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Abstract

We prove that every term of the lower central series and Johnson filtrations of
the Torelli subgroups of the mapping class group and the automorphism group of a
free group are finitely generated in a stable range. This was originally proved for the
commutator subgroup by Ershov–He.

Historical note. After we distributed a preliminary version of this paper, we learned that
Ershov had independently proved similar results. The three of us decided to write a joint
paper, and in the course of writing this joint paper we managed to significantly improve
the ranges of our theorems. The combined paper is [CErP]. The paper you are reading will
be left as a permanent preprint and will not be submitted for publication.

1 Introduction

Let Σb
g be a compact oriented genus g surface with b = 0 or b = 1 boundary components.

The mapping class group of Σb
g, denoted Modbg, is the group of isotopy classes of orientation-

preserving diffeomorphisms of Σb
g that fix ∂Σ

b
g pointwise. The group Modbg acts on H1(Σ

b
g;Z)

and preserves the algebraic intersection form. Since b ≤ 1, the algebraic intersection form is
a nondegenerate symplectic form, and thus this action induces a homomorphism Modbg →
Sp2g(Z) which is classically known to be surjective. The Torelli group, denoted Ib

g, is its
kernel. In summary, we have a short exact sequence

1 −→ Ib
g −→ Modbg −→ Sp2g(Z) −→ 1.

See [FMar] for a survey of the mapping class group and Torelli group.

Lower central series. Recall that if G is a group, then the lower central series of G is
the sequence

G = G[1] ⊃ G[2] ⊃ G[3] ⊃ · · ·

of subgroups of G defined via the inductive formula

G[1] = G and G[k + 1] = [G[k], G] (k ≥ 1).

Another way of saying this is that G[k+ 1] is the smallest normal subgroup of G such that
G/G[k + 1] is k-step nilpotent. The lower central series of Ib

g has connections to number
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Advanced Study, and the Friends of the Institute. AP is supported in part by NSF grant DMS-1737434.
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theory (see, e.g., [Mat]) and 3-manifolds (see, e.g., [GL]). Despite these connections, the
structure of the lower central series of Ib

g is largely a mystery. One of the few large-scale
structural results known about it is a theorem of Hain [Ha] giving a finite presentation for
the Lie algebra obtained from the lower central series of the Torelli group.

Finiteness properties. A classical theorem of Dehn [De] from 1938 says that Modbg is

finitely generated. Since Ib
g is an infinite-index normal subgroup of Modbg, the naive guess

would be that Ib
g is not finitely generated, and indeed McCullough–Miller [McCuMi] proved

that Ib
2 is not finitely generated. However, a deep and surprising theorem of Johnson [J2]

says that Ib
g is finitely generated for g ≥ 3. Another paper of Johnson [J4] proves that

Ib
g[2] is commensurable with the Johnson kernel subgroup Kb

g, that is, the subgroup of

Modbg generated by Dehn twists about simple closed separating curves. The group Kb
g is the

subject of a large literature; in particular, a recent deep paper of Dimca–Papadima [DiPa]
proves that H1(Kb

g;Q) is finite dimensional for g ≥ 4. The group H1(Kb
g;Q) was later

computed for g ≥ 6 by Dimca–Hain–Papadima [DiHaPa].

Finite generation. In a very recent breakthrough, Ershov–He [ErHe] prove the following.

• [Ib
g, Ib

g] and Kb
g are finitely generated if g ≥ 5

• For any subgroup K ⊂ Ib
g containing Ib

g[k], the abelianization H1(K;Z) is finitely
generated for k ≥ 2 and g ≥ 12(k − 1).

Our first main theorem extends the results of Ershov–He by proving that such a subgroup
K is in fact finitely generated.

Theorem A. For b = 0 or b = 1 and any k ≥ 2, let K ⊂ Ib
g be a subgroup such that

Ib
g[k] ⊂ K. Then K is finitely generated as long as g ≥ 6k − 4.

In particular, the kth term of the lower central series Ib
g[k] is itself finitely generated for

g ≥ 6k − 4. We show in §4.1 that the theorem reduces to the case of Ib
g[k] itself.

Remark 1.1. As we mentioned above, Ershov–He proved the special case of Theorem A
when k = 2. Our proof of Theorem A is self-contained, so it does not depend on the results
of Ershov–He. Rather, in the case k = 2 our proof reduces to an argument essentially
equivalent to the original Ershov–He proof. The same comment applies to Theorem C
below.

Remark 1.2. After distributing a preliminary version of this paper, we learned that Ershov–
He have independently proven a result that is almost identical to Theorem A (and similarly
for Theorem C below).

The Johnson filtration. We want to highlight an important special case of Theorem A.
Fix some g ≥ 0 and b ≤ 1. Pick a basepoint ∗ ∈ Σb

g; if b = 1, then choose ∗ such that it lies

in ∂Σb
g. Define π = π1(Σ

b
g, ∗). Since Mod1g is built from diffeomorphisms that fix ∂Σ1

g (and

thus fix ∗), there is a homomorphism Mod1g → Aut(π). For closed surfaces, there is no fixed
basepoint, so we only obtain a homomorphism Modg → Out(π). In both cases, this action
preserves the lower central series of π, so we obtain homomorphisms

ψ1
g [k] : Mod1g → Aut(π/π[k]) and ψg[k] : Modg → Out(π/π[k]).
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The kth term of the Johnson filtration on Modbg, denoted J
b
g(k), is the kernel of ψb

g[k + 1].
This filtration was introduced by Johnson in 1981 [J1].

Chasing the definitions, we find that Jb
g(1) = Ib

g. Moreover, Johnson [J3] proved that

Jb
g(2) = Kb

g. It is easy to see that Ib
g[k] ⊂ Jb

g(k) for all k, but these filtrations are known
not to be equal. In fact, Hain [Ha] proved that they even define inequivalent topologies on
Ib
g. Since Ib

g[k] ⊂ Jb
g(k), the following result is a special case of Theorem A.

Theorem B. For b = 0 or b = 1 and any k ≥ 2, the kth term of the Johnson filtration
Jb
g(k) is finitely generated for g ≥ 6k − 4.

Automorphism groups of free groups. Let Fn be a free group on n generators. We
also have a version of Theorems A and B for Aut(Fn). The group Aut(Fn) acts on F

ab
n =

Zn. The kernel of this action is the Torelli subgroup of Aut(Fn) and is denoted IAn. A
classical theorem of Magnus [Mag] from 1935 shows that IAn is finitely generated for all
n. Building on the aforementioned work of Dimca–Papadima [DiPa] for the mapping class
group, Papadima–Suciu [PaS] proved that H1(IAn[2];Q) is finite-dimensional for n ≥ 5.
Ershov–He’s breakthrough paper [ErHe] also applies to IAn, proving the following.

• [IAn, IAn] is finitely generated if n ≥ 4.
• For any subgroup K ⊂ IAn containing IAn[k], the abelianization H1(K;Z) is finitely

generated if k ≥ 2 and n ≥ 12(k − 2).

We extend the results of Ershov–He by proving that such a subgroup K is in fact finitely
generated.

Theorem C. For any k ≥ 2, let K ⊂ IAn be a group such that IAn[k] ⊂ K. Then K is
finitely generated as long as n ≥ 6k − 4.

In particular, IAn[k] is itself finitely generated for n ≥ 6k − 4. We show in §4.1 that the
theorem reduces to the case of IAn[k] itself.

Remark 1.3. One can also consider the Torelli subgroup IOn of Out(Fn). The homomor-
phism IAn → IOn is surjective, so Theorem C also implies a similar result for the lower
central series of IOn.

Johnson filtration for automorphism group of free group. Just like for the mapping
class group, there is a natural homomorphism

ψn[k] : Aut(Fn) → Aut(Fn/Fn[k]).

The kth term of the Johnson filtration for Aut(Fn), denoted JIAn(k), is the kernel of
ψn[k + 1]. This filtration was actually introduced by Andreadakis [A] in 1965, much
earlier than the Johnson filtration for the mapping class group. It is well-known that
IAn[k] ⊂ JIAn(k). However, it is an open problem whether or not these two filtrations are
equal (or at least commensurable). In any case, since IAn[k] ⊂ JIAn(k), the following result
is a special case of Theorem C.

Theorem D. For any k ≥ 2, the group JIAn(k) is finitely generated for n ≥ 6k − 4.
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FInc-groups. We give an easy reduction in §4.1 showing that to prove Theorem A, it
suffices to prove that I1

g [k] is finitely generated for g ≥ 6k − 4. Similarly, we show that
to prove Theorem C, it suffices to prove that IAn[k] is finitely generated for n ≥ 6k − 4.
We prove both these results as consequences of a single abstract theorem. This result is
essentially a structure theorem applying to the FI-groups and weak FI-groups appearing
in our earlier paper [CP]. In essence, it says that if a weak FI-group satisfying certain
additional conditions is finitely generated in finite degree, then its lower central series is
finitely generated.

However, the technicalities of weak FI-groups often make arguments quite difficult to read.
To simplify the presentation of the argument, we have written our theorem in terms of
a simpler structure, namely FInc-groups, which we now define. We will not mention FI-
groups or weak FI-groups in the rest of the paper (with the exception of the tangential
Remarks 1.4 and 1.5), so the reader need not be familiar with these at all.

Define N = {1, 2, 3, . . .}. Let FInc be the category whose objects are finite subsets of
N and whose morphisms are inclusions. An FInc-group is a functor from FInc to the
category of groups. More concretely, an FInc-group G consists of the data of a group GI

for each finite I ⊂ N together with homomorphisms GJ
I : GI → GJ whenever I ⊂ J . These

homomorphisms must satisfy GK
J ◦GJ

I = GK
I whenever I ⊂ J ⊂ K.

Structure theorem. Stating our theorem requires some preliminary definitions. Given
an FInc-group G, for finite I ⊂ J ⊂ N we will denote by GI(J) the image of the map
GJ

I : GI → GJ . For n ∈ N, let [n] = {1, . . . , n} ⊂ N. We will write Gn and Gn(I) instead of
G[n] and G[n](I).

We will say that an FInc-group G is a commuting FInc-group if for all finite K ⊂ N and all
disjoint I, J ⊂ K, there is some GK-conjugate of GK(I) ⊂ GK that commutes with GK(J).

Finally, we say that an FInc-group G is generated in degree d if for all n ≥ d, the group Gn

is generated by the
(
n
d

)
subgroups Gn(I) for I ∈

([n]
d

)
. (Throughout the paper,

(
X
d

)
denotes

the set of d-element subsets of X.)

Remark 1.4. Readers familiar with FI-modules from [CEF] or weak FI-groups from [CP]
might expect this to be equivalent to the condition that for all K with |K| ≥ d, the group
GK is generated by the subgroups GK(I) for I ∈

(
K
d

)
. This is not actually equivalent,

and so we have taken the weaker definition (since it suffices for our main theorem). It also
makes it easier to verify that I is generated in degree 3 (compare our proof in §4.2 with the
remark preceding [CP, Lemma 4.6], which is no longer necessary with this definition).

Our main technical theorem is the following structure theorem.

Theorem E. Let G be a commuting FInc-group such for each n there exists a connected
semisimple R-algebraic group without compact factors Gn, a lattice Γn ⊂ Gn(R), and an
action of Γn on Gn by outer automorphisms such that the following two conditions hold.

• For any subsets K,K ′ ⊂ [n] with |K| = |K ′|, there exists some γ ∈ Γn such that
γ ·Gn(K) is conjugate to Gn(K

′) inside Gn.
• The induced action of Γn on H1(Gn;R) extends to an algebraic representation of Gn.

Suppose that G is generated in degree d as an FInc-group and Gd is finitely generated. Then
for each k ≥ 1 the group Gn[k] is finitely generated for all n ≥ (2k − 1)d.
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We will prove that both I1
g and IAn can be endowed with the structure of FInc-groups I

and IA satisfying the above conditions with d = 3. As stated, Theorem E would yield the
range n ≥ (2k − 1)d = 6k − 3. However, we give a slight strengthening in Theorem E′,
where a minor condition (satisfied by both I and IA) allows us to improve this range by 1
to n ≥ 6k − 4, yielding Theorems A and C.

Remark 1.5. Since Theorem E is stated in terms of FInc-groups, it would be natural to
think that it will apply to a much wider class than the weak FI-groups of [CP]. We believe
this would be a mistake: the technical conditions we impose in Theorem E force our FInc-
groups to behave very much like weak FI-groups. Although we no longer explicitly require
the permutation group Sn to act on Gn, the action of Γn required in Theorem E fulfills much
the same role (for example, it forces the subgroups Gn(K) and Gn(K

′) to be isomorphic).
Not only do weak FI-groups provide all the examples of FInc-groups that we will apply our
structure theorem to, it is currently hard for us to imagine any FInc-group it applies to
that is not actually a weak FI-group. So at present it seems that this is only a pedagogical
advance, and Theorem E is “really” a theorem about weak FI-groups (but we would be
glad to be proved wrong!).

Comments on the proof. In their paper [ErHe], Ershov–He introduced the beautiful idea
of proving that [I1

g , I1
g ] is finitely generated by exploiting a powerful result of Brown [Br]

that relates the BNS-invariant of a group to the existence of certain actions on R-trees.
These actions on R-trees can be understood using the fact that I1

g contains large families of
commuting elements. They also introduced the idea of using an action of SLn Z to guarantee
these commuting elements “survive” in an appropriate sense. We will use these same ideas
in our proof of Theorem E, though we will handle the ideas quite differently.

Outline. We begin in §2 by discussing Brown’s criterion. Next, in §3 we will prove
Theorem E (in its strengthened form of Theorem E′). Finally, in §4 we will verify that this
theorem applies to I1

g and IAn, and thus prove Theorems A and C.

Acknowledgments. We wish to thank Mikhail Ershov, Benson Farb, Sue He, Dan Mar-
galit, and John Meier for helpful comments.

2 Brown’s criterion for finite generation

If V is a real vector space, then we will write P+V for the positive projectivation P+V =
(V − {0})/R×

+. If G is a finitely generated group, let S(G) be the “character sphere”
S(G) = P+Hom(G,R). If N ◁ G has abelian quotient G/N , the quotient map induces an
embedding Hom(G/N,R) ↪→ Hom(G,R), so we may consider S(G/N) as a canonical subset
of S(G) consisting of those homomorphisms G→ R factoring through G/N .

The Bieri–Neumann–Strebel invariant Σ(G) is an open subset of S(G) which is invariant
under any automorphism of G. It has the key property that if G is finitely generated and
G/N is abelian, then

N is finitely generated ⇐⇒ Σ(G) ⊃ S(G/N).
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In the same journal issue where Bieri–Neumann–Strebel defined Σ(G), Brown [Br] gave a
necessary and sufficient criterion describing which [λ] ∈ S(G) belong to the BNS invariant
Σ(G) in terms of certain actions on R-trees. We will make use of a simpler sufficient
condition which is a consequence of Brown’s criterion. We use a formulation of this condition
given by Koban–McCammond–Meier [KoMcCaMe], though it goes back further (compare
with Meier–VanWyk [MeVW, Theorem 6.1]). A variant of this condition was used by
Ershov–He (see [ErHe, Proposition 3.4]).

Given any subset A ⊂ G, let C(A) denote the “commutation graph” whose vertices are the
elements of A, and where a and a′ are connected by an edge if a and a′ commute. We say
that a subset A ⊂ G survives under λ : G → R if λ(a) ̸= 0 for all a ∈ A. For A,B ⊂ G we
say that A dominates B if every b ∈ B commutes with some a ∈ A.

Proposition 2.1 ([KoMcCaMe, Lemma 1.9]). Let G be a finitely generated group and
λ : G → R a nonzero homomorphism. Suppose there exist subsets A ⊂ G and B ⊂ G such
that A survives under λ, C(A) is connected, A dominates B, and B generates G. Then
[λ] ∈ Σ(G).

3 Structure theorem

Our goal in this section is to prove Theorem E. We will in fact prove the following slightly
stronger theorem, which simply restates Theorem E and adds the additional condition (ii).
We emphasize that the FInc-groups I and IA to which we will apply the structure theorem
in §4 both do satisfy the condition (ii).

Theorem E′. Let G be a commuting FInc-group such for each n there exists a connected
semisimple R-algebraic group without compact factors Gn, a lattice Γn ⊂ Gn(R), and an
action of Γn on Gn by outer automorphisms such that the following two conditions hold.

• For any subsets K,K ′ ⊂ [n] with |K| = |K ′|, there exists some γ ∈ Γn such that
γ ·Gn(K) is conjugate to Gn(K

′) inside Gn.
• The induced action of Γn on H1(Gn;R) extends to an algebraic representation of Gn.

Suppose that G is generated in degree d as an FInc-group and Gd is finitely generated. The
following then hold.

(i) For each k ≥ 1 the group Gn[k] is finitely generated for all n ≥ (2k − 1)d.
(ii) Suppose that d ≥ 2 and that G has the additional property that for all m ≤ n,

Gn([m]) commutes with Gn(I) for all I ∈
(
[n]

m

)
with I ∩ [m] = ∅. (E′-ii)

Then for each k ≥ 2 the group Gn[k] is finitely generated for all n ≥ (2k − 1)d− 1.

Remark 3.1. The hypotheses here can be relaxed. For example, if we assume instead that G
is generated in degree d as an FInc-group and that Gm is finitely generated for some m > d,
the same proof will shows that Gn[k] is finitely generated for all n ≥ max(m, (2k − 1)d).
This indicates something about the structure of the proof—namely that we never need to
do induction on n.
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We could also replace the condition that γ ·Gn(K) is conjugate to Gn(K
′) with the much

weaker assumption that γ takes the image of H1(Gn(K);R) in H1(Gn;R) to the image of
H1(Gn(K

′);R). This weaker assumption leaves open the possibility that the subgroups
Gn(K) and Gn(K

′) might not even be isomorphic, so in theory this allows much greater
generality. However we are not aware of any examples that this would apply to.

The proof of Theorem E′ occupies the remainder of this section. The proof will go by in-
duction (though it is less inductive than one might expect). Before beginning the induction,
we establish some basic facts that will not depend on the inductive hypothesis.

If G is an FInc-group, then for any k the lower central series subgroups GI [k] ⊂ GI satisfy
GJ

I (GI [k]) ⊂ GJ [k]. Thus they define an FInc-group which we may denote G[k]. Note that
for I ⊂ J , all three of GJ(I)[k] and GJ [k](I) and G[k]J(I) describe the same group (namely
the image of GI [k] in GJ), so we need not worry about the distinction.

Claim 1. For all n ≥ dk, the group Gn[k] is generated by the Gn-conjugates of Gn[k](I)

for I ∈
([n]
dk

)
.

Proof. Suppose that n ≥ dk, and let S =
∪

I∈([n]
d )
Gn(I). Our assumption that G is

generated in degree d means precisely that S generates Gn. For any group Gn and any
generating set S, the lower central series Gn[k] is Gn-normally generated by the length-k
commutators [s1, [s2, . . . , [sk−1, sk]]] with si ∈ S (compare with [CP, Eq. (2-8)]). Given
such generators with si ∈ Gn(Ii), let J =

∪
Ii. Since si ∈ Gn(Ii) ⊂ Gn(J), the commuta-

tor [s1, [s2, . . . , [sk−1, sk]]] belongs to Gn(J)[k]. Since |J | ≤
∑k

i=1 |Ii| = dk, there is some

J ′ ∈
([n]
dk

)
such that [s1, [s2, . . . , [sk−1, sk]]] ∈ Gn(J

′)[k], verifying the claim.

Let LI =
⊕

k≥1 LI [k] be the real Lie algebra associated to the lower central series of the
group GI , i.e. LI [k] = (GI [k]/GI [k + 1]) ⊗ R with bracket induced from the commutator.
The FInc-group G[k] descends to an FInc-group L[k].

Claim 2. The FInc-group L[k] is generated in degree dk.

Proof. Suppose that n ≥ dk. Claim 1 states that Gn[k] is generated by the Gn-conjugates

of Gn[k](J) for J ∈
([n]
dk

)
. Since conjugation by Gn becomes trivial in Gn[k]/Gn[k + 1], this

implies that Gn[k]/Gn[k+1] is generated by the images of Gn[k](J) for J ∈
([n]
dk

)
. Thus the

FInc-group G[k]/G[k + 1] is generated in degree dk, and thus so is L[k].

The outer action of Γn on Gn preserves the characteristic subgroup Gn[k] and descends to
an honest action of Γn on Ln[k].

Claim 3. For any n ≥ dk and any nonzero homomorphism λ ∈ Ln[k]
∨, there exists γ ∈ Γn

such that γ∗λ ∈ Ln[k]
∨ has the property that for every I ∈

([n]
dk

)
the restriction γ∗λ|Ln[k](I)

is nonzero.

Proof. Note that the subspaces Ln[k](I) for all I ∈
([n]
dk

)
together span Ln[k] by Claim 2,

so the restriction λ|Ln[k](I1) of λ itself must be nonzero for some I1 ∈
([n]
dk

)
. But this is not

enough.
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We begin by showing that the action of Γn on Ln[k] extends to an algebraic representation
of Gn(R). The Lie algebra Ln =

⊕
Ln[k] is always generated as a Lie algebra in degree 1,

i.e. by Ln[1] = (Gn[1]/Gn[2])⊗ R = H1(Gn;R). In other words, the natural map

Ln[1]
⊗k = H1(Gn;R)⊗k → Ln[k]

is surjective. By assumption, the action of Γn on Ln[1]
⊗k extends to an algebraic action

of Gn, and we would like to show it descends to an action of Gn on Ln[k]. The map
Ln[1]

⊗k → Ln[k] is equivariant for the action of Γn, so its kernel is Γn-invariant. Since
Γn is a lattice inside the real points Gn(R) of a connected semisimple algebraic group
without compact factors, Γn is Zariski-dense in Gn by Borel density [Bo]. Thus the kernel
of Ln[1]

⊗k → Ln[k] is in fact Gn-invariant, so the action of Gn descends to Ln[k] as desired.

Let V = Ln[k] and VI = Ln[k](I). For each I ∈
([n]
dk

)
, the condition µ|VI

= 0 defines a closed
subvariety XI of V ∨ = {µ : V → R}. The claim asserts that there exists γ ∈ Γn such that

γ∗λ /∈ XI for all I ∈
([n]
dk

)
. Suppose that this is not true. This means that for all γ ∈ Γn we

have γ∗λ ∈
∪

I XI . In other words the Γn-orbit Γn · λ is contained in
∪

I XI . Since Γn is
Zariski-dense in Gn, this implies that Gn · λ ⊂

∪
I XI . Since Gn is connected, Gn (and thus

its image Gn ·λ) is irreducible, so it must be contained in one irreducible factor: there exists

some I0 ∈
([n]
dk

)
such that Gn ·λ ⊂ XI0 . In particular, for this particular I0 every γ ∈ Γn has

γ∗λ|VI0
= 0.

Recall from the beginning of the proof that λ|VI1
is nonzero for some I1 ∈

([n]
dk

)
. But one

of the hypotheses of the theorem was that if |I0| = |I1| there exists some g ∈ Γn such that
g ·Gn(I1) is conjugate to Gn(I0). This implies that g · VI1 = VI0 , so

g∗λ|VI0
= 0 ⇐⇒ λ|VI1

= 0

This contradiction concludes the proof of the claim.

Claim 4. Given n and m ≥ 1, let Yn,m be the graph whose vertices are pairs (I ∈
(
[n]
m

)
,

α ∈ Gn) where there is an edge between (I, α) and (I ′, β) if the conjugate subgroups Gn(I)
α

and Gn(I
′)β commute. Then Yn,m is connected for all n ≥ 2m+ d. If d ≥ 2 and G satisfies

the additional condition (E′-ii), then Yn,m is connected for all n ≥ 2m+ d− 1.

Proof. Suppose either that n ≥ 2m + d or that d ≥ 2 and n ≥ 2m + d − 1; note that in
either case we have n ≥ 2m+ 1 and n ≥ d.

We remark that a great many of the conjugates Gn(I)
α will of course coincide, but we do

not need to keep track of this. Gn acts on Yn,m by (I, α) 7→ (I, αg).

Fix one basepoint v = (I0, 1). We will apply the condition of [P1] to prove that Yn,m is
connected. According to [P1, Lemma 2.1] it suffices to show that

(i) for every Gn-orbit of vertices, there is a path from v to some vertex in that orbit, and
(ii) there is a generating set S = S± for Gn such that for every s ∈ S, there is a path

from v to s · v.

To prove (i), consider the relation on
(
[n]
m

)
defined by I ∼ I ′ if there is a path in Yn,m from

(I, 1) to (I ′, α) for some α ∈ Gn. Note that this relation is automatically an equivalence
relation, and (i) asserts precisely that I0 ∼ I for all I. If I, I ′ ∈

(
[n]
m

)
have I ∩ I ′ = ∅, then
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the definition of commuting FInc-group states that there is a Gn-conjugate of Gn(I
′) which

commutes with Gn(I), or in other words that I ∼ I ′ whenever I ∩ I ′ = ∅. Since n ≥ 2m+1,
between any two m-element subsets I0 and I there exists a sequence I0, I1, . . . , Iℓ = I where
Ii ∈

(
[n]
m

)
and Ii ∩ Ii+1 = ∅. This verifies condition (i).

For (ii), as in the proof of Claim 1 we choose the generating set S =
∪

J∈([n]
d )
Gn(J). Since

n ≥ d, we know that S generates Gn. Consider some generator s ∈ S belonging to Gn(J)

for some J ∈
([n]
d

)
. We consider various cases, but in each case we will find some (I, α) such

that Gn(I)
α commutes with both Gn(I0) and Gn(I0)

s. This implies that there is a length-2
path in Yn,m from (I0, 1) to (I, α) to (I0, s), as required for (ii).

We first handle the general case when n ≥ 2m + d. Note that Gn(I0) ⊂ Gn(J ∪ I0) and
s ∈ Gn(J) ⊂ Gn(J ∪ I0). Therefore the conjugate Gn(I0)

s by s is contained in Gn(J ∪ I0).
Since |J ∪ I0| ≤ |J | + |I0| = d + m and n ≥ 2m + d, we can choose some I ∈

(
[n]
m

)
with

(J∪I0)∩I = ∅. By the definition of commuting FInc-group, there exists some Gn-conjugate
Gn(I)

α of Gn(I) commuting with Gn(J ∪ I0). Since Gn(I0) ⊂ Gn(J ∪ I0), we know Gn(I0)
commutes with Gn(I)

α, and similarly Gn(I0)
s ⊂ Gn(J ∪ I0) implies Gn(I0) commutes with

Gn(I)
α. This provides the desired (I, α).

Now assume that n ≥ 2m+ d− 1 and that G satisfies (E′-ii). In this case we must choose
I0 = [d]. We separate out two cases depending on whether I0 and J are disjoint. If I0∩J ̸= ∅,
then |I0 ∪ J | ≤ |I0|+ |J | − 1 = d+m− 1. Since n ≥ 2m+ d− 1, as above we can find some
I ∈

(
[n]
m

)
with (J ∪ I0) ∩ I = ∅, so we find (I, α) as before.

The last case is when I0 ∩ J = ∅. The condition (E′-ii) then guarantees that s ∈ Gn(J)
commutes with Gn(I0), so Gn(I0)

s = Gn(I0). Note that this does not mean that there is an
edge directly from (I0, 1) to (I0, s)! (In general Gn(I0) is nonabelian, so it does not commute
with itself.) But since n ≥ 2m+ 1 ≥ 2m we can choose some I ∈

(
[n]
m

)
with I ∩ I0 = ∅ and

some conjugate Gn(I)
α commuting with Gn(I0), providing the desired (I, α).

We now begin the induction with the base case k = 1. Here there is almost nothing to
prove. If |I| = |I ′| then Gn(I) is isomorphic to Gn(I

′), since an automorphism representing

some γ ∈ Γn takes one to a conjugate of the other. In particular, for each I ∈
([n]
d

)
the

subgroup Gn(I) is isomorphic to Gn([d]) which is a quotient of Gd. Since Gd is finitely
generated by assumption, so is Gn(I). We have assumed that G is generated in degree d, so

for any n ≥ d the group Gn is generated by the
(
n
d

)
subgroups Gn(I) for I ∈

([n]
d

)
. Therefore

Gn = Gn[1] is finitely generated for all n ≥ d.

Now fix for the rest of the proof some n ≥ (2(k + 1) − 1)d = (2k + 1)d (or under the
hypotheses of (ii), that n ≥ (2k + 1)d − 1). We may assume by induction that Gn[k] is
finitely generated, and our goal is to prove that Gn[k + 1] is finitely generated.

To do this, we must prove that S(Gn[k]/Gn[k + 1]) ⊂ Σ(Gn[k]); in other words, for
every nonzero homomorphism λ : Gn[k] → Gn[k]/Gn[k + 1] → R, we must show that
[λ] ∈ Σ(Gn[k]).

Every such homomorphism factors uniquely as Gn[k] → Ln[k] → R for a unique map
Ln[k] → R, which we denote by λ as well. By Claim 3, there exists some γ ∈ Γn such that

λ′ = γ∗λ has the property that λ′|Ln[k](I) ̸= 0 for all I ∈
([n]
dk

)
. If γ̃ is an automorphism of
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Gn representing γ ∈ Γn, we have γ̃
∗[λ] = [λ′] ∈ S(Gn[k]). Since Σ(Gn[k]) is invariant under

automorphisms, it suffices to prove that [λ′] belongs to Σ(Gn[k]).

Therefore by possibly replacing λ by λ′, we may assume that λ has λ|Ln[k](I) ̸= 0 for all

I ∈
([n]
dk

)
. Since Ln[k](I) is the image of Gn[k](I) in Ln[k], this means that for each I

there exists some gI ∈ Gn[k](I) with λ(gI) ̸= 0. Choose once and for all such an element

gI ∈ Gn[k](I) for each I ∈
([n]
dk

)
, and let A = {gαI = α−1gIα |α ∈ Gn, I ∈

([n]
dk

)
} be the set of

all their Gn-conjugates. Since λ factors through Gn[k]/Gn[k+1], we have λ(gαI ) = λ(gI) ̸= 0.
Therefore A survives under λ in the sense of Proposition 2.1.

There is a natural map from the graph Yn,dk to the commuting graph C(A) taking (I, α) ∈
Yn,dk to gαI ∈ A, which is surjective on vertices by definition. Every edge in Yn,dk is taken
to an edge in C(A), since gαI is contained in the subgroup Gn(I)

α (so if Gn(I)
α and Gn(I

′)β

commute then certainly gαI and gβI′ commute). Claim 4 states under our assumptions on n
that Yn,dk is connected, so C(A) is connected as well.

Since n ≥ (2k+1)d−1 ≥ dk, Claim 1 states that Gn[k] is generated by the Gn-conjugates of

the subgroups Gn[k](I) for I ∈
([n]
dk

)
. We let B be this generating set B =

∪
I,β Gn[k](I)

β.
It remains only to check that A dominates B, so consider an arbitrary element b ∈ B
belonging to Gn[k](I)

β. Choose some vertex (I ′, α) of Yn,dk adjacent to the vertex (I, β).
Every element of Gn[k](I)

β commutes with every element of Gn[k](I
′)α, so certainly g

commutes with gαI′ ∈ A. Thus every element of B commutes with some element of A, so A
dominates B. This verifies the hypotheses of Proposition 2.1, so applying that proposition
shows that [λ] ∈ Σ(Gn[k]). As discussed above, we conclude that S(Gn[k]/Gn[k + 1]) is
contained in Σ(Gn[k]). Therefore Gn[k] is finitely generated. This concludes the proof of
Theorem E′.

4 Deducing Theorems A and C from Theorem E′

In this section, we will show how to derive Theorems A and C from Theorem E′. We begin
in §4.1 with some reductions. The main body of this derivation is in §4.2.

4.1 Reductions

In this section we show that Theorem A it suffices to prove that I1
g [k] is finitely generated

for g ≥ 6k− 4, and similarly for Theorem C. We do this using the following two reductions.

• If K is a group satisfying Ib
g[k] ⊂ K ⊂ Ib

g, then letting K be the image of K in

Ib
g/Ib

g[k] we have a short exact sequence

1 −→ Ib
g[k] −→ K −→ K −→ 1.

Since Ib
g/Ib

g[k] is a finitely generated nilpotent group, its subgroup K is also finitely
generated. To prove that K is finitely generated when g ≥ 6k − 4, it is thus enough
to prove that Ib

g[k] is finitely generated for g ≥ 6k − 4.
• The homomorphism I1

g → Ig obtained by gluing a disc to ∂Σ1
g is surjective, and thus

the restriction of this homomorphism to I1
g [k] is also surjective. To prove that Ig[k]
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is finitely generated for g ≥ 6k − 4, it is thus enough to prove that I1
g [k] is finitely

generated for g ≥ 6k − 4.

Using the first reduction, we similarly see that to prove Theorem C it is enough to prove
that IAn[k] is finitely generated for n ≥ 6k − 4.

4.2 Applying Theorem E′ to I and IA

It remains to show that I1
g [k] is finitely generated for g ≥ 6k− 4 and that IAn[k] is finitely

generated for n ≥ 6k−4. We will deduce both of these from Theorem E′, so we must verify
that its hypotheses are satisfied.

Automorphism group of free group. We showed in [CP, Lemma 3.1] that there is an FI-
group G = IA with Gn = IAn. This immediately implies that IA is an FInc-group; indeed,
restricting part (ii) of [CP, Definition 2.1] to inclusions yields precisely the definition of an
FInc-group. We will verify that the FInc-group IA satisfies the hypotheses of Theorem E′

with d = 3.

We can describe IA concretely. For any subset I ⊂ N let FI denote the free group on the
set {xi | i ∈ I}. Then IAI is the subgroup of Aut(FI) acting trivially on the abelianization.
Whenever I ⊂ K we obtain an injection IAI → IAK sending φ ∈ IAI to the automorphism
sending xi 7→ φ(xi) for i ∈ I and sending xk 7→ xk for k /∈ I. Since the maps IAI → IAK

are injective we can canonically identify IAI with IAK(I).

From this description we see that the subgroups IAI and IAJ of IAK commute whenever
I∩J = ∅ (no IAK-conjugation is necessary). So IA is a commuting FInc-group, and satisfies
the condition (E′-ii).

Magnus [Mag] proved that IAn is finitely generated, and we deduced from Magnus’s gener-
ating set in [CP, Lemma 2.13 and Proposition 3.3] that IA is generated in degree d = 3.

The extension 1 → IAn → Aut(Fn) → GLn Z → 1 gives an outer action of GLn Z on
IAn. We take Γn to be the subgroup Γn = SLn Z. It was independently shown by Cohen–
Pakianathan [CoPa], Farb [F], and Kawazumi [Ka] that H1(IAn;R) ∼= Hom(H,

∧2H) where
H ∼= Rn is the standard representation of SLn Z, so this does indeed extend to an action of
Gn = SLn.

The subgroup of Aut(Fn) permuting the generators and their inverses is the signed permu-
tation group S±

n . If σ̃ ∈ S±
n projects to σ ∈ Sn, the explicit description of IA(FK) above

for K ⊂ [n] shows that σ̃ ∈ Aut(Fn) conjugates IA(FK) to IA(Fσ(K)). Since the index-2
subgroup of S±

n projecting to SLn Z surjects onto Sn, their images in Γn = SLn Z provide
the necessary elements γ ∈ Γn.

This verifies that the FInc-group G = IA satisfies the hypotheses of Theorem E′ with d = 3.
We conclude from the structure theorem that the group Gn[k] = IAn[k] is finitely generated
for all n ≥ (2k − 1)d− 1 = 6k − 4.

Mapping class group. We defined in [CP] (in the paragraphs following Lemma 4.2) a
weak FI-group G = I with Gn = I1

n. This immediately implies that I is an FInc-group;
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indeed, part (iii) of [CP, Definition 2.4] is precisely the definition of an FInc-group.

We can be more concrete about the FInc-group I. In [CP, §4.1] we gave an infinite-genus
surface ΣN, and for every I ⊂ N a surface ΣI ⊂ ΣN homeomorphic to Σ1

|I|, such that I ⊂ J

implies ΣI ⊂ ΣJ . We can then define II to be the subgroup I(ΣI) consisting of mapping
classes supported on ΣI and acting trivially on homology. Since ΣI ⊂ ΣK when I ⊂ K, we
can identify II with IK(I).

There is an important but subtle point here: for any family of nested subsurfaces ΣI ,
the description above would define a perfectly good FInc-group I. However, it is only
by carefully choosing the surfaces ΣI that we can guarantee that I will be generated in
degree 3. See [CP, Figure 2] for an illustration of the subsurfaces that we choose. In [CP,
Proposition 4.5] we improved on Putman’s cubic generating set from [P2] to show that with
this definition, I is indeed generated in degree 3. (Note incidentally that since we are not
working with weak FI-groups anymore, the remark preceding [CP, Lemma 4.6] is no longer
necessary.) Of course, Johnson [J2] proved that I1

3 is finitely generated.

Given I, J ⊂ [n], we can see from [CP, Figure 2] that ΣI and ΣJ need not be disjoint even
if I ∩J = ∅, so II and IJ need not commute. However, we can always find a subsurface Σ′

J

homeomorphic to ΣJ that is disjoint from ΣI and with H1(Σ
′
J ;R) = H1(ΣJ ;R) as subspaces

of H1(Σ[n];R). By [CP, Lemma 4.1(ii)], this implies that the subgroup IJ = I(ΣJ) is I[n]-
conjugate to I(Σ′

J). Since the latter commutes with II , this verifies that I is a commuting
FInc-group. Moreover, from the description in [CP, §4.1 and Figure 2] one sees that Σ[m]

is disjoint from ΣK whenever K ∩ [m] = ∅, so I satisfies the condition (E′-ii).

The extension 1 → I1
n → Mod1n → Sp2n Z → 1 gives an outer action of Γn = Sp2n Z

on I1
n. Johnson’s computation of H1(I1

n;Z) in [J4] implies that H1(I1
n;R) ∼=

∧3H, where
H ∼= R2n is the standard representation of Sp2n Z, so this does indeed extend to an action
of Gn = Sp2n.

There is a natural subgroup of Sp2n Z isomorphic to Sn which permutes the homology classes
{a1, . . . , an} and {b1, . . . , bn} (in the notation of [CP, Lemma 4.2]) separately. The action
of σ ∈ Sn on H1(Σ[n]) sends the subspace H1(ΣK) to H1(Σσ(K)). According to [CP, Lemma
4.1(ii)] this implies that this outer automorphism takes IK = I(ΣK) to a I[n]-conjugate of
IK′ = I(ΣK′). Therefore this subgroup of Γn = Sp2n Z provides the necessary elements
γ ∈ Γn.

This verifies that the FInc-group G = I satisfies the hypotheses of Theorem E′ with d = 3.
We conclude from the structure theorem that the group Gn[k] = In[k] is finitely generated
for all n ≥ (2k − 1)d− 1 = 6k − 4.
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