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Abstract
A well-known conjecture asserts that the mapping class group of a surface (possibly

with punctures/boundary) does not virtually surject onto Z if the genus of the surface
is large. We prove that if this conjecture holds for some genus, then it also holds for
all larger genera. We also prove that if there is a counterexample to this conjecture,
then there must be a counterexample of a particularly simple form. We prove these
results by relating the conjecture to a family of linear representations of the mapping
class group that we call the higher Prym representations. They generalize the classical
symplectic representation.

1 Introduction

Let Σp
g,n be an orientable genus g surface with n boundary components and p punctures and

let Modpg,n be the mapping class group of Σp
g,n. This is the group of orientation-preserving

homeomorphisms of Σp
g,n that fix the boundary and punctures pointwise modulo isotopies

that fix the boundary and punctures pointwise. The group Modpg,n plays an important
role in areas ranging from low-dimensional topology to algebraic geometry. See [10] for a
survey.

There is a fruitful analogy between the mapping class group and lattices in higher rank
Lie groups. Such lattices satisfy Kazhdan’s property (T), and as a consequence they do
not virtually surject onto Z. In other words, if Γ is a finite-index subgroup of a lattice in a
higher-rank Lie group, then H1(Γ;Q) = 0 (see, e.g., [25, Theorems 7.1.4 and 7.1.7]). The
starting point for this paper is the following well-known conjecture of Ivanov (see, e.g., [17,
Problem 2.11.A] and [15, §7]). It asserts that something similar happens for Modpg,n. See
the end of this introduction for a summary of the previous literature on it.

Conjecture 1.1. For some g ≥ 3 and n, p ≥ 0, let Γ < Modpg,n be a finite-index subgroup.
Then H1(Γ;Q) = 0.

Remark. J. Anderson [2] recently proved that Modpg,n does not satisfy Kazhdan’s property
(T) for g ≥ 2.
Remark. McCarthy [19] and Taherkhani [24] proved that Conjecture 1.1 fails for g = 2.
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Stability theorem. We have two main theorems. The first will interest those who believe
that Conjecture 1.1 is true and the second will interest those who do not. Let NVSZ(g)
stand for the assertion that Conjecture 1.1 holds for Σpg,n for all n, p ≥ 0. Our first result
is as follows.

Theorem A (Stability). Assume that NVSZ(G) holds for some G ≥ 3. Then NVSZ(g)
holds for all g ≥ G.

In particular, Theorem A says that to prove Conjecture 1.1, it is enough to deal with the
genus 3 case.

Easy counterexamples. Our second main theorem says that if Conjecture 1.1 fails,
then there must be a counterexample of a particularly simple form. If g ≥ 2 and p ≥ 1,
then there is a well-known short exact sequence called the Birman exact sequence (see
§2.2.2) that takes the form

1 −→ π1(Σp−1
g,n ) −→ Modpg,n −→ Modp−1

g,n −→ 1.

The terms in this exact sequence are as follows.

• The map Modpg,n → Modp−1
g,n comes from filling in a puncture x on Σp

g,n.

• π1(Σ
p−1
g,n ) is embedded in Modpg,n as mapping classes the “push” the puncture x around

the surface Σp−1
g,n . It is often known as the “point-pushing” subgroup of Modpg,n.

If n ≥ 1, then this exact sequence splits, so we have a semidirect product decomposition

Modpg,n ∼= π1(Σp−1
g,n )oModp−1

g,n .

If K < π1(Σ
p−1
g,n ) and G < Modp−1

g,n are finite-index subgroups such that G normalizes K,
then we obtain a finite-index subgroup

Γ = K oG < Modpg,n .

Observe now that
H1(Γ;Q) ∼= H1(G;Q)⊕ (H1(K;Q))G,

where (H1(K;Q))G are the coinvariants of the action of G on H1(K;Q), i.e. the quotient
of H1(K;Q) by the subspace generated by the set {x− g(x) | x ∈ H1(K;Q), g ∈ G}. In
particular, if (H1(K;Q))G 6= 0, then H1(Γ;Q) 6= 0, in which case we will say that Γ surjects
onto Z by the finite-index point-pushing construction.

Theorem B (Easy counterexamples). If NVSZ(g) fails, then there is a counterexample to
NVSZ(g − 1) that surjects onto Z by the finite-index point-pushing construction.
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Higher Prym representations. We prove Theorems A and B by relating Conjecture
1.1 to a family of linear representations of Modpg,n that we call the higher Prym representa-
tions. As motivation, observe that Modpg,n acts on H1(Σ

p
g,n;Z) and preserves the algebraic

intersection form. If n+ p ≤ 1, then this is a nondegenerate alternating form, so in these
cases we get a representation Modpg,n → Sp2g(Z). This representation plays a fundamental
role in the study of Modpg,n.

We generalize the symplectic representation of the mapping class group in the following
way. Recall that a subgroup G′ of a group G is characteristic if f(G′) ⊂ G′ for all f ∈
Aut(G). Fix a basepoint v0 ∈ Σp

g,n. Regarding the basepoint v0 as a puncture, the group
Modp+1

g,n acts on π1(Σ
p
g,n, v0). If K < π1(Σ

p
g,n, v0) is a finite-index characteristic subgroup,

then Modp+1
g,n acts on the finite-dimensional vector space H1(K;Q).

If S is the finite cover of Σp
g,n corresponding to K, then H1(K;Q) ∼= H1(S;Q). The

action of Modp+1
g,n on H1(K;Q) arises from lifting mapping classes on Σp+1

g,n to the cover S
(observe that this uses the fact that Modp+1

g,n fixes the basepoint v0 ∈ Σp
g,n – if there were no

basepoint, then one could only lift mapping classes modulo the action of the deck group).
The boundary subspace B of H1(K;Q) is the subspace spanned by the homology classes of
the boundary components of S and loops freely homotopic into the punctures of S. Define
VK = H1(K;Q)/B. It is clear that Modp+1

g,n preserves B, so we obtain an action of Modp+1
g,n

on VK . We will call the resulting linear representation Modp+1
g,n → Aut(VK) a higher Prym

representation.

Remark. For K < π1(Σg, v0) such that π1(Σg, v0)/K is abelian, the action of Mod1
g on

H1(K;Q) was studied by Looijenga in [18] (though he arranged the technical details a
little differently). He called his representations Prym representations because they are
related to Prym varieties.

Remark. The vector space VK is the first homology group of the closed surface that results
from gluing discs to all the boundary components of S and filling in all the punctures of S.
This implies that VK has a nondegenerate intersection pairing that is preserved by Modp+1

g,n ,
so the image of a higher Prym representation lies in the symplectic group.

Remark. Representations of Aut(Fn) similar to the higher Prym representations were stud-
ied by Grunewald and Lubotzky [11].

Nontriviality of the Prym representations. We make the following conjecture about
the higher Prym representations.

Conjecture 1.2. Fix g ≥ 2 and n, p ≥ 0. Let K < π1(Σ
p
g,n) be a finite-index characteristic

subgroup. Then for all nonzero vectors v ∈ VK , the Modp+1
g,n -orbit of v is infinite.

Equivalently, none of the higher Prym representations have subrepresentations that factor
through a finite group.

Remark. When n = p = 0 and g ≥ 3 and K < π1(Σ
p
g,n) is such that π1(Σ

p
g,n)/K is

abelian, then Looijenga essentially determined the image G < Aut(VK) of the higher Prym
representation of Modp+1

g,n . Letting A = π1(Σ
p
g,n)/K, the group A acts on VK and G

commutes with this action. What Looijenga proved is that G is an arithmetic subgroup of
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the centralizer of A in Aut(VK). Here we are regarding VK as a symplectic vector space and
Aut(VK) as a symplectic group over Q. From this, it is not hard to show that Conjecture
1.2 holds in these cases.
Remark. Conjecture 1.2 is false for g = 0 and g = 1. The case g = 0 appears (in a
different language) in work of McMullen [20]. Translated into our language, [20, Theorem
8.1] gives a list of finite-index subgroups K < π1(Σ

p
0,0) such that the subgroups ΓK <

Modp+1
0,0 preserving K have nontrivial finite orbits in VK . Taking the intersection of all the

Modp+1
0,0 -translates of one of these K gives a characteristic subgroup of π1(Σ

p
0,0) which is

a counterexample to Conjecture 1.2. A counterexample to the case g = 1 is discussed in
Appendix A.

Relation between conjectures. Conjectures 1.1 and 1.2 appear quite different. How-
ever, it turns out that they are essentially equivalent. Let NVSZ(g, n, p) stand for the
assertion that Conjecture 1.1 is true for Σpg,n and let NFO(g, n, p) stand for the assertion
that Conjecture 1.2 is true for Σp

g,n.

Theorem C. Fix g ≥ 3 and p ≥ 0.

• NFO(g − 1, n+ 1, p) implies NVSZ(g, n, p) for n ≥ 0.

• NVSZ(g, n, p+ 1) implies NFO(g, n, p) for n ≥ 1.

Remark. It is easy to see that NFO(g, n, p) implies NFO(g, n′, p′) for n′ ≤ n and p′ ≤ p, so
Theorem C also shows that NVSZ(g, 1, p) implies NFO(g, 0, p) for g ≥ 3 and p ≥ 0.
Remark. The proof of Theorem C shows that to prove NVSZ(g, n, p), it is enough to prove
Conjecture 1.2 for a cofinal set of finite-index characteristic subgroups of π1(Σ

p
g−1,n+1).

Derivation of Theorems A and B from Theorem C. Theorem C immediately
implies Theorems A and B. First, we can apply Theorem C twice and see that if g ≥ 3
and n, p ≥ 0, then

NVSZ(g, n+ 1, p+ 1) =⇒ NFO(g, n+ 1, p) =⇒ NVSZ(g + 1, n, p).

Iterating this, we see that if NVSZ(G,n+ (g−G), p+ (g−G)) is true for some G ≥ 3 and
g ≥ G and n, p ≥ 0, then NVSZ(g, n, p) is true. In other words, NVSZ(G) implies NVSZ(g)
for g ≥ G.

As far as Theorem B goes, we can again apply Theorem C twice and see that if g ≥ 3
and n, p ≥ 0, then

¬NVSZ(g, n, p) =⇒ ¬NFO(g − 1, n+ 1, p) =⇒ ¬NVSZ(g − 1, n+ 1, p+ 1).

The proof of the second implication here actually produces a counterexample to NVSZ(g−
1, n + 1, p + 1) using the finite-index point-pushing construction. The input for this con-
struction is obtained from a counterexample to the assertion NFO(g − 1, n+ 1, p). See §4
for more details.
Remark. An amusing property of the above derivation is that it is works whether Conjecture
1.2 holds or not.
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History. Fix some g ≥ 3. There are only a few known examples of finite-index subgroups
Γ < Modpg,n for which H1(Γ;Q) is known to vanish. In [12], Hain verifies this for Γ that
contain the Torelli group, which is the kernel of the action of Modpg,n on H1(Σ0

g,0;Z). This
was later generalized to some deeper subgroups by Boggi [6] and the first author [22].

A related result, which was proven independently by the first author [22] and Bridson
[7], says that if Γ < Modpg,n is a finite index subgroup and Tγ ∈ Modpg,n is a Dehn twist
about a simple closed curve γ, then the image of T kγ in H1(Γ;Q) vanishes for any k such
that T kγ ∈ Γ. This theorem will play an important role in our proof of Theorem C.

We finally should mention Boggi’s recent work on the congruence subgroup problem
for Modpg,n (see [5]). The congruence subgroup problem gives a conjectural classification
of all finite-index subgroups of Modpg,n. Though Boggi’s proof of the congruence subgroup
problem itself appears to be fatally flawed, he does give a correct proof of the following
beautiful result. Let Cpg,n be the curve complex for Σp

g,n (see §2.2.3 for details). A theo-
rem of Harer says that Hk(Cpg,n;Z) = 0 for k in some range. Boggi proved that we also
have Hk(Cpg,n/Γ;Q) = 0 for k in this same range for Γ a finite-index subgroup of Modpg,n.
This result, which was proven using the theory of weights on the cohomology of algebraic
varieties [9], plays a fundamental role in our proof of Theorem C.

Outline. We begin in §2 with a discussion of some preliminary material about mapping
class groups and group homology. Next, in §3 we prove the portion of Theorem C asserting
that Conjecture 1.2 implies Conjecture 1.1 (see Theorem 3.3). Finally, in §4 we prove the
portion of Theorem C asserting that Conjecture 1.1 implies Conjecture 1.2.

2 Preliminaries

This section has two parts. Some facts about group homology are reviewed in §2.1 and
some background about the mapping class group is discussed in §2.2.

2.1 Group homology

A good reference for this material is [8]. We begin with some notation.

Definition. Let G be a group and let M be a vector space upon which G acts.

• The invariants of G acting on M are MG = {x ∈ m | g(x) = x for all g ∈ G}.
• The coinvariants of G acting on M are MG = M/K, where K < M is the subspace

spanned by the set {x− g(x) | x ∈M , g ∈ G}.
The invariants and coinvariants are related by the following lemma, whose proof is an easy
exercise.

Lemma 2.1. Let G be a group and M be a G-vector space. Let M∗ denote the dual of M .
Then (MG)∗ ∼= (M∗)G.
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The next lemma we need is the following, which is a standard consequence of the
existence of the transfer map (see, e.g., [8, Chapter III.9]).

Lemma 2.2. If G1 is a finite index subgroup of G2, then the map H1(G1;Q) → H1(G2;Q)
is a surjection.

If G1 is a normal subgroup ofG2, then G2 acts on G1 and we have the following more precise
lemma, which is an immediate consequence of the Hochschild-Serre spectral sequence.

Lemma 2.3. If G1 is a finite index normal subgroup of G2, then we have H1(G2;Q) ∼=
(H1(G1;Q))G2.

The final result we need gives a decomposition of H1(G) for G acting on a space X.
We need the following definition.

Definition. A group G acts on a simplicial complex X without rotations if for all simplices
s of X, the stabilizer subgroup Gs stabilizes s pointwise.

The theorem we need is as follows. It follows easily from the two spectral sequences given
in [8, Chapter VII.7].

Theorem 2.4. Let a group G act on a connected simplicial complex X without rotations.
Fix a ring R. Assume that H1(X;R) = H1(X/G;R) = 0. Then the natural map

⊕

v∈X(0)

H1(Gv;R) −→ H1(G;R)

is a surjection.

2.2 Surfaces and mapping class groups

A good reference for this material is [10], which contains proofs of all statements for which
we do not give proofs.

2.2.1 Embedding one surface into another

Assume that g ≥ 2 and n, p ≥ 0. Let S be a subsurface of Σp
g,n, and denote by Mod(S) the

mapping class group of S. There is then an induced map φ : Mod(S) → Modpg,n obtained
by extending mapping classes by the identity over Σpg,n \ S. This map is usually injective.
However, in the following situations it is not injective.

• If Σp
g,n \ Int(S) is a punctured disc with boundary component β, then we have a short

exact sequence
1 −→ Z −→ Mod(S) −→ Modpg,n −→ 1. (1)

Here the kernel Z is generated by the Dehn twist Tβ.
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Σp+1
g,n

Σp
g,n

γ
y x

a b c d

Figure 1: a. We can split the Birman exact sequence by a map Modp
g,n ↪→ Modp+1

g,n as shown. b.
A simple closed curve γ ∈ π1(Σ

p
g,b). c. The result of pushing the basepoint around γ. d.

The associated element of Modp+1
g,b is TxT

−1
y , where x and y are as shown.

• If Σp
g,n \ Int(S) is an annulus with boundary components x and y and both x and y

lie in S, then we have a short exact sequence

1 −→ Z −→ Mod(S) −→ (Modpg,n)γ −→ 1. (2)

Here γ is a simple closed curve forming the core of the annulus Σpg,n \ Int(S) and
(Modpg,n)γ is the subgroup of Modpg,n consisting of mapping classes that fix the isotopy
class of γ (as an oriented curve – elements of (Modpg,n)γ cannot reverse the orientation
of γ). Also, Z is generated by TxT−1

y .

2.2.2 Surfaces with boundary and the Birman exact sequence

Assume that g ≥ 2 and n, p ≥ 0. As was discussed in §1, we have the Birman exact
sequence

1 −→ π1(Σp
g,n) −→ Modp+1

g,n −→ Modpg,n −→ 1,

where the map Modp+1
g,n −→ Modpg,n comes from filling in a puncture x of Σp+1

g,n and π1(Σ
p
g,n)

is embedded in Modp+1
g,n as mapping classes that “push” x around loops in Σp

g,n. If n ≥ 1,
then this exact sequence splits via a map Modpg,n ↪→ Modp+1

g,n induced by an embedding
Σp
g,n ↪→ Σp+1

g,n such that Σp+1
g,n \ IntΣp

g,n is homeomorphic to Σ1
0,2. This originally appeared

in [4], and a suitable textbook reference is [10].
We will need the following standard lemma about the mapping classes associated to

certain elements of π1(Σ
p
g,n). A multitwist is a product T k1γ1 · · ·T km

γm
, where the γi are disjoint

simple closed curves and ki ∈ Z.

Lemma 2.5. Consider γ ∈ π1(Σ
p
g,n) that can be realized by a simple closed curve. Then

the element of Modp+1
g,n associated to γ is a multitwist.

For example, if γ ∈ π1(Σ
p
g,n) is as indicated in Figure 1.b, then as indicated in Figure 1.c

the mapping class associated to γ equals TxT−1
y , where x and y are the curves indicated in

Figure 1.d.
To help us recognize elements of π1(Σ

p
g,n) that can be realized by simple closed curves,

the following well-known lemma will be useful.

Lemma 2.6. Fix g, n, p ≥ 0, and let v0 ∈ Int(Σp
g,n). Consider γ ∈ π1(Σ

p
g,n, v0) such that

γ is freely homotopic to a simple closed curve. Then γ can be realized by a based simple
closed curve.
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Proof. The conditions imply that there is some γ′ ∈ π1(Σ
p
g,n, v0) that can be realized

by a based simple closed curve such that γ′ is conjugate to γ. Puncturing Σp
g,n at v0,

the group Modp+1
g,n acts on π1(Σ

p
g,n, v0). The Dehn-Nielsen-Baer theorem (see, e.g., [10])

implies that the image of the resulting map Modp+1
g,n → Aut(π1(Σ

p
g,n, v0)) contains all inner

automorphisms. This implies that there is some f ∈ Modp+1
g,n such that f(γ′) = γ. Since

γ′ can be realized by a simple closed curve, we conclude that γ can as well.

2.2.3 The curve complex

We will need some results about the curve complex. This space, which was introduced by
Harvey [14], plays a role in the study of the mapping class group analogous to the role of
the Tits building of an algebraic group. We start with the definition.

Definition. Fix g, n, p ≥ 0. A simple closed curve on Σp
g,n is nontrivial if it is not homotopic

to a point, a puncture, or a boundary component. The curve complex on Σp
g,n, denoted

Cpg,n, is the simplicial complex whose k-simplices are sets {γ0, . . . , γk} of homotopy classes
of nontrivial simple closed curves on Σpg,n that can be realized disjointly.

We will also need the following space.

Definition. The nonseparating curve complex, denoted CNSpg,n, is the subcomplex of Cpg,n
consisting of simplices {γ0, . . . , γk} such that each γi is the homotopy class of a nonsepa-
rating simple closed curve.

For us, the key result about Cpg,n is the following, which is due to Harer [13].

Theorem 2.7 ([13]). Fix g, n, p ≥ 0. The space Cpg,n is (2g − 2)-connected if n = p = 0
and is (2g + n+ p− 3)-connected if n+ p > 0.

We will also need the following folklore lemma (see, e.g., [21, Lemma A.2]), which while
not strictly about the curve complex is in the same spirit.

Lemma 2.8. Fix g ≥ 1 and n, p ≥ 0. Let γ and γ′ be simple closed nonseparating curves
on Σp

g,n. There then exists a sequence η1, . . . , ηk of simple closed nonseparating curves on
Σp
g,n such that γ = η1, such that γ′ = ηk, and such that ηi and ηi+1 intersect exactly once

for 1 ≤ i < k.

2.2.4 Some results on finite-index subgroups

Here we collect some basic results on finite-index subgroups of the mapping class group.
We start with the following example, which will play a small role in our proof.

Definition. The level L subgroup of Modpg,n(L), denoted Modpg,n(L), is the kernel of the
action of Modpg,n(L) on H1(Σ

p
g,n;Z/L).

Remark. There are other possible definitions of Modpg,n(L) when n+ p ≥ 2, but the above
suffices for our purposes.
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Next, we will need the following theorem, which was proven independently by Bridson
[7] and the second author [22].

Theorem 2.9 ([7, 22]). Fix g ≥ 3 and n, p ≥ 0. Let Γ be a finite-index subgroup of Modpg,n,
let γ be a simple closed curve on Σp

g,n, and let k ≥ 1 be such that T kγ ∈ Γ. Then the image
of T kγ in H1(Γ;Q) is zero.

In fact, we will need the following small extension of Theorem 2.9.

Corollary 2.10. Fix g ≥ 3 and n, p ≥ 0. Let Γ be a finite-index subgroup of Modpg,n and
let M ∈ Modpg,n be a multitwist such that M ∈ Γ. Then the image of M in H1(Γ;Q) is
zero.

Proof. If M = T k1γ1 · · ·T km
γm

is a multitwist, then for some K ≥ 1 we have TKki
γi

∈ Γ for
1 ≤ i ≤ m. Since the Tγi commute, we have MK = TKk1γ1 · · ·TKkm

γm
. Theorem 2.9 says that

the image of TKki
γi

in H1(Γ;Q) vanishes for 1 ≤ i ≤ m, so the image of MK (and thus M)
does as well.

The final theorem we need is the following deep result of Boggi (cf. [3, Lemma 2.6]).

Theorem 2.11 ([5, Lemma 5.5]). Let Γ be a finite-index subgroup of Modpg,n. Then
Hk(Cpg,n/Γ;Q) = 0 for 1 ≤ k ≤ 2g − 2 if n + p = 0 and for 1 ≤ k ≤ 2g + n + m − 3
if n+ p > 0.

Remark. The proof of the main theorem of [5] has a fatal flaw, but the proof of Theorem
2.11 is correct. See [1] for details.

Remark. Harer [13] also proved that CNSpg,n is (g−2)-connected, and one can extract from
Boggi’s paper [5] a proof that Hk(CNSpg,n/Γ;Q) = 0 for 1 ≤ k ≤ g− 2 and Γ a finite-index
subgroup of Modpg,n. Using this, we could simplify our proof of Lemma 3.2; however, we
have instead chosen to avoid it by using an elementary topological argument.

3 The mapping class group (conditionally) does not virtu-
ally surject onto Z

In this section, we prove that Conjecture 1.2 implies Conjecture 1.1. The actual proof is
contained in §3.3 (see Theorem 3.3). This is proceeded by §3.1 and §3.2, which prove two
necessary lemmas. The proof has some annoying features when g = 3. To avoid having to
deal with this case separately, we make the following definition.

Definition. Fix g, n, p ≥ 0, and let Γ be a subgroup of Modpg,n. Let T (Γ) be the subgroup
of Γ generated by the set

{M | M ∈ Modpg,n is a multitwist, M ∈ Γ}

and define Ĥ1(Γ;Q) = H1(Γ/T (Γ);Q).

Remark. If g ≥ 3 and Γ is finite-index, then Corollary 2.10 implies that Ĥ1(Γ;Q) =
H1(Γ;Q).
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3.1 Filling in punctures

In this section, we prove the following lemma, which says that the portion of a finite-index
subgroup Γ < Modpg,n living in the point-pushing subgroup (i.e. the kernel of the Birman
exact sequence) goes to zero in Ĥ1(Γ;Q).

Lemma 3.1. Fix g ≥ 2 and n ≥ 0 and p ≥ 1. Assume that Conjecture 1.2 holds for
Σp−1
g,n . Let Γ < Modpg,n be a finite-index subgroup. Fix a puncture of Σp

g,n and thus via
the Birman exact sequence a point-pushing subgroup π1(Σ

p−1
g,n ) < Modpg,n. Then the map

H1(Γ ∩ π1(Σ
p−1
g,n );Q) → Ĥ1(Γ;Q) is the zero map.

Proof. Let K be a finite-index characteristic subgroup of π1(Σ
p−1
g,n ) such that K < Γ ∩

π1(Σ
p−1
g,n ). For example, K could be the intersection of all index [π1(Σ

p−1
g,n ) : Γ ∩ π1(Σ

p−1
g,n )]

subgroups of π1(Σ
p−1
g,n ). Lemma 2.2 says that the map H1(K;Q) → H1(Γ ∩ π1(Σ

p−1
g,n ;Q) is

surjective, so it is enough to show that the map H1(K;Q) → Ĥ1(Γ;Q) is the zero map.
This will have two steps.

Step 1. The map H1(K;Q) → Ĥ1(Γ;Q) factors through VK .

Let ρ : S → Σp−1
g,n be the finite cover of Σp−1

g,n corresponding to K and let B <
H1(K;Q) ∼= H1(S;Q) be the boundary subspace. Thus by definition VK = H1(K;Q)/B, so
we must show that B goes to 0 in Ĥ1(Γ;Q). To do this, we must be careful with basepoints.
Let v be the basepoint in Σp−1

g,n and let vS ∈ S be the lift of v to S such that the image of
the map ρ∗ : π1(S, vS) → π1(Σ

p−1
g,n , v) is K.

Let δS be either a boundary component of S or a simple closed curve in S that is freely
homotopic to a puncture of S. The subspace B is generated by the homology classes of
such δS . Chasing through the definitions, it is enough to find some ηS ∈ π1(S, vS) with the
following two properties.

• ηS is freely homotopic to δS .

• Let
η = ρ∗(ηS) ∈ K < π1(Σp−1

g,n , v).

We then want the element of Γ < Modpg,n corresponding to η to be a multitwist.

By Lemma 2.5, this second property will follow if we can show that η = µk for some
µ ∈ π1(Σ

p−1
g,n , v) that can be realized by a based simple closed curve.

Pick a point qS ∈ δS . Let γS1 be a path in S from vS to qS and let γS2 be an embedded
qS-based loop in S that goes once around δS in the positive direction. Define ηS ∈ π1(S, vS)
to be the homotopy class of the path γS1 · γS2 · γS1 . Clearly ηS is freely homotopic to δS .

Let η = ρ∗(ηS) and δ = ρ(δS). If δS is a boundary component of S, then δ is a
boundary component of Σp−1

g,n . If δS is freely homotopy to a puncture of S, then after
possibly modifying δS by a homotopy, we can assume that δ is a simple closed curve freely
homotopic to a puncture of Σp−1

g,n . The map ρ|δS : δS → δ is a k-fold cover for some k ≥ 1.
Let q = ρ(qS) ∈ δ and γ1 = ρ∗(γS1 ), so γ1 is a path in Σp−1

g,n from v to q. Also, let γ2 be an

10



embedded q-based loop in Σp−1
g,n that goes once around δ in the positive direction. By the

above, we have that

η = ρ∗(γS1 ) · ρ∗(γS2 ) · ρ∗(γS1 ) = γ1 · γk2 · γ1 = (γ1 · γ2 · γ1)
k.

Setting
µ = γ1 · γ2 · γ1 ∈ π1(Σp−1

g,n , v),

the curve µ is freely homotopic to the simple closed curve γ2, so by Lemma 2.6 we get that
µ can in fact be realized by a based simple closed curve, as desired.

Step 2. The induced map VK → H1(Γ;Q) is the zero map.

Since the conjugation action of Γ on itself induces the trivial action on H1(Γ;Q), the
map in question factors through (VK)Γ. We will prove that (VK)Γ = 0. Since we are
assuming that Conjecture 1.2 holds for Σp−1

g,n , we know that Γ does not fix any nonzero
vector in VK , i.e. that (VK)Γ = 0. As in Step 1, let S be the cover of Σp−1

g,n corresponding to
K. Observe that VK ∼= H1(S′;Q), where S′ is the closed surface obtained from S by filling
in all of its punctures and gluing discs to all of its boundary components. In particular,
VK is naturally isomorphic to its dual via the algebraic intersection pairing, so by Lemma
2.1 we can conclude that (VK)Γ = 0, as desired.

3.2 Everything is contained in nonseparating curve stabilizers

In this section, we prove Lemma 3.2 below, which says that if Γ < Modpg,n is a finite-index
subgroup, then H1(Γ;Q) is “concentrated” in the stabilizers of nonseparating simple closed
curves. We need the following definition.

Definition. Let Γ be a subgroup of Modpg,n.

• If γ is a simple closed curve on Σp
g,n, then let

Γγ = {g ∈ Γ | g fixes the isotopy class of γ}.

• If S is a subsurface of Σp
g,n, then let ΓS be the intersection of Γ with the image of

the natural map Mod(S) → Modpg,n.

We can now state our lemma.

Lemma 3.2. Fix g ≥ 3 and n, p ≥ 0. Assume that Conjecture 1.2 holds for Σp
g−1,n+1. Let

Γ < Modpg,n be a finite-index subgroup and let γ be a nonseparating simple closed curve on
Σp
g,n. Then the natural map H1(Γγ ;Q) → H1(Γ;Q) is surjective.

Proof. Lemma 2.2 implies that the vertical maps in the commutative diagram

H1((Γ ∩Modpg,n(3))γ ;Q) −−−−→ H1(Γ ∩Modpg,n(3);Q)y
y

H1(Γγ ;Q) −−−−→ H1(Γ;Q),

11



δ δ

T1 T1

T2

T2

γ

a b

Figure 2: a. The genus of T2 is positive, so we can find a nonseparating curve γ in it. b. The
genus of T2 is 0, so T1 has genus g ≥ 3 and strictly fewer than n+p boundary components/punctures.

are surjective. It is therefore enough to show that the map

H1((Γ ∩Modpg,n(3))γ ;Q) −→ H1(Γ ∩Modpg,n(3);Q)

is surjective. Replacing Γ with Γ∩Modpg,n(3), we can thus assume without loss of generality
that Γ < Modpg,n(3). The proof will have four steps. For the first two, recall that Cpg,n is
the curve complex and CNSpg,n is the nonseparating curve complex.
Remark. One could combine the proofs of Steps 1 and 2 by appealing to the fact that
Hi(CNSpg,n/Γ;Q) = 0 for 1 ≤ i ≤ g − 2, which as we said after the statement of Theorem
2.11 can be extracted from Boggi’s work. We have instead decided to appeal to Theorem
2.11, which is explicitly proven in Boggi’s paper. This necessitates the short topological
argument in Step 2.

Step 1. The map ⊕

γ∈(Cp
g,n)(0)

H1(Γγ ;Q) → H1(Γ;Q)

is a surjection.

Since Γ < Modpg,n(3), the group Γ acts on Cpg,n without rotations. Since g ≥ 3, Theorems
2.7 and 2.11 say that

H1(Cpg,n;Q) = H1(Cpg,n/Γ;Q) = 0.

The desired conclusion thus follows from Theorem 2.4.

Step 2. The map ⊕

γ∈(CNSp
g,n)(0)

H1(Γγ ;Q) → H1(Γ;Q) (3)

is a surjection.

Assume as an inductive hypothesis that the claim is true for all smaller values of n and
p (this assumption is vacuous for n = p = 0). As notation, for φ ∈ Γ we will write [φ]Γ
for the associated element of H1(Γ;Q). By Step 1, we must show that for every nontrivial
separating curve δ, the image of the map H1(Γδ;Q) → H1(Γ;Q) is contained in the image
of the map (3). Consider φ ∈ Γδ. It is enough to show that [φk]Γ is in the image of the
map in (3) for some k ≥ 1.

Assume that δ separates Σp
g,n into subsurfaces T1 and T2. Replacing φ by φ2 if necessary,

we can assume that φ does not exchange T1 and T2 (up to homotopy). In other words, we

12



γ
S S S Si

ηi
ηi+1

a b c d

Figure 3: a. S is a subsurface of Σp
g,n such that S ∼= Σp

g−1,n+1 and γ is a nonseparating curve on Σp
g,n

that lies entirely within Σp
g,n \ Int(S) ∼= Σ1,1. b. The complement X of a regular neighborhood

of γ. c. The result X ′ of gluing a punctured disc to X. d. Si is the complement of a regular
neighborhood of ηi ∪ ηi+1.

can write φ = f1 · f2, where fi ∈ (Modpg,n)Ti (we will say that fi is “supported” on Ti).
Since Γ is a finite-index subgroup of Modpg,n, there exists some k ≥ 1 such that fki ∈ Γ for
i = 1, 2. The mapping classes f1 and f2 commute, so φk = fk1 · fk2 . It is therefore enough
to show that [fki ]Γ is in the image of (3) for i = 1, 2.

By symmetry, it is enough to show this for i = 1. There are two cases.

• The genus of T2 is positive (see Figure 2.a). In this case, we can find some simple
closed nonseparating curve γ in T2. Since f1 is supported on T1, the homotopy class
of γ is fixed by fk1 . In other words, fk1 ∈ Γγ , so [fk1 ]Γ is in the image of (3).

• The genus of T2 is zero (see Figure 2.b). In this case, the genus of T1 is g, which is at
least 3. Moreover, since δ is not homotopic to a boundary component or puncture,
the number of punctures/boundary components of T1 must be strictly less than n+p.
Letting CNS(T1) be the nonseparating curve complex of T1, induction gives that the
map ⊕

γ∈(CNS(T1))(0)

H1((ΓT1)γ ;Q) → H1(ΓT1 ;Q)

is surjective. In particular, its image must contain the element of H1(ΓT1 ;Q) corre-
sponding to fk1 . This implies that the image of (3) also must contain [fk1 ]Γ.

Step 3. Let S be an embedded subsurface of Σp
g,n such that S ∼= Σp

g−1,n+1. Let γ be a
nonseparating curve on Σp

g,n that lies entirely within Σp
g,n \ Int(S) ∼= Σ1,1 (see Figure 3.a).

Then the natural map
Ĥ1(ΓS ;Q) −→ Ĥ1(Γγ ;Q)

is a surjection.

We make the following definitions.

• Let X be the complement of a regular neighborhood of γ ⊂ Σp
g,n (see Figure 3.b), so

X ∼= Σp
g−1,n+2.

• LetX ′ be the result of gluing a punctured disc to one of the two boundary components
of X that are not boundary components of Σpg,n (see Figure 3.c), so X ′ ∼= Σp+1

g−1,n+1.

• Let X ′′ be the result of filling in the puncture on the glued-on disc in X ′, so X ′′ ∼=
Σp
g−1,n+1.

13



We have an embedding S ↪→ Σp
g,n. As shown in Figures 3.a–c, we can arrange for there to

exist embeddings S ↪→ X and S ↪→ X ′ and S ↪→ X ′′ such that the diagram

Σp
g,n Xoo // X ′ // X ′′

S

OO =={{{{{{{{{

66nnnnnnnnnnnnnnnn

44iiiiiiiiiiiiiiiiiiiiiiii

commutes. There is an induced commutative diagram

(Modpg,n)γ Mod(X)oo // Mod(X ′) // Mod(X ′′)

Mod(S)

OO 88qqqqqqqqqqq

44hhhhhhhhhhhhhhhhhhhhh

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

of mapping class groups. Define ΓX ⊂ Mod(X) to be the pullback of Γγ ⊂ (Modpg,n)γ to
Mod(X). Also, define Γ′X to be the image of ΓX in Mod(X ′) and Γ′′X to be the image of
Γ′X in Mod(X ′′). We then have a commutative diagram

Γγ ΓXoo // Γ′X // Γ′′X

ΓS

OO >>||||||||

66nnnnnnnnnnnnnnnn

44iiiiiiiiiiiiiiiiiiiiiiii

Passing to first homology, we have a commutative diagram

Ĥ1(Γγ ;Q) Ĥ1(ΓX ;Q)oo // Ĥ1(Γ′X ;Q) // Ĥ1(Γ′′X ;Q)

H1(ΓS ;Q)

OO 88ppppppppppp

33hhhhhhhhhhhhhhhhhhhhhh

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Our goal is to show that the map H1(ΓS ;Q) → Ĥ1(Γγ ;Q) is a surjection. To do this,
it is enough to show that all the maps on the first row of this commutative diagram are
isomorphisms and that the map H1(ΓS ;Q) → Ĥ1(Γ′′X ;Q) is a surjection. We deal with each
of these claims in turn.

Claim 1. The map Ĥ1(ΓX ;Q) → Ĥ1(Γγ ;Q) is an isomorphism.

Restricting exact sequence (2) to ΓX , we obtain a short exact sequence

1 −→ Z −→ ΓX −→ Γγ −→ 1.

Here Z is generated by (TxT−1
y )k = T kxT

−k
y , where x and y are the boundary components

of Σb
g,n \ Int(X) and k ≥ 1. Since the kernel Z is generated by a multitwist, we conclude

that the map Ĥ1(ΓX ;Q) → Ĥ1(Γγ ;Q) is an isomorphism.

Claim 2. The map Ĥ1(ΓX ;Q) → Ĥ1(Γ′X ;Q) is an isomorphism.

14



Restricting exact sequence (1) to ΓX , we obtain a short exact sequence

1 −→ Z −→ ΓX −→ Γ′X −→ 1.

Here Z is generated by T lβ, where β is the boundary component of X to which we are gluing
a punctured disc to obtain X ′ and l ≥ 1. Since the kernel Z is generated by a multitwist,
we conclude that the map Ĥ1(ΓX ;Q) → Ĥ1(Γ′X ;Q) is an isomorphism.

Claim 3. The map Ĥ1(Γ′X ;Q) → Ĥ1(Γ′′X ;Q) is an isomorphism.

We have a Birman exact sequence

1 −→ π1(Σ
p
g−1,n+1) −→ Mod(X ′) −→ Mod(X ′′) −→ 1. (4)

Restricting this to Γ′X , we get a short exact sequence

1 −→ π1(Σ
p
g−1,n+1) ∩ Γ′X −→ Γ′X −→ Γ′′X −→ 1. (5)

Lemma 3.1 says that the map H1(π1(Σ
p
g−1,n+1) ∩ Γ′X ;Q) → Ĥ1(Γ′X ;Q) is the zero map, so

we conclude that the map Ĥ1(Γ′X ;Q) → Ĥ1(Γ′′X ;Q) is an isomorphism.

Claim 4. The map H1(ΓS ;Q) → Ĥ1(Γ′′X ;Q) is a surjection.

Since the map Mod(S) → Mod(X ′′) is an isomorphism, one might first think that the
map ΓS → Γ′′X is an isomorphism. However, this need not hold. Indeed, composing the
isomorphism Mod(X ′′) → Mod(S) with the map Mod(S) → Mod(X ′) gives a splitting of
exact sequence (4). If the map ΓS → Γ′′X were an isomorphism, then in a similar way we
would obtain a splitting of exact sequence (5), which need not split. However, chasing
through the definitions, we see that the image of ΓS in Γ′′X is a finite-index subgroup, so
Lemma 2.2 implies that the map H1(ΓS ;Q) → Ĥ1(Γ′′X ;Q) is a surjection.

Step 4. Let γ be a nonseparating curve on Σp
g,n. Then the natural map H1(Γγ ;Q) →

H1(Γ;Q) is a surjection.

Let γ′ be another nonseparating curve on Σpg,n. By Step 2, it is enough to show that
the images of the maps

H1(Γγ ;Q) → H1(Γ;Q) and H1(Γγ′ ;Q) → H1(Γ;Q) (6)

are the same. By Lemma 2.8, there is a sequence η1, . . . , ηk of simple closed nonseparating
curves on Σp

g,n such that γ = η1, such that γ′ = ηk, and such that ηi and ηi+1 intersect
exactly once for 1 ≤ i < k. To show that the images of the maps in (6) are the same, it is
thus enough to show that the images of the maps

H1(Γηi ;Q) → H1(Γ;Q) and H1(Γηi+1 ;Q) → H1(Γ;Q) (7)

are the same for 1 ≤ i < k. Since g ≥ 3, Corollary 2.10 implies that these two maps
factor through Ĥ1(Γηi ;Q) and Ĥ1(Γηi+1 ;Q), respectively. Let Si be the complement of

15



a regular neighborhood of ηi ∪ ηi+1 (see Figure 3.d). We thus have Si ∼= Σp
g−1,n+1 and

ηi, ηi+1 ⊂ Σp
g,n \ Int(Si) ∼= Σ1,1. We have a commutative diagram

ΓSi −−−−→ Γηiy
y

Γηi+1 −−−−→ Γ

Step 3 says that the maps Ĥ1(ΓSi ;Q) → Ĥ1(Γηi ;Q) and Ĥ1(ΓSi ;Q) → Ĥ1(Γηi+1 ;Q) are
surjections, so we conclude that the maps in (7) have the same image, as desired.

3.3 The proof

We finally are in a position to prove that Conjecture 1.2 implies Conjecture 1.1.

Theorem 3.3. Fix g ≥ 3 and n, p ≥ 0. Assume that Conjecture 1.2 holds for Σp
g−1,n+1.

Let Γ < Modpg,n be a finite-index subgroup. Then H1(Γ;Q) = 0.

Proof. By Lemma 2.2, we can assume without loss of generality that Γ is a normal subgroup
of Modpg,n. Lemma 2.3 then implies that

H1(Modpg,n;Q) ∼= (H1(Γ;Q))Modp
g,n
.

Since g ≥ 3, the group Modpg,n is perfect, so H1(Modpg,n;Q) = 0. It is thus enough to show
that Modpg,n acts trivially on H1(Γ;Q). The group Modpg,n is generated by Dehn twists Tγ
about nonseparating curves γ. It is thus enough to show that Tγ acts trivially on H1(Γ;Q)
for γ nonseparating. Clearly the conjugation action of Tγ on Γ restricts to the identity on
the subgroup Γγ < Γ, so the desired result is an immediate consequence of Lemma 3.2,
which says that the map H1(Γγ ;Q) → H1(Γ;Q) is surjective for all nonseparating curves
γ.

4 A (conditional) construction of finite-index subgroups of
the mapping class group that surject onto Z

We close the paper by proving if Conjecture 1.2 is false, then Conjecture 1.1 is also false.
Assume, therefore, that g ≥ 2 and n ≥ 1 and p ≥ 0. Let K < π1(Σ

p
g,n) be a counterexample

to Conjecture 1.2. There thus exists a nonzero vector v0 ∈ VK such that the Modp+1
g,n -orbit of

v0 is finite. Our goal is to find a finite-index subgroup Γ < Modp+1
g,n such that H1(Γ;Q) 6= 0.

Consider the Birman exact sequence

1 −→ π1(Σp
g,n) −→ Modp+1

g,n −→ Modpg,n −→ 1.

Since n ≥ 1, this exact sequence splits. Fixing a splitting, we obtain an isomorphism

Modp+1
g,n

∼= π1(Σp
g,n)oModpg,n . (8)
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We remark that the action of Modpg,n on π1(Σ
p
g,n) in (8) is not natural (it depends on the

choice of splitting).
Let ρ : Modp+1

g,n → Aut(VK) be the higher Prym representation. Since the orbit of
v0 ∈ VK is finite, we can find a finite-index subgroup G′ < Modp+1

g,n such that ρ(g)(v0) = v0
for all g ∈ G′. Regarding Modpg,n as a subgroup of Modp+1

g,n via the decomposition (8),
let G = G′ ∩ Modpg,n. Since K < π1(Σ

p
g,n) is characteristic, we can form the finite-index

subgroup
Γ = K oG < π1(Σp

g,n)oModpg,n ∼= Modp+1
g,n .

From its semidirect product decomposition, we get that

H1(Γ;Q) ∼= H1(G;Q)⊕ (H1(K;Q))G.

To prove that H1(Γ;Q) 6= 0, it is thus enough to prove that (H1(K;Q))G 6= 0. Dually, by
Lemma 2.1 it is enough to construct a nonzero homomorphism ψ : H1(K;Q) → Q which
is invariant under the natural G-action on Hom(H1(K;Q),Q).

Recall that VK = H1(K;Q)/B where B is the boundary subspace of H1(K;Q). It
follows that VK is the first rational homology group of the closed surface that results from
taking the finite cover of Σp

g,b corresponding to K < π1(Σ
p
g,b) and gluing discs to all of its

boundary components and filling in all of its punctures. In particular, VK is a symplectic
vector space, i.e. it has a nondegenerate alternating pairing i : VK × VK → Q, namely the
algebraic intersection form. Define ψ : H1(K;Q) → Q to be the composition

H1(K;Q) −→ VK
i(v0,·)−→ Q.

Since i is nondegenerate and v0 6= 0, the map ψ is nonzero. Also, since v0 is invariant
under G, it follows that ψ is invariant under G, as desired.

A Appendix : A counterexample in genus 1

In this appendix, we sketch a counterexample to Conjecture 1.2 in genus 1. Let Q8 =
{±1,±i,±j,±k} be the 8-element quaternion group. We have i2 = −1 and ij = k, so Q8

is generated by i and j. It is well-known that Q8 has the presentation

Q8 = 〈i, j | i4 = 1, i2 = j2, j−1ij = i−1〉. (9)

There is a surjection ρ : π1(Σ1
1) → Q8 taking a free basis of π1(Σ1

1) to i and j. Let
K = ker(ρ). By computing the action of the usual generators for Aut(F2) on the normal
generators for K given in (9), one can check that K is characteristic in π1(Σ1

1). We will
prove that the action of Mod2

1 on VK has nontrivial finite orbits. In fact, it is a little
easier to deal with a subgroup of Mod2

1. Let Γ ⊂ Mod2
1 be the kernel of the natural map

Mod2
1 → Aut(Q8). Since Γ is a finite-index subgroup of Mod2

1, to prove that the action of
Mod2

1 on VK has nontrivial finite orbits, it is enough to show that the action of Γ on VK
has nontrivial finite orbits.
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Representation theory of the quaternion group. We first review the representation
theory of Q8. The group Q8 is an extension of its abelianization (Z/2)2 by its center Z/2:

1 −→ Z/2 −→ Q8 −→ (Z/2)2 −→ 1.

Over Q, the following are all the irreducible representations of Q8 (see [23, Exercise 12.3]).

• There are four 1-dimensional irreducible representations that factor through the
abelianization (Z/2)2.

• Regarding the rational quaternions as a 4-dimensional vector space HQ over Q, the
group Q8 acts on HQ by left multiplication. This makes HQ into an irreducible
representation of Q8.

By Schur’s lemma, the endomorphism ring End(HQ) is a division ring over Q. In fact, it
is an easy exercise to see that End(HQ) = HQ, where HQ acts on itself on the right.

Decomposing VK . The cover of Σ1
1 corresponding to K is a genus 3 surface with 4

punctures. By definition, we have VK ∼= H1(Σ3;Q). The group Q8 acts on VK , and we
claim that as a Q8-representation we have VK = Q2 ⊕ HQ; here Q2 is a two-dimensional
trivial representation of Q8. First, there is a Q8-equivariant map ρ : VK → Q2 induced
by the branched cover Σ3 → Σ1 which comes from filling in the punctures in the cover
Σ4

3 → Σ1
1 corresponding to K. Lemma 2.2 says that the map H1(Σ4

3;Q) → H1(Σ1
1;Q) is

surjective, which implies that ρ is surjective. Hence VK = Q2 ⊕W for some 4-dimensional
representation W of Q8. Other than the identity, no finite-order orientation-preserving
homeomorphism of a surface of genus at least 2 can act trivially on homology (see the
proof of [10, Theorem 6.8], where this is deduced from the Lefschetz fixed point theorem).
This implies that the center of Q8 acts nontrivially on VK , so the action of Q8 on W cannot
factor through (Z/2)2. We conclude that W = HQ.

Finite orbits. The actions of Q8 and Γ on VK ∼= H1(Σ3;Q) come from homomorphisms
i : Q8 → Sp6(Q) and j : Γ → Sp6(Q) whose images lie in Sp6(Z). Let G ⊂ Sp6(Q) be the
centralizer of i(Q8), so G preserves the decomposition VK = Q2 ⊕HQ. The action of Γ on
VK commutes with the action of Q8, so j(Γ) ⊂ G ∩ Sp6(Z) (this is where we use the fact
that Γ acts trivially on Q8). We therefore get actions of Γ on the subrepresentations Q2

and HQ of VK .
The action of Γ on Q2 can be identified with the action on H1(Σ1

1;Q) arising from the
composition

Γ ↪→ Mod2
1 −→ Mod1

1 −→ Sp2(Q) = SL2(Q);

here the second map arises from filling in the puncture of Σ2
1 which corresponds to the

basepoint of π1(Σ1
1). The action of Γ on the subrepresentation HQ of VK yields a homo-

morphism ψ : Γ → End(HQ) = HQ. Since every symplectic matrix has determinant 1, the
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image ψ(Γ) lies in the group of unit quaternions. Also, ψ fits into a commutative diagram

Γ
j

//

ψ

""

G ∩ Sp6(Z) //
Ä _

²²

End(HQ) = HQ

G

66mmmmmmmmmmmmmmm

This implies that ψ(Γ) is a discrete subgroup of the unit quaternions, so it must be finite.
In other words, the action of Γ on HQ ⊂ VK factors through a finite group, so all of its
orbits are finite.
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