V ′
2 ⊂ Q′

g be the image of V2 ⊂ Qg, Lemmas 7.1 and 7.5 say that it is enough to prove that
ψ ′|⟨V ′

2⟩ is injective and B′
g = ψ ′(⟨V ′

2⟩)⊕⟨J0K⟩.
Let ϕ : Qg → Q′

g be the projection. The proof will require seven claims. It follows the same pattern as
Steps 2 and 3 of the proof of Lemma 7.5. In Claims 1–3 and 5–6, we will obtain a “minimal” size generating
set for ⟨V ′

2⟩. In Claims 4 and 7, we will show that B′
g = ψ ′(⟨V ′

2⟩)+ ⟨J0K⟩. A dimension count will then
establish the lemma.

Claim 1. Let s,s1,s2 ∈ B satisfy s ̸= s1,s2 and i(s,s1) = i(s,s2) = 0. Then for all v ∈ H1(Σg;Z/L) and
e1,e2 ∈ {−1,1}, we have ϕ(X(v,s,s+ e1s1)) = ϕ(X(v,s,s+ e2s2)).

Proof of Claim. For 1 ≤ i ≤ 2, using the second relation in Lemma 6.6, we get that

X(v+ e1s1 + s,e2s2,s),X(v+ e2s2 + s,e1s1,s) ∈ ⟨V1⟩.

Hence

ϕ(X(v,e1s1 + e2s2 + s,s)) = ϕ(X(v,e1s1 + s,s)+X(v+ e1s1 + s,e2s2,s)) = ϕ(X(v,s,s+ e1s1))

and

ϕ(X(v,e1s1 + e2s2 + s,s)) = ϕ(X(v,e2s2 + s,s)+X(v+ e2s2 + s,e1s1,s)) = ϕ(X(v,s,s+ e2s2)).

The claim follows.

In light of Claim 1, we will denote by Y (v,s) the image in V ′
2 of X(v,s,s+ e′s′), where e′ ∈ {−1,1} and

s′ ∈ B are arbitrary elements such that X(v,s,s+ e′s′) ∈V2.

Claim 2. Consider Y (v,s) ∈V ′
2. Pick 1 ≤ i ≤ g such that s ∈ {ai,bi}. Write v = v1 +v2 with v1 ∈ ⟨ai,bi⟩ and

v2 ∈ ⟨{a j, b j | j ̸= i}⟩. Then Y (v,s) = Y (v1,s).

Proof of Claim. Consider s′ ∈ {a j, b j | j ̸= i}. It is enough to show that Y (v− s′,s) = Y (v,s). Pick s′′ ∈
{a j, b j | j ̸= i} such that s′′ ̸= s′ and i(s′,s′′) = 0 (this uses the fact that g ≥ 3). Observe that Y (v,s) =
ϕ(X(v,s,s+ s′′)) and Y (v− s′,s) = ϕ(X(v− s′,s,s+ s′′)). Lemma 7.2 says that

X(v− s′,s,s+ s′′) = X(v,s,s+ s′′)+X(v− s′,s′,s+ s′′)−X(v− s′+ s,s′,s+ s′′). (9)

For w equal to v− s′ or v− s′+ s, we have

X(w,s′,s+ s′′) = X(w,s+ s′′,s′) = X(w,s,s′)+X(w+ s,s′′,s′) ∈ ⟨V1⟩.

Applying ϕ to both sides of (9), we thus obtain that Y (v,s) = Y (v− s′,s), as desired.

Claim 3. For all 1 ≤ i ≤ g and v ∈ ⟨ai,bi⟩, we have

Y (v,ai)−2Y (v+bi,ai)+Y (v+2bi,ai) = Y (v,bi)−2Y (v+ai,bi)+Y (v+2ai,bi).
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Proof of Claim. Pick 1 ≤ j < k ≤ g such that i ̸= j,k (this uses the fact that g ≥ 3). Lemma 7.6 applied with
(a′1,b

′
1,a

′
2,b

′
2) = (ai +ak,bi −b j,ai +a j,bi −bk) says that

X(v,ai +ak,ai +a j)−X(v+bi −b j,ai +ak,ai +a j)−X(v+bi −bk,ai +ak,ai +a j) (10)
+X(v+bi −b j +bi −bk,ai +ak,ai +a j)

=X(v,bi −b j,bi −bk)−X(v+ai +ak,bi −b j,bi −bk)−X(v+ai +a j,bi −b j,bi −bk)

+X(v+ai +ak +ai +a j,bi −b j,bi −bk).

Since X(v+ai,ak,ai +a j) ∈ ⟨V1⟩, we have that

ϕ(X(v,ai +ak,ai +a j)) = ϕ(X(v,ai,ai +a j)+X(v+ai,ak,ai +a j)) = Y (v,ai).

Similarly, we have ϕ(X(v+bi−b j,ai+ak,ai+a j)) =Y (v+bi−b j,ai). By Claim 2, this equals Y (v+bi,ai).
Continuing in this manner, we deduce that ϕ maps (10) to the desired relation between the Y (·, ·).

For the next claim, recall that we are using Lemma 7.5 to identify B′
g = Bg/ψ(⟨V1⟩) with the subspace

⟨{Jcai +dbiK | c,d ∈ Z/L, 1 ≤ i ≤ g}⟩ of Bg.

Claim 4. For some 1 ≤ i ≤ g, let s ∈ {ai,bi} and v ∈ ⟨ai,bi⟩. Then ψ ′(Y (v,s)) = JvK−2Jv+ sK+ Jv+2sK.

Proof of Claim. Let ρ : Bg → B′
g be the projection. Pick 1 ≤ j ≤ g such that j ̸= i. Observe that Y (v,s) =

ϕ(X(v,s,s−a j)) and X(v+ s−a j,a j,s) ∈V1. Thus ψ ′(Y (v,s)) equals

ρ(ψ(X(v,s−a j,s))) = ρ(ψ(X(v,s−a j,s)+X(v+ s−a j,a j,s)))

= ρ((JvK− Jv+ s−a jK− Jv+ sK+ Jv+2s−a jK)
+(Jv+ s−a jK− Jv+ sK− Jv+2s−a jK+ Jv+2sK)

= ρ(JvK−2Jv+ sK+ Jv+2sK).
Since v,v+ s,v+2s ∈ ⟨ai,bi⟩, this equals JvK−2Jv+2K+ Jv+2sK, as desired.

For some 1 ≤ i ≤ g, consider s ∈ {ai,bi} and v ∈ ⟨ai,bi⟩. Making use of Claim 4, an easy induction
establishes that for n ≥ 1, we have

ψ ′(
n

∑
k=1

k ·Y (v+(k−1)s,s)) = JvK− (n+1)Jv+nsK+nJv+(n+1)sK.
In particular, setting Z(v,s) = ∑L

k=1 k ·Y (v+(k−1)s,s), we have

ψ ′(Z(v,s)) = LJv+ sK−LJvK. (11)

We now prove the following.

Claim 5. For all 1 ≤ i ≤ g and v ∈ ⟨ai,bi⟩, we have

Z(v,ai)−2Z(v+bi,ai)+Z(v+2bi,ai) = L ·Y (v+ai,bi)−L ·Y (v,bi).

Proof of Claim. Observe that Z(v,ai)−2Z(v+bi,ai)+Z(v+2bi,ai) equals

L

∑
k=1

k · (Y (v+(k−1)ai,ai)−2Y (v+(k−1)ai +bi,ai)+Y (v+(k−1)ai +2bi,ai)).

By Claim 3, this equals

L

∑
k=1

k · (Y (v+(k−1)ai,bi)−2Y (v+ kai,bi)+Y (v+(k+1)ai,bi)).

An argument similar to the argument used to calculate ψ ′ of Z(·, ·) then shows that this equals L ·Y (v+
ai,bi)−L ·Y (v,bi), and we are done.
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Claim 6. We have

⟨V ′
2⟩=⟨{Y (cai +dbi,ai) | 1 ≤ i ≤ g, c,d ∈ Z/L, c ̸= L−1}

∪{Y (dbi,bi) | 1 ≤ i ≤ g, d ∈ Z/L, d ̸= L−1}⟩.

Proof of Claim. Claim 2 implies that

⟨V ′
2⟩= {Y (v,s) | v ∈ ⟨ai,bi⟩ and s ∈ {ai,bi} for some 1 ≤ i ≤ g}. (12)

If v ∈ {ai,bi} for some 1 ≤ i ≤ g, then

Z(v,ai) ∈ ⟨{Y (cai +dbi,ai) | 1 ≤ i ≤ g, c,d ∈ Z/L}⟩.

We can therefore use the relation in Claim 5 to reduce (12) to

⟨V ′
2⟩=⟨{Y (cai +dbi,ai) | 1 ≤ i ≤ g, c,d ∈ Z/L} (13)

∪{Y (dbi,bi) | 1 ≤ i ≤ g, d ∈ Z/L}⟩.

Finally, if v ∈ ⟨ai,bi⟩ and s ∈ {ai,bi} for some 1 ≤ i ≤ g, then from the third relation in Lemma 6.6, we obtain
the relation ∑L−1

k=0 Y (v+k · s,s) = 0 in Q′
g. This allows us to reduce (13) to the claimed generating set, and we

are done.

Claim 7. B′
g = ⟨ψ ′(V ′

2)⟩+ ⟨J0K⟩.
Proof of Claim. Consider c,d ≥ 0 with (c,d) ̸= 0. With the convention that an empty sum of abelian group
elements is the zero element, we can use (11) to get that

1
L

ψ ′(
c

∑
j=1

Z( jai,ai)+
d

∑
k=1

Z(cai + kbi,bi)) = (JcaiK− J0K)+(Jcai +dbiK− JcaiK)
= Jcai +dbiK− J0K.

Here the first equality follows from the fact that the indicated sums become telescoping sums after applying
ψ ′. The claim follows.

Observe now that the generating set for ⟨V ′
2⟩ given by Claim 6 has

g(L(L−1)+L−1) = g(L2 −1) = dim(B′
g)−1

elements, so by Claim 7 we have that ψ ′|⟨V ′
2⟩ is injective and B′

g = ⟨ψ ′(V ′
2)⟩⊕⟨J0K⟩, as desired.

8 Killing off Sg

This section is devoted to the proof of Lemma 5.5. The proof itself is contained in §8.2. This is proceeded by
§8.1, which contains a technical lemma about essentially separate curves.

8.1 Separating essentially separate curves
This section is devoted to the proof of the following lemma.

Lemma 8.1. Consider v,v′ ∈ HL and x,y ∈ Kg such that x and y are essentially separate and ⟨⟨y⟩⟩ ∈Cg. There
then exists some n ≥ 1 and v1,v′1, . . . ,vn,v′n ∈ HL and x1,y1, . . . ,xn,yn ∈ Kg with the following properties.

1. ⟨⟨x⟩⟩v ⊗⟨⟨y⟩⟩v′ = ∑n
i=1⟨⟨xi⟩⟩vi ⊗⟨⟨yi⟩⟩v′i .
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x y x′ y y z
a

b

a b c d
Figure 9: a,b. The intersection patterns needed for Lemma 8.1 c. A nonseparating figure eight. d. [a,b] is a
genus 1 separating curve.

2. For all 1 ≤ i ≤ n, one of the following two conditions is satisfied.

(a) {xi,yi} has the same unoriented intersection pattern as the curves in Figure 9.a, or

(b) xi = (x′i)
L, where {x′i,yi} has the same unoriented intersection pattern as the curves in Figure 9.b.

Remark. The second condition in the conclusion of Lemma 8.1 implies that ⟨⟨yi⟩⟩ ∈Cg.

To prove Lemma 8.1, we will need a definition and a lemma.

Definition. A curve x ∈ π1(Σg) is a genus k separating curve if it can be realized by a simple closed curve
that separates Σg into two pieces, one of which is homeomorphic to Σk,1. Two curves y,z ⊂ π1(Σg) form a
nonseparating figure eight if they have the same unoriented intersection pattern as the curves in Figure 9.c.

Remark. If a,b ∈ π1(Σg) have the same unoriented intersection pattern as the curves in Figure 9.d, then
[a,b] ∈ π1(Σg) is a genus 1 separating curve.

Lemma 8.2. Let S ⊂ Σg be a subsurface such that the basepoint lies on ∂S and Σg \S is connected. Define
PS = Im(π1(S)→ π1(Σg)) and HS = Im(H1(S;Z/L)→ HL). Next, define the following sets.

U1 = {⟨⟨xL⟩⟩ | x ∈ PS is a simple closed nonseparating curve},
U2 = {⟨⟨x⟩⟩v | v ∈ HS, x ∈ PS is a genus 1 separating curve},
U3 = {⟨⟨y,z⟩⟩v | v ∈ HS, y,z ⊂ PS form a nonseparating figure eight}.

Then the following hold.

1. Cg ∩H1(Kg ∩PS;Q) is spanned by U2 ∪U3 and H1(Kg ∩PS;Q) is spanned by U1 ∪U2 ∪U3

2. If the genus of S is positive, then Cg ∩H1(Kg ∩PS;Q) is spanned by U2 and H1(Kg ∩PS;Q) is spanned
by U1 ∪U2.

Proof. Define

KS = ker(π1(S)→ H1(S;Z/L)) and CS = ker(H1(KS;Q)→ H1(S;Q)).

Since Σg \S is connected, the map H1(S;Z/L)→ H1(Σg;Z/L) is injective. Using the commutative diagram

π1(S) −−−−→ π1(Σg)y y
H1(S;Z/L) −−−−→ H1(Σg;Z/L)

we deduce that the natural maps

KS −→ Kg ∩PS and CS −→Cg ∩H1(Kg ∩PS;Q)

are surjective.
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Define

V ′
1 = {xL ∈ KS | x ∈ π1(S) can be realized by a simple closed curve that is either

nonseparating or freely homotopic to a boundary component},
V ′

2 = {xw ∈ KS | x,w ∈ π1(S) and x maps to a genus 1 separating curve in π1(Σg)},
V ′

3 = {[y,z]w ∈ KS | y,z,w ∈ π1(S) and {y,z} maps to a nonseparating figure
eight in π1(Σg)}.

There is a short exact sequence

1 −→ [π1(S),π1(S)]−→ KS −→ L ·H1(S;Z)−→ 1,

where L ·H1(S;Z) denotes the subgroup {L · v | v ∈ H1(S;Z)}. The subgroup of KS generated by V ′
1 surjects

onto L ·H1(S;Z). Also, making use of a standard basis for π1(S), one can easily check that V ′
2 ∪V ′

3 gen-
erates [π1(S),π1(S)]. Finally, the proof of [19, Theorem A.3] shows that if the genus of S is positive, then
[π1(S),π1(S)] is generated by V ′

2. The upshot of this is that KS is generated by V ′
1 ∪V ′

2 ∪V ′
3 in all cases and by

V ′
1 ∪V ′

2 if the genus of S is positive.
Defining Vi to be the image of V ′

i in H1(KS;Q), we obtain that H1(KS;Q) (resp. CS) is spanned by
V1 ∪V2 ∪V3 (resp. V2 ∪V3) in all cases and by V1 ∪V2 (resp. V2) if the genus of S is positive. The set Vi
maps to Ui under the natural map H1(KS;Q) → H1(Kg ∩ PS;Q). Since this map and the restricted map
CS →Cg ∩H1(Kg ∩PS;Q) are surjections, the lemma follows

Proof of Lemma 8.1. Since x and y are essentially separate, we can decompose Σg into the union of two
connected subsurfaces S1 and S2 with the following properties.

1. S1 and S2 both contain the basepoint.

2. S1 ∩S2 = ∂S1 = ∂S2.

3. x ∈ Im(π1(S1)→ π1(Σg)) and y ∈ Im(π1(S2)→ π1(Σg)).

Applying Lemma 8.2 to each Si, we can write

⟨⟨x⟩⟩=
k

∑
i=1

⟨⟨xi⟩⟩vi and ⟨⟨y⟩⟩=
k′

∑
j=1

⟨⟨y j⟩⟩v′j ,

where vi,v′j ∈ HL and xi and y j satisfy the following conditions.

• xi ∈ Im(π1(S1) → π1(Σg)) and y j ∈ Im(π1(S2) → π1(Σg)) for all i and j. In particular, the curves xi
and y j are essentially separate for all i and j.

• xi is either a genus 1 separating curve, the commutator of a nonseparating figure eight, or zL for some
simple closed nonseparating curve z.

• y j is either a genus 1 separating curve or the commutator of a nonseparating figure eight.

We then have

⟨⟨x⟩⟩v ⊗⟨⟨y⟩⟩v′ =
k

∑
i=1

k′

∑
j=1

⟨⟨xi⟩⟩v+vi ⊗⟨⟨y j⟩⟩v′+v′j .

We are almost done – the only problem is that xi or y j might be the commutator of a nonseparating figure
eight for some i or j. However, if that happens, then we may perform the above procedure again to the pair
{xi,y j}, but this time it is easy to see that we may ensure that the genera of S1 and S2 are both positive, in
which case we do not need to use nonseparating figure eights.
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Figure 10: a. Figure needed to deal with elements of Sg(1). b. The curve z can be realized by a simple closed
nonseparating curve and lies entirely in X ⊂ Σg. c. T eL

δ (w) = zLw. The sign e =±1 depends on the orientation of z;
with the orientation depicted in the figure, we have e = 1.

8.2 The proof of Lemma 5.5
In this final section, we prove Lemma 5.5. We begin by briefly recalling its statement. The set

Kg < H1(Kg;Z)⊗Cg = H1(Kg;Cg)

is the span of the set

{x⊗ y | (x,y) ∈ Sg}∪{x⊗ y− f (x)⊗ f (y) | x ∈ H1(Kg;Z), y ∈Cg, f ∈ Mod1
g(L)}.

Here Sg is the set defined in §5.2. Lemma 5.5 asserts that for g ≥ 4, the image of Kg in H1(Mod1
g(L);Cg) is

zero.
Let ϕ : H1(Kg;Z)⊗Cg → H1(Mod1

g(L);Cg) be the natural map. Since inner automorphisms act trivially
on homology, we have

ϕ(x⊗ y) = ϕ( f (x)⊗ f (y)) (14)

for all x⊗y ∈ H1(Kg;Z)⊗Cg and f ∈ Mod1
g(L). We must show that in addition we have ϕ(s) = 0 for s ∈Sg.

This will require several steps.

Step 1. Consider v,v′ ∈ HL and x,y ∈ Kg such that x and y are essentially separate and ⟨⟨y⟩⟩ ∈ Cg, so
(⟨⟨x⟩⟩v,⟨⟨y⟩⟩v′) ∈ Sg(1). Then ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y⟩⟩v′) = 0.

By Lemma 8.1, we can assume that one of the following two conditions hold.

1. {x,y} has the same unoriented intersection pattern as the curves in Figure 9.a, or

2. x = (x′)L, where {x′,y} has the same unoriented intersection pattern as the curves in Figure 9.b.

Thus y is a separating curve separating Σg into two subsurfaces X1 and X2 with X2 ∼= Σ1,1 (see Figure 10.a).
Also, x is in Im(π1(X1)→ π1(Σg)).

The group Mod1
g(L) contains all inner automorphisms of π1(Σg), so using (14) we can assume that v = 0.

We will produce a subgroup Γ < Mod1
g(L) with the following three properties.

1. H1(Γ;Q) = 0.

2. Γ acts trivially on ⟨⟨y⟩⟩.

3. Γ contains the “point-pushing” mapping class corresponding to x ∈ π1(Σg).

This is enough to prove the desired claim. Indeed, since Γ < Mod1
g(L), we have f (v′) = v′ for all f ∈ Γ. This

and item 2 imply that Γ fixes ⟨⟨y⟩⟩v′ . There is thus a map j : H1(Γ;Q)→ H1(Mod1
g(L);Cg) corresponding to

the inclusion Γ ↪→ Mod1
g(L) and the map Q ↪→Cg taking 1 ∈Q to ⟨⟨y⟩⟩v′ . By item 3, the image of j contains

ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y⟩⟩v′), so by item 1 we have ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y⟩⟩v′) = 0, as desired.
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We construct Γ as follows. Let N be a regular neighborhood of y and let δi be the boundary component
of N that is contained in Xi (see Figure 10.a). The curve δi separates Σg into two components. Let Yi be the
component of Σg cut along δi that intersects X1. It follows that Y1 ∼= Σg−1,1 and Y2 ∼= Σ1

g−1,1. Denoting the
mapping class group of Yi by Mod(Yi), we have a Birman exact sequence

1 −→ π1(Σg−1,1)−→ Mod(Y2)−→ Modg−1,1 −→ 1.

We have an isomorphism Modg−1,1 ∼= Mod(Y1), and this exact sequence splits via a map that identifies f ∈
Modg−1,1 with a corresponding element of Mod(Y1) and then extends f by the identity to an element of
Mod(Y2). Choosing such a splitting, we get a decomposition

Mod(Y2) = π1(Σg−1,1)oModg−1,1 .

Define
Γ = Kg−1,1 oModg−1,1(L)< π1(Σg−1,1)oModg−1,1 .

It is clear that Γ contains the “point-pushing” mapping class corresponding to x ∈ π1(Σg). Also, the subgroup
Modg−1,1(L)< Γ fixes y ∈ π1(Σg) and the subgroup Kg−1,1 < Γ acts on y by conjugation, and thus fixes ⟨⟨y⟩⟩.
We deduce that Γ acts trivially on ⟨⟨y⟩⟩.

It remains to check that H1(Γ;Q) = 0. From its semidirect product decomposition, we deduce that

H1(Γ;Q)∼= H1(Modg−1,1(L);Q)⊕ (H1(Kg−1,1;Q))Modg−1,1(L).

Since g ≥ 4, Theorem 2.6 implies that H1(Modg−1,1(L);Q) = 0. Again using the fact that g ≥ 4, Lemma 3.4
implies that (H1(Kg−1,1;Q))Modg−1,1(L) = 0, and we are done.

Step 2. ϕ(a⊗b) = 0 if (a,b) ∈ Sg(2).

Consider (⟨⟨x⟩⟩v,⟨⟨y,zL⟩⟩v′) ∈ Sg(2), so z can be realized by a simple closed nonseparating curve and {z}
and {x,y} are strongly essentially disjoint. We can thus find subsurfaces X and X ′ of Σg both of which contain
the basepoint such that

z ∈ Im(π1(X)→ π1(Σg)) and {x,y} ⊂ Im(π1(X ′)→ π1(Σg)).

and such that
Σg = X ∪X ′ and X ∩X ′ = ∂X = ∂X ′.

Additionally, the surfaces X and X ′ can be chosen such that both have only one boundary component.
As is shown in Figure 10.c, there exists some w ∈ Im(π1(X)→ π1(Σg)) together with an unbased simple

closed curve δ in X ⊂ Σg such that T eL
δ (w) = zLw for some e = ±1. Since δ ⊂ X , we have Tδ (x) = x and

Tδ (y) = z. Also, since T eL
δ ∈ Mod1

g(L), it follows that T eL
δ acts trivially on v and v′. This implies that T eL

δ
takes ⟨⟨x⟩⟩v ⊗⟨⟨y,w⟩⟩v′ to

⟨⟨x⟩⟩v ⊗⟨⟨y,zLw⟩⟩v′ = ⟨⟨x⟩⟩v ⊗⟨⟨y,zL⟩⟩v′ + ⟨⟨x⟩⟩v ⊗⟨⟨y,w⟩⟩v′+L·z

= ⟨⟨x⟩⟩v ⊗⟨⟨y,zL⟩⟩v′ + ⟨⟨x⟩⟩v ⊗⟨⟨y,w⟩⟩v′ .

The first calculation here uses Lemma 5.1 and the second the fact that L · z = 0. Since Mod1
g(L) acts trivially

on the image of ϕ , we conclude that

ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y,w⟩⟩v′) = ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y,w⟩⟩v′ + ⟨⟨x⟩⟩v ⊗⟨⟨y,zL⟩⟩v′);

i.e. that ϕ(⟨⟨x⟩⟩v ⊗⟨⟨y,zL⟩⟩v′) = 0, as desired.
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