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Abstract. Putman and Wieland conjectured that if Σ̃ → Σ is a finite branched cover
between closed oriented surfaces of sufficiently high genus, then the orbits of all nonzero

elements of H1(Σ̃;Q) under the action of lifts to Σ̃ of mapping classes on Σ are infinite.

We prove that this holds if H1(Σ̃;Q) is generated by the homology classes of lifts of simple

closed curves on Σ. We also prove that the subspace of H1(Σ̃;Q) spanned by such lifts is
a symplectic subspace. Finally, simple closed curves lie on subsurfaces homeomorphic to

2-holed spheres, and we prove that H1(Σ̃;Q) is generated by the homology classes of lifts
of loops on Σ lying on subsurfaces homeomorphic to 3-holed spheres.

1. Introduction

Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces. The homology

of Σ̃ encodes subtle information about the mapping class group of Σ, and over the last
decade has been intensely studied [5, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20]. Much of this is
motivated by a conjecture of Putman–Wieland [20] we discuss below. In this note, we prove

this conjecture for covers Σ̃ such that H1(Σ̃;Q) is generated by certain simple elements,

and also prove that in general H1(Σ̃;Q) is generated by slightly more complicated elements.

1.1. Putman–Wieland conjecture. Mark Σ at each branch point of the branched cover

π : Σ̃ → Σ. Let Mod(Σ) be the pure mapping class group of Σ, i.e., the group of isotopy
classes of orientation-preserving homeomorphisms of Σ that fix each marked point. There is

a finite-index subgroup Mod(Σ, Σ̃) of Mod(Σ) that can be lifted to Σ̃ to give a well-defined

action of Mod(Σ, Σ̃) on H1(Σ̃;Q). Putman–Wieland [20] made the following conjecture.

Conjecture 1.1 ([20]). Let the notation be as above, and assume that the genus of Σ is

sufficiently large.1 Consider some nonzero v⃗ ∈ H1(Σ̃;Q). Then the Mod(Σ, Σ̃)-orbit of v⃗ is
infinite.

The main theorem of [20] says that this holds if and only if the virtual first Betti number
of the mapping class group is 0 when the genus is sufficiently large, which is a well-known
conjecture of Ivanov [7].

1.2. Simple closed curve homology. To prove Conjecture 1.1, it is natural to try to

find generators for H1(Σ̃;Q). A first idea is that H1(Σ̃;Q) might be generated by lifts of

simple closed curves. Define the simple closed curve homology of Σ̃, denoted Hscc
1 (Σ̃;Q),

to be the subspace of H1(Σ̃;Q) spanned by the homology classes of loops γ̃ on Σ̃ that
avoid the branch points and project to simple closed curves γ on Σ. The restriction of the

branched covering map π : Σ̃ → Σ to γ̃ is thus a possibly nontrivial cover γ̃ → γ.

Unfortunately, this need not be all of H1(Σ̃;Q). For all closed surfaces Σ with π1(Σ)

nonabelian, Malestein–Putman [15, Theorem B] constructed finite branched covers Σ̃ → Σ
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such that Hscc
1 (Σ̃;Q) ̸= H1(Σ̃;Q). More recently, Klukowski [9] constructed unbranched

covers with this property.2 Our first theorem is that Conjecture 1.1 does hold if if

Hscc
1 (Σ̃;Q) = H1(Σ̃;Q).

Theorem A. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces.

Consider some nonzero v⃗ ∈ Hscc
1 (Σ̃;Q). Then the Mod(Σ, Σ̃)-orbit of v⃗ is infinite. In

particular, if Hscc
1 (Σ̃;Q) = H1(Σ̃;Q) then Conjecture 1.1 holds for π : Σ̃ → Σ.

This suggests that the examples from [15] and [9] might be good places to look for
counterexamples to Conjecture 1.1.

1.3. Relationship to previous work. Conjecture 1.1 has been proved in a variety of

cases; see,3 e.g., [5, 11, 12, 13, 14]. However, we know very little about when Hscc
1 (Σ̃;Q) =

H1(Σ̃;Q). The only general result we are aware of is that this holds when Σ̃ → Σ is a
finite unbranched abelian cover. This is implicit in work of Looijenga [14], and we provide
a self-contained proof in Proposition 5.3 below.4 Beyond this, it is unclear which known
cases of Conjecture 1.1 follow from Theorem A.

Remark 1.2. It would be interesting to extend this to prove that Hscc
1 (Σ̃;Q) = H1(Σ̃;Q)

for finite branched abelian covers. □

Next, let π : Σ̃ → Σ be one of the examples from [15] or [9] where Hscc
1 (Σ̃;Q) ̸= H1(Σ̃;Q).

Below in Theorem B we will prove that Hscc
1 (Σ̃;Q) is a symplectic subspace of H1(Σ̃;Q), so

H1(Σ̃;Q) = Hscc
1 (Σ̃;Q)⊕Hscc

1 (Σ̃;Q)⊥.

Theorem A says that the Mod(Σ, Σ̃)-orbit of all nonzero v⃗ ∈ Hscc
1 (Σ̃;Q) is infinite. It

turns out that there are also nonzero v⃗ ∈ Hscc
1 (Σ̃;Q)⊥ whose Mod(Σ, Σ̃)-orbits are infinite.

Indeed, letting D be the deck group of π : Σ̃ → Σ, it follows from the constructions

in [15] and [9] that some D-isotypic subspace V of H1(Σ̃;Q) lies in Hscc
1 (Σ̃;Q)⊥, and

Landesman–Litt [12] proved that some nonzero v⃗ ∈ V has an infinite Mod(Σ, Σ̃)-orbit.

1.4. Symplectic subspace. We next clarify the nature of the subspace Hscc
1 (Σ̃;Q) of

H1(Σ̃;Q). By Poincaré duality, the algebraic intersection form ω on H1(Σ̃;Q) is a symplectic

form, i.e., an alternating bilinear form that induces an isomorphism between H1(Σ̃;Q) and

its dual. A subspace V of H1(Σ̃;Q) is a symplectic subspace if the restriction of ω to V is a
symplectic form. We will prove the following:

Theorem B. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces.

Then Hscc
1 (Σ̃;Q) is a symplectic subspace of H1(Σ̃;Q).

In fact, we will prove something more general. A nontrivial simple closed curve on Σ is a
simple closed curve γ that avoids the marked points and does not bound a disk containing
at most one marked point. We will always consider such curves up to isotopy.5 The group

2Earlier Koberda–Santharoubane [10] constructed unbranched covers of closed surfaces with Hscc
1 (Σ̃;Z) ̸=

H1(Σ̃;Z). This is weaker since it is possible that in their examples Hscc
1 (Σ̃;Z) is a finite-index subgroup of

H1(Σ̃;Z).
3Not all of these papers explicitly prove cases of Conjecture 1.1, but it can be deduced from their results

in the cases they cover.
4Proposition 5.3 is stronger than this: it shows that H1(Σ̃;Q) is spanned by lifts of nonseparating simple

closed curves.
5These are isotopies through nontrivial simple closed curves, so during the isotopies the curves cannot

pass through the marked points.
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Mod(Σ) acts on the set of nontrivial simple closed curves on Σ, and the orbits of this
action are the topological types of nontrivial simple closed curves.6

If σ is a set of topological types of nontrivial simple closed curves on Σ, then denote

by Hσ
1 (Σ̃;Q) the subspace of H1(Σ̃;Q) spanned by the homology classes of loops γ̃ on Σ̃

that avoid the branch points and project to simple closed curves γ on Σ such that the
topological type of γ lies in σ. For instance, if σ is the set of all topological types of
nontrivial simple closed curves on Σ, then

Hσ
1 (Σ;Q) = Hscc

1 (Σ̃;Q).

The following therefore generalizes Theorem B:

Theorem B′. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces

and σ be a set of topological types of nontrivial simple closed curves on Σ. Then Hσ
1 (Σ̃;Q)

is a symplectic subspace of H1(Σ̃;Q).

We can also define Hσ
1 (Σ̃;Z) and Hscc

1 (Σ̃;Z), and it is natural to wonder whether Theorems
B and B′ hold integrally. For Theorem B′, the answer is no in general:

Theorem C. Let Σ be a closed oriented surface of genus at least 2 and let σ be the set
of nonseparating simple closed curves on Σ. Then there exists a finite unbranched cover

π : Σ̃ → Σ such that Hσ
1 (Σ̃;Z) is not a symplectic subspace of H1(Σ̃;Z).

Here Hσ
1 (Σ̃;Z) is a free abelian group, and a symplectic form on a free abelian group A is

an alternating Z-valued bilinear form on A that identifies A with its dual A∗ = Hom(A,Z).
Unfortunately, our proof of Theorem C breaks down if we allow separating curves, so we
cannot answer the following question:

Question 1.3. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces.

Is Hscc
1 (Σ̃;Z) a symplectic subspace of H1(Σ̃;Z)?

However, Theorem C suggests that the answer to this should be “no”.

Remark 1.4. An important ingredient in our proof of Theorem C is a theorem of Irmer [6]

giving certain finite abelian covers π : Σ̃ → Σ for which Hσ
1 (Σ̃;Z) is a proper subgroup of

H1(Σ̃;Z) (see Theorem 5.2.(ii) below). To make this paper more self-contained, we also
include a simplified proof of this theorem. □

1.5. Pants homology. Regular neighborhoods of simple closed curves on Σ are homeo-
morphic to annuli, i.e., spheres with two boundary components. This suggests weakening
the definition of simple closed curve homology as follows.

Recall that a pair of pants is a sphere with three holes. Define the pants homology of Σ̃,

denoted Hpant
1 (Σ̃;Q), to be the subspace of H1(Σ̃;Q) spanned by the homology classes of

loops γ̃ on Σ̃ such that there exists a subsurface P ⊂ Σ homeomorphic to a pair of pants
with π(γ̃) ⊂ P . Since every simple closed curve on Σ is contained in some7 such P , we
have

Hscc
1 (Σ̃;Q) ⊂ Hpant

1 (Σ̃;Q).

Our final main theorem is as follows. It answers positively a question8 of Kent [8].

6By the change of coordinates principle from [4, §1.3.2], the topological types are determined by the
marked surface with boundary one gets by cutting Σ open along γ. For instance, one topological type is
the set of all nonseparating γ.

7We do not require the boundary components of P to be non-nullhomotopic curves on Σ, so this even
holds if Σ is a surface like a sphere that does not contain pairs of pants P whose boundary components are
non-nullhomotopic.

8Kent actually asked whether H1(Σ̃;Q) is generated by lifts of elements that do not fill Σ, which is much
weaker than lying in a pair of pants.
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Theorem D. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces.

Then Hpant
1 (Σ̃;Q) = H1(Σ̃;Q).

Remark 1.5. This also holds for punctured surfaces of finite type, which can be reduced

to Theorem D as follows. Let π : Σ̃ → Σ be a finite branched cover between punctured
surfaces of finite type. Filling in the punctures yields a finite branched cover between
closed surfaces to which one can apply Theorem D. To conclude, note that filling in the

punctures has the effect of killing the homology classes in H1(Σ̃;Q) of loops around the

punctures, which lie in Hscc
1 (Σ̃;Q) ⊂ Hpant

1 (Σ̃;Q). □

Remark 1.6. Theorem D might appear to contradict [15, Theorem C] and [9, Corollary

1.1.3], which give examples of finite covers π : Σ̃ → Σ such that H1(Σ̃;Q) is not spanned by
the homology classes of loops γ̃ such that π(γ̃) is not in any given finite set of mapping class

group9 orbits of curves. However, in the definition of Hpant
1 (Σ̃;Q) there is no restriction on

the number of self-intersections of the projections of the curves to the P , so they do not
fall into finitely many mapping class group orbits. □

The proof of Theorem D actually shows something stronger. A pants decomposition of Σ
is a collection P = {δ1, . . . , δn} of disjoint simple closed curves on Σ that avoid the branch
points such that each component of Σ \ ∪n

j=1δj is either a disk containing a single branch
point or a pair of pants containing no branch points:

We will prove the following, which implies Theorem D:

Theorem D′. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces
and P be a pants decomposition of Σ. Let σ be the set of topological types of nontrivial

curves appearing in P. Then H1(Σ̃;Q) is spanned by Hσ
1 (Σ̃;Q) and the set of homology

classes of cycles γ̃ on Σ̃ such that π(γ̃) is disjoint from all curves in P.

We can also define Hpant
1 (Σ̃;Z), and pose the following question:

Question 1.7. Let π : Σ̃ → Σ be a finite branched cover between closed oriented surfaces.

Is Hpant
1 (Σ̃;Z) = H1(Σ̃;Z)?

Our proof of Theorems D and D′ shows that Question 1.7 has a positive answer if
Question 1.3 does. Though we expect that Question 1.3 has a negative answer, we do not
know what answer to expect for Question 1.7.

1.6. Outline. We prove Theorem A in §2, Theorems B and B′ in §3, Theorems D and D′

in §4, and Theorem C in §5.

1.7. Acknowledgments. We would like to thank Eduard Looijenga for his help, especially
with Theorem B. We would also like to thank Aaron Landesman and Daniel Litt for helpful
comments on a previous version of this paper.

2. Simple closed curve homology and Dehn twists

This section contains the proof of Theorem A.

9or even automorphism group of free group
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2.1. Notation. Fix a closed oriented surface Σ and a finite branched cover π : Σ̃ → Σ.
The surface Σ̃ is thus also a closed oriented surface. Let g ≥ 0 be its genus, let

H = H1(Σ̃;Q) ∼= Q2g,

and let ω be the algebraic intersection form on H. By Poincaré duality, ω is a symplectic
form, i.e., an alternating form that induces an isomorphism between H and its dual. The
symplectic group Sp(H,ω) ∼= Sp2g(Q) acts on H.

2.2. Lifting Dehn twists. Recall from §1.4 that a nontrivial simple closed curve on Σ is
a simple closed curve that avoids the marked points and does not bound a disk containing
at most one marked point. Consider a nontrivial simple closed curve γ on Σ. The preimage
π−1(γ) is a disjoint union of simple closed curves. Enumerate them as

π−1(γ) = γ̃1 ⊔ · · · ⊔ γ̃k.

For each 1 ≤ j ≤ k, the map

π|γ̃j : γ̃j → γ

is a finite unbranched cover. Let dj be its degree. Set

(2.1) d(γ) = lcm(d1, . . . , dk) and ej = d(γ)/dj for 1 ≤ j ≤ k.

If Tγ and Tγ̃j denote the Dehn twists about γ and γ̃j , then T
d(γ)
γ lifts to the product

T e1
γ̃1

· · ·T ek
γ̃k
.

Let τ̃γ be the image of this product of powers of Dehn twists in Sp(H,ω) ∼= Sp2g(Q). The
element τ̃γ acts on H as follows:

τ̃γ(h) = h+
k∑

j=1

ejω(h, [γ̃j ]) · [γ̃j ] for h ∈ H.

For a set σ of topological types of nontrivial simple closed curves on Σ, define Dσ to be
the subgroup of Sp(H,ω) generated by the set of all τ̃γ as γ ranges over nontrivial simple
closed curves on Σ whose topological type lies in σ.

2.3. Fixed set of lifted twists. As in §1.4, let σ be a set of topological types of nontrivial
simple closed curves on Σ and define

Hσ = Hσ
1 (Σ̃;Q) ⊂ H1(Σ̃;Q) = H.

The following lemma will be fundamental to our paper:

Lemma 2.1. Let the notation be as above. Then10 HDσ equals the orthogonal complement
(Hσ)⊥ of Hσ with respect to ω.

Proof. Let γ be a nontrivial simple closed curve on Σ whose topological type lies in σ. As

we did in §2.2 above, write π−1(γ) as a disjoint union of simple closed curves on Σ̃:

π−1(γ) = γ̃1 ⊔ · · · ⊔ γ̃k.

As in that section, there are positive integers e1, . . . , ek such that the generator τ̃γ ∈ Dσ

acts on H as follows:

τ̃γ(h) = h+

k∑
j=1

ejω(h, [γ̃j ]) · [γ̃j ] for h ∈ H.

10Here the superscript indicates that we are taking invariants: HDσ = {h ∈ H | d · h = h for all d ∈ Dσ}.
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Each [γ̃j ] lies in Hσ, so it is immediate from this formula that (Hσ)⊥ ⊂ HDσ . For the
other inclusion, consider some h0 ∈ HDσ . We then know that τ̃γ(h0) = h0, so from the
above

k∑
j=1

ejω(h0, [γ̃j ]) · [γ̃j ] = 0.

Taking the algebraic intersection with h0, we deduce that

k∑
j=1

ejω(h0, [γ̃j ])
2 = 0.

Since ej ≥ 1 for all 1 ≤ j ≤ k, this implies that ω(h0, [γ̃j ]) = 0 for all 1 ≤ j ≤ k. This
holds for all choices of γ and all components of the preimage π−1(γ). These generate Hσ,
so we conclude that h0 ∈ (Hσ)⊥, as desired. □

2.4. Putman–Wieland conjecture. We now prove Theorem A.

Proof of Theorem A. We start by recalling the statement. Let π : Σ̃ → Σ be a finite

branched cover between closed oriented surfaces. Let Mod(Σ, Σ̃) be the subgroup of the

mapping class group Mod(Σ) that lifts to Σ̃. Consider some nonzero v⃗ ∈ Hscc
1 (Σ̃;Q). Our

goal is to prove the Mod(Σ, Σ̃)-orbit of v⃗ is infinite.
Let σ be the set of all topological types of nontrivial simple closed curves on Σ. Since

Hscc
1 (Σ̃;Q) = H1(Σ̃;Q), Lemma 2.1 implies that v⃗ is not fixed by the group Dσ, so there

exists some nontrivial simple closed curve γ on Σ such that τ̃γ(v⃗) ̸= v⃗. Some power of τ̃γ is

the image in the symplectic group of an element of Mod(Σ, Σ̃), so it is enough to prove
that the elements τ̃nγ (v⃗) as n ranges over Z are all distinct.

Write π−1(γ) as a disjoint union of simple closed curves on Σ̃:

π−1(γ) = γ̃1 ⊔ · · · ⊔ γ̃k.

There are then positive integers e1, . . . , ek such that

τ̃γ(v⃗) = v⃗ +

k∑
j=1

ejω(v⃗, [γ̃j ]) · [γ̃j ].

Setting

w⃗ =

k∑
j=1

ejω(v⃗, [γ̃j ]) · [γ̃j ],

the fact that τ̃γ(v⃗) ̸= v⃗ implies that w⃗ ̸= 0. For n ∈ Z, we have τ̃nγ (v⃗) = v⃗ + nw⃗. Since
w⃗ ̸= 0, the elements v⃗ + nw⃗ as n ranges over Z are all distinct, as desired. □

3. The symplectic nature of simple closed curves

This section contains the proof of Theorem B′ (which generalizes Theorem B).

3.1. Notation. The notation is similar to that of §2:
• π : Σ̃ → Σ is a finite branched cover between closed oriented surfaces, and g is the

genus of Σ̃.

• H = H1(Σ̃;Q) ∼= Q2g, and ω is the algebraic intersection form on H.
• σ is a set of topological types of nontrivial simple closed curves on Σ.
• Dσ is the subgroup of Sp(H,ω) ∼= Sp2g(Q) generated by the elements τ̃γ as γ ranges
over nontrivial simple closed curves on Σ whose topological type lies in σ.
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3.2. Symplectic criterion. We will need the following criterion for a subspace of H to
be a symplectic subspace:

Lemma 3.1. Let the notation be as above, and let D be a subgroup of Sp(H,ω). Assume
that the action of D on H is semisimple.11 Then12 HD is a symplectic subspace of H.

This is well-known; see, e.g., [3, Lemme 4.14]. For completeness, we include a proof.

Proof of Lemma 3.1. The symplectic form ω induces a D-equivariant isomorphism

ϕ : H
∼=−→ H∗.

We want to prove ω also induces an isomorphism between HD and (HD)∗. Letting
ι : HD ↪→ H be the inclusion and letting ι∗ : H∗ → (HD)∗ be its dual,13 our goal is
equivalent to proving that the composition

(3.1) HD ι−→ H
ϕ−→ H∗ ι∗−→ (HD)∗

is an isomorphism.
Since ϕ is a D-equivariant isomorphism, it restricts to an isomorphism on D-invariants,

i.e., an isomorphism

ϕD : HD ∼=−→ (H∗)D .

A linear map λ : H → Q in H∗ is D-invariant if and only if it factors through the D-
coinvariants

HD = H/ ⟨d · h− h | d ∈ D and h ∈ H⟩ .
We thus get an isomorphism

µ : (H∗)D
∼=−→ (HD)

∗ .

The projection H → HD restricts to a map η : HD → HD. Since the action of D is
semisimple, the map η is an isomorphism.14 Taking its dual, we get an isomorphism

η∗ : (HD)
∗ ∼=−→

(
HD

)∗
.

The composition

(3.2) HD ϕD

−−→ (H∗)D
µ−→ (HD)

∗ η∗−→
(
HD

)∗
of isomorphisms is an isomorphism, and reflecting on the maps we see that the compositions
(3.1) and (3.2) are the same. We conclude that (3.1) is an isomorphism, as desired. □

3.3. Semisimplicity. Our goal is to apply Lemma 3.1 to the group Dσ from §3.1, which
requires verifying the following:

Lemma 3.2. Let the notation be as above. Then the group Dσ acts semisimply on H.

Proof. Let Dσ be the Zariski closure of Dσ in Sp(H,ω). It is enough to prove that Dσ

acts semisimply on H. For this, it is enough to prove that Dσ is a semisimple algebraic
group.15

Regard Σ as a closed surface with marked points at the branch points of π : Σ̃ → Σ. To
simplify things, if there are no branch points introduce a single additional marked point on

11That is, the D-representation H decomposes as a direct sum of irreducible representations.
12Here just like in Lemma 2.1 the superscript indicates we are taking invariants.
13This dual restricts a linear map λ : H → Q to HD.
14Indeed, if H = HD ⊕ V1 ⊕ · · · ⊕ Vn with the Vi nontrivial irreducible representations of D, then

HD = (HD)D ⊕ (V1)D ⊕ · · · ⊕ (Vn)D = HD ⊕ 0⊕ · · · ⊕ 0 = HD.
15See [1, 19] for textbook references on algebraic groups. One key property of semisimple algebraic

groups over Q is that all of their finite-dimensional representations are semisimple [19, Proposition 22.41].
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Σ, and regard its preimage in Σ̃ as a collection of branch points of order 1. Let M(Σ) be
the moduli space of Riemann surfaces S with marked points such that S ∼= Σ as surfaces
with marked points. The (orbifold) fundamental group of M(Σ) is thus the mapping class
group Mod(Σ).

We can find a finite-index subgroup Γ of Mod(Σ) such that each element of Γ can be

lifted to a homeomorphism of Σ̃ fixing all the marked points. Since there is at least one

marked point, these lifts are unique up to homotopy, so Γ acts on H1(Σ̃;Q) in a well-defined
way. Shrinking Γ if necessary, we can also assume that Γ is torsion-free. Let MΓ(Σ) be
the cover of M(Σ) corresponding to Γ.

Since Γ is torsion-free, MΓ(Σ) is a fine moduli space. It thus has a universal curve
U → MΓ(Σ) whose fiber over S ∈ MΓ(Σ) is S. Replacing Γ by a deeper finite-index

subgroup if necessary, we can find a fiberwise branched cover Ũ → MΓ(Σ) of U → MΓ(Σ)

whose fibers are the branched cover Σ̃ of Σ.
The monodromy representation of π1(MΓ(Σ)) ∼= Γ on H1 of the fibers is thus exactly

the action of Γ on H = H1(Σ̃;Q) obtained by lifting mapping classes through the branched

cover Σ̃ → Σ. The image of this representation lies in Sp(H,ω). Let G be the Zariski
closure in Sp(H,ω) of the image of Γ. Deligne’s semisimplicity theorem [2, Corollaire 4.2.9]
implies that G is a semisimple algebraic group.

From the definition (2.1) of d(γ) for nontrivial simple closed curves γ on Σ, it only

achieves finitely many values (depending on the degree of the cover Σ̃ → Σ). Pick some
m ≥ 1 such that the following two properties hold for each nontrivial simple closed curve
γ whose topological type lies in σ:

• d(γ) divides m.
• Tm

γ ∈ Γ.

Let E be the subgroup of Mod(Σ) generated by all the Tm
γ as γ ranges over nontrivial

simple closed curves on Σ whose topological type lies in σ. For such a γ, we have

fTm
γ f−1 = Tm

f(γ) for all f ∈ Mod(Σ).

It follows that E is a normal subgroup of Mod(Σ). By construction, E ⊂ Γ. For each
nontrivial simple closed curve γ on Σ whose topological type lies in σ, recall that τ̃γ is the

image of T
d(γ)
γ in Sp(H,ω). The Zariski closure in Sp(H,ω) of the subgroup generated by

τ̃γ is16 the one-parameter subgroup τ̃γ,t defined by

τ̃γ,t(h) = h+
k∑

j=1

tejω(h, [γ̃j ]) · [γ̃j ] for h ∈ H and t ∈ Q.

The group Dσ is generated by these one-parameter subgroups.17 Since one-parameter
subgroups are connected, we deduce that Dσ is connected.

The Zariski closure in Sp(H,ω) of the subgroup generated by

Tm
γ =

(
T d(γ)
γ

)m/d(γ)

is the same one-parameter subgroup τ̃γ,t. It follows that the Zariski closure of the image of
E in Sp(H,ω) is also Dσ. Since E is a normal subgroup of Mod(Σ), it follows that Dσ is
a normal subgroup of G. Since G is semisimple, so18 is Dσ, as desired. □

16The point here is that the subgroup generated by τ̃γ is the integer points in the one-parameter subgroup
τ̃γ,t, and the Zariski closure of Z in Q is Q.

17This uses the fact that the subgroup of an algebraic group generated by a set of algebraic subgroups is
algebraic, i.e., Zariski closed [1, Proposition 2.2].

18Every connected normal subgroup of a semisimple algebraic group is semisimple [19, Theorem 21.51].
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3.4. Symplectic subspace. We now prove Theorem B′.

Proof of Theorem B ′. The statement we must prove is as follows. Let π : Σ̃ → Σ be a
finite branched cover between closed oriented surfaces and σ be a set of topological types

of nontrivial simple closed curves on Σ. We must show that Hσ = Hσ
1 (Σ̃;Q) is a symplectic

subspace of H = H1(Σ̃;Q), or equivalently that (Hσ)⊥ is a symplectic subspace. Lemma
2.1 implies that

(Hσ)⊥ = HDσ ,

and Lemma 3.2 says that the group Dσ acts semisimply on H. The result thus follows
from Lemma 3.1. □

4. Pants homology

In this section, we prove Theorem D′ (which implies Theorem D).

Proof of Theorem D ′. We first recall the statement. Let π : Σ̃ → Σ be a finite branched
cover between closed oriented surfaces and P be a pants decomposition of Σ. Let σ be
the set of topological types of nontrivial curves appearing in P. We must prove that

H = H1(Σ̃;Q) is spanned by Hσ = Hσ
1 (Σ̃;Q) and the set of homology classes of cycles γ̃

on Σ̃ such that π(γ̃) is disjoint from all curves in P.
Theorem B′ says that Hσ is a symplectic subspace of H, so

H = Hσ ⊕ (Hσ)⊥ .

It is thus enough to prove that (Hσ)⊥ is spanned by the homology classes of cycles γ̃ on Σ̃
such that π(γ̃) is disjoint from all the curves in P.

Recall that we are working with homology with rational coefficients. Every element
of H (and hence (Hσ)⊥) is a multiple of an integral class, and every integral class can
be represented by an oriented multicurve. Therefore, consider an oriented multicurve γ̃

on Σ̃ such that [γ̃] ∈ (Hσ)⊥. It is enough to prove that γ̃ is homologous to an oriented
multicurve γ̃′ such that π(γ̃) is disjoint from all the curves in P.

Our pants decomposition P looks like the following:

Write P = {δ1, . . . , δn}. Call the δj that bound disks containing marked points the boundary
loops (red in the above figure) and the other δj the interior loops (blue in the above figure).

Enumerate the components of π−1(δj) as j ranges over 1 ≤ j ≤ n as {δ̃1, . . . , δ̃m}. Call

the δ̃j that project to boundary loops the lifted boundary loops and the δ̃j that project to
interior loops the lifted interior loops.

Put the oriented multicurve γ̃ in general position with respect to the δ̃j . The lifted

boundary loops bound disks in Σ̃ containing a single branch point. Isotope γ̃ such that it
is disjoint from all these disks, and in particular is disjoint from all the lifted boundary
loops.

Let ω be the algebraic intersection form. Consider a lifted interior loop δ̃j . Since

[δ̃j ] ∈ Hσ and [γ̃] ∈ (Hσ)⊥, we have ω([γ̃], [δ̃j ]) = 0. This implies that the number of

positively oriented intersection points of γ̃ with δ̃j is the same as the number of negatively

oriented intersection points. We can then modify γ̃ as follows to make it disjoint from δ̃j :
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The result is an oriented multicurve that is homologous to γ̃. Doing this for each lifted
interior loop, we obtain an oriented multicurve γ̃′ such that [γ̃′] = [γ̃] and such that γ̃′ is

disjoint from all the δ̃j and does not lie in any of the disks bounded by lifted boundary
loops. This implies π(γ̃) is disjoint from all the curves in P, as desired. □

5. A non-symplectic example

This section contains the proof of Theorem C, which asserts that for all closed oriented

surfaces Σ of genus at least 2, there exists a finite unbranched cover π : Σ̃ → Σ such that

for σ the set of nonseparating simple closed curves on Σ, the subspace Hσ
1 (Σ̃;Z) is not a

symplectic subspace of H1(Σ̃;Z)..

5.1. Reduction. We start with the following.

Lemma 5.1. Let V be a finitely generated free abelian group equipped with a symplectic
form and let W be a subgroup of V . Assume that W is a symplectic subspace of V and
that W ⊗Z Q = V ⊗Z Q. Then W = V .

Proof. Since W is a symplectic subspace of V , we have V = W ⊕W⊥. Since

W ⊗Z Q = V ⊗Z Q = (W ⊗Z Q)⊕
(
W⊥ ⊗Z Q

)
,

it follows that W⊥ ⊗Z Q = 0. We conclude that W⊥ = 0 and thus that W = V . □

It is therefore enough to construct a finite unbranched cover π : Σ̃ → Σ such that

Hσ
1 (Σ̃;Q) = H1(Σ̃;Q) but Hσ

1 (Σ̃;Z) ̸= H1(Σ̃;Z).

For ℓ ≥ 2, let π : Σ[ℓ] → Σ be the cover corresponding to the homomorphism

π1(Σ) −→ H1(Σ;Z/ℓ).

By the above, it is enough to prove the following theorem, which we will do in the remainder
of this section:

Theorem 5.2. Let Σ be a closed oriented surface of genus at least 2 and σ be the set of
nonseparating simple closed curves on Σ. Fix some ℓ ≥ 2. The following then hold:

(i) We have Hσ
1 (Σ[ℓ];Q) = H1(Σ[ℓ];Q).

(ii) If ℓ ≥ 3, then Hσ
1 (Σ[ℓ];Z) ̸= H1(Σ[ℓ];Z).

Part (ii) is a theorem of Irmer [6, Lemma 6]. We will give a simplified version of her
argument below that avoids most of its complicated combinatorial group theory.

5.2. Rational equality. We start by proving part (i) of Theorem 5.2. In fact, we prove a
more general result:

Proposition 5.3. Let Σ be a closed surface and σ be the set of nonseparating simple closed

curves on Σ. Let Σ̃ → Σ be a finite unbranched abelian cover. Then Hσ
1 (Σ̃;Q) = H1(Σ̃;Q).
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Proof. It is enough to prove that Hσ
1 (Σ̃;Q)⊥ = 0. During the proof of Theorem B′, we

showed that

Hσ
1 (Σ̃;Q)⊥ = H1(Σ̃;Q)Dσ .

It is thus enough to show that the group Dσ fixes no nonzero vectors in H1(Σ̃;Q). In fact,

the Dσ-orbits of all nonzero vectors in H1(Σ̃;Q) are infinite. This follows from work of
Looijenga [14], but since it is only implicit in [14] we give a complete proof.

Let G be the deck group of the finite abelian cover Σ̃ → Σ. The actions of G and Dσ

on H1(Σ̃;Q) commute, so the action of Dσ preserves the decomposition of H1(Σ̃;Q) into
G-isotypic components. Let V be an irreducible representation of G over Q and let W be

the V -isotypic component of H1(Σ̃;Q). We must prove that the Dσ-orbits of all nonzero
vectors in W are infinite.

Since V is an irreducible representation of the finite abelian group G, there is a finite
cyclic quotient ϕ : G → Z/d such that19 action of G on V factors through ϕ. Let

Σ[ϕ] = Σ̃/ ker(ϕ),

and let π : Σ[ϕ] → Σ be the projection, so π : Σ[ϕ] → Σ is the degree-d cyclic cover
corresponding to ker(ϕ). The group ker(ϕ) acts trivially on V and hence on W , so W is a
subrepresentation of20

H1(Σ̃;Q)ker(ϕ) ∼= H1(Σ̃/ ker(ϕ);Q) ∼= H1(Σ[ϕ];Q).

Letting v ∈ H1(Σ[ϕ];Q) be nonzero, it is thus enough to prove that the Dσ-orbit of v is
infinite.

Let ω be the algebraic intersection form on H1(Σ;Q). There is a surjection H1(Σ;Z) → G.

Pick a surjection ϕ̃ : H1(Σ;Z) → Z making the diagram

H1(Σ;Z) Z

G Z/d

ϕ̃

ϕ

commute. Since ω is a symplectic form on H1(Σ;Z), there exists some a1 ∈ H1(Σ;Z) such
that ϕ̃(x) = ω(a1, x) for all x ∈ H1(Σ;Z). Since ϕ̃ is surjective, a1 is primitive21 and thus
there exists some oriented nonseparating simple closed curve α1 such that [α1] = a1. Let
β1 and S be as follows:

...
α1 β1

S

19Here is a sketch of this standard fact. Since G is abelian, the action of G on V comes from a
homomorphism ι : G → EndG(V ). Since V is irreducible, Schur’s Lemma says that EndG(V ) is a division
algebra over Q. Let F be the Q-subalgebra of EndG(V ) generated by Im(ι). It is an easy exercise to show
that for f ∈ EndG(V ) nonzero, f−1 can be expressed as a polynomial in f . It follows that F is closed under
taking multiplicative inverses. Since G is abelian, this implies that F is a commutative division ring, i.e., a
field. The result now follows from the fact that a finite subgroup of F× like the image of ι : G → EndG(V )
must be cyclic.

20Here the subscript indicates that we are taking the ker(ϕ)-coinvariants and the first isomorphism
follows from the transfer map.

21That is, not divisible by any integers greater than 1.



12 MARCO BOGGI, ANDREW PUTMAN, AND NICK SALTER

The case d = 3 of our cover π : Σ[ϕ] → Σ is then as follows:

S2
~

S1
~S3

~

α1,1~α1,2~

α1,3~

β1
~

...
......

More generally, we have

• π−1(S) = S̃1 ⊔ · · · ⊔ S̃d with each S̃i projecting homeomorphically to S; and

• π−1(β1) = β̃1, where β̃1 is a simple closed curve that d-fold covers β1; and
• π−1(α1) = α̃1,1 ⊔ · · · ⊔ α̃1,d, where α̃1,i is a simple closed curve projecting homeo-
morphically to α1.

The curves α̃1,i are all homologous, and we have

H1(Σ[ϕ];Q) = ⟨[α̃1,1], [β̃1]⟩ ⊕
d⊕

i=1

H1(S̃i;Q).

Recall that we are trying to prove that the nonzero v ∈ H1(Σ[ϕ];Q) has an infinite Dσ-orbit.
In fact, we will find some τ̃ ∈ Dσ such that the elements {τ̃n(v) | n ≥ 1} are all distinct.
Write

v = λ[α̃1,1] + ν[β̃1] +
d∑

i=1

vi with λ, ν ∈ Q and vi ∈ H1(S̃i;Q).

There are three cases.
The first is λ ̸= 0. In this case, T d

β1
∈ Mod(Σ) lifts to T

β̃1
∈ Mod(Σ[ϕ]). We have

Tn
β̃1
(v) = λ[α̃1,1] + (ν − nλ)[β̃1] +

d∑
i=1

vi for n ≥ 1.

These are all distinct elements. Since Dσ is defined via the lifts to the cover22 Σ̃ → Σ, there
is some ℓ ≥ 1 (necessarily divisible by d) such that the element τ̃β1 ∈ Dσ is induced by the

lift of T ℓ
β1

= (T d
β1
)ℓ/d. We conclude that the elements

{
τ̃nβ1

(v) | n ≥ 1
}
are all distinct.

22Remember that the degree-d cyclic cover Σ[ϕ] → Σ is a subcover of Σ̃ → Σ, i.e., the map Σ̃ → Σ

factors as Σ̃ → Σ[ϕ] → Σ.
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The second is ν ̸= 0. In this case, Tα1 ∈ Mod(Σ) lifts to Tα̃1,1
· · ·Tα̃1,d

∈ Mod(Σ[ϕ]).
Since the α̃1,i are all homologous, we have

(Tα̃1,1
· · ·Tα̃1,d

)n(v) = (λ+ dnν)[α̃1,1] + ν[β̃1] +

d∑
i=1

vi for n ≥ 1.

These are all distinct elements. Just like in the previous case, we conclude that the elements{
τ̃nα1

(v) | n ≥ 1
}
are all distinct.

The third is that some vi is nonzero. Reordering, assume that v1 ̸= 0. Let v1 ∈ H1(S;Q)

be the image of v1 ∈ H1(S̃1;Q). Pick an oriented simple closed curve γ on S with ω([γ], v1)

nonzero. Let γ̃1 ⊔ · · · ⊔ γ̃d be the preimage of γ in Σ[ϕ], ordered such that γ̃i ∈ S̃i. By
construction, Tγ ∈ Mod(Σ) lifts to Tγ̃1 · · ·Tγ̃d ∈ Mod(Σ[ϕ]). We have

(Tγ̃1 · · ·Tγ̃d)
n(v) = λ[α̃1,1] + ν[β̃1] +

d∑
i=1

(vi + nω([γ̃i], vi)[γ̃i]) for n ≥ 1.

Since ω([γ̃1], v1) = ω([γ], v1) ̸= 0, these are all distinct. Just like before, we conclude that
the elements

{
τ̃nγ (v) | n ≥ 1

}
are all distinct. □

5.3. Nilpotent preliminaries. Before we can prove part (ii) of Theorem 5.2, we need
some preliminary results. Let Fn be the free group on {x1, . . . , xn}. Fix some ℓ ≥ 3.
Define23

ℓ̂ =

{
ℓ if ℓ is odd,

ℓ/2 if ℓ is even.

Since ℓ ≥ 3, we have ℓ̂ ≥ 2. Define Nn[ℓ] to be the quotient of Fn by the normal subgroup
generated by the following elements:24

• The third term [Fn, [Fn, Fn]] of the lower central series.

• The subgroup [Fn, F
×ℓ̂
n ], i.e., the subgroup generated by commutators [u, vℓ̂] as u

and v range over elements of Fn.

We will use boldface letters to denote elements of Nn[ℓ], and in particular will let
{x1, . . . ,xn} be the generators of Nn[ℓ] coming from the generators {x1, . . . , xn} for Fn.
The abelianization of Nn[ℓ] is Zn, and for u ∈ Nn[ℓ] we will write u ∈ Zn for its image in

the abelianization and û ∈ (Z/ℓ̂)n for the image of u under the mod-ℓ̂ reduction map.
The following lemma clarifies the nature of Nn[ℓ]:

Lemma 5.4. For n ≥ 2 and ℓ ≥ 3, we have a central extension

1 −→ ∧2(Z/ℓ̂)n −→ Nn[ℓ] −→ Zn −→ 1.

Here the map Nn[ℓ] → Zn is the abelianization map taking u ∈ Nn[ℓ] to u ∈ Zn, and for

u,v ∈ Nn[ℓ] the commutator [u,v] ∈ Nn[ℓ] is the central element û ∧ v̂ ∈ ∧2(Z/ℓ̂)n.

Proof. It is immediate from Magnus–Witt’s work on the lower central series of a free group
([16, 22]; see [21] for a textbook account) that

[Fn, Fn]

[Fn, [Fn, Fn]]
∼= ∧2Zn,

23When reading this for the first time, it might be easier to assume that ℓ is odd, so ℓ̂ = ℓ.
24Here “N” stands for “nilpotent”.
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with [u, v] ∈ [Fn, Fn] mapping to u ∧ v ∈ ∧2Zn. Here u, v ∈ Zn are the images of u, v ∈ Fn

in its abelianization. This fits into a central extension

1 −→ ∧2Zn −→ Fn

[Fn, [Fn, Fn]]
−→ Zn −→ 1.

To get Nn[ℓ] from the middle group in this extension, one quotients out the image of

[Fn, F
×ℓ̂
n ], which maps to the kernel of the map

∧2Zn −→ ∧2(Z/ℓ̂)n.
The lemma follows. □

In the rest of this section, we will identify ∧2(Z/ℓ̂)n with the corresponding central
subgroup of Nn[ℓ]. The following calculation lies at the heart of our arguments:

Lemma 5.5. For n ≥ 2 and ℓ ≥ 3, we have (uv)ℓ = uℓvℓ for all u,v ∈ Nn[ℓ].

Proof. To transform (uv)ℓ into uℓvℓ, we must commute each u past all the v terms to its

left. Each time we commute a u past a v, we must introduce a commutator [v,u] = v̂ ∧ û.
This commutator is central, so it can moved all the way to the right. The first u must be
commuted with 0 copies of v, the second with 1 copy of v, the third with 2 copies of v,
etc. In the end, we see that

(uv)ℓ = uℓvℓ[v,u]0+1+2+···+(ℓ−1) = uℓvℓ[v,u]ℓ(ℓ−1)/2.

Whether ℓ is even or odd,25 the integer ℓ(ℓ− 1)/2 is divisible by ℓ̂. Since [v,u] ∈ ∧2(Z/ℓ̂)n,
this implies that [v,u]ℓ(ℓ−1)/2 = 1. The lemma follows. □

Define Pn[ℓ] to be26 the subgroup of Nn[ℓ] generated by
{
uℓ | u ∈ Nn[ℓ]

}
and define

An[ℓ] to be the subgroup27 of Nn[ℓ] generated by Pn[ℓ] and ∧2(Z/ℓ̂)n. We then have:

Lemma 5.6. For n ≥ 2 and ℓ ≥ 3, the subgroup Pn[ℓ] is a central subgroup of Nn[ℓ] with

Pn[ℓ] ∼= Zn, and An[ℓ] = Pn[ℓ]× ∧2(Z/ℓ̂)n.

Proof. The fact that Pn[ℓ] is a central subgroup follows from the fact that

[uℓ,v] = û
ℓ ∧ v̂ = ℓ

(
û ∧ v̂

)
= 0 for all u,v ∈ Nn[ℓ].

Recall that Nn[ℓ] is generated by the elements x1, . . . ,xn, which map to a basis for the
abelianization Zn. The elements xℓ

i ∈ Nn[ℓ] are central and map to linearly independent
elements in the abelianization, so

P ′
n[ℓ] =

{
xℓk1
1 · · ·xℓkn

n | k1, . . . , kn ∈ Z
}

is a central subgroup satisfying P ′
n[ℓ]

∼= Zn. Moreover, letting A′
n[ℓ] be the subgroup of

Nn[ℓ] generated by P ′
n[ℓ] and ∧2(Z/ℓ̂)n, we clearly have A′

n[ℓ] = P ′
n[ℓ]× ∧2(Z/ℓ̂)n.

To prove the lemma, it is therefore enough to prove that Pn[ℓ] = P ′
n[ℓ]. Since xℓ

i ∈ Pn[ℓ]
for all 1 ≤ i ≤ n, we have P ′

n[ℓ] ⊂ Pn[ℓ]. For the reverse inclusion, consider some u ∈ Nn[ℓ].
We must prove that uℓ ∈ P ′

n[ℓ]. We can find k1, . . . , kn ∈ Z and

c ∈ [Pn[ℓ], Pn[ℓ]] = ∧2(Z/ℓ̂)n

such that u = xk1
1 · · ·xkn

n c. Applying Lemma 5.5 repeatedly, we deduce that

uℓ = xℓk1
1 · · ·xℓkn

n cℓ = xℓk1
1 · · ·xℓkn

n ∈ P ′
n[ℓ]. □

25The purpose of using ℓ̂ is to ensure this.
26Here “P” stands for “power subgroup”.
27Here “A” stands for “abelian subgroup”; see Lemma 5.6.
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5.4. Integral inequality. We now prove part (ii) of Theorem 5.2

Proof of Theorem 5.2, part (ii). We first recall the statement. Let Σ be a closed oriented
surface of genus g ≥ 2 and σ be the set of nonseparating simple closed curves on Σ. Fix
some ℓ ≥ 3, and as above let

ℓ̂ =

{
ℓ if ℓ is odd,

ℓ/2 if ℓ is even.

Since ℓ ≥ 3, we have ℓ̂ ≥ 2. We must prove that Hσ
1 (Σ[ℓ];Z) ̸= H1(Σ[ℓ];Z).

Recall that Σ[ℓ] is the cover corresponding to the homomorphism

π1(Σ) → H1(Σ;Z/ℓ) ∼= (Z/ℓ)2g.

It follows that π1(Σ[ℓ]) is the kernel of this map, so π1(Σ[ℓ]) is the subgroup of π1(Σ)
generated by the following two subgroups:

• The commutator subgroup [π1(Σ), π1(Σ)].
• The subgroup P generated by

{
xℓ | x ∈ π1(Σ)

}
.

Each nonseparating simple closed curve x ∈ π1(Σ) maps to a primitive28 element of H1(Σ;Z),
so the minimal power of x that lies in π1(Σ[ℓ]) is x

ℓ. It follows that the image P of P in
H1(Σ[ℓ];Z) contains Hσ

1 (Σ[ℓ];Z). It is enough therefore to prove that P ̸= H1(Σ[ℓ];Z).
Let {a1, b1, . . . , ag, bg} be the standard generating set for π1(Σ) satisfying the surface

relation [a1, b1] · · · [ag, bg] = 1. We can then define a homomorphism ϕ : π1(Σ) → Ng[ℓ] via
the formulas

ϕ(ai) = xi and ϕ(bi) = 1 for 1 ≤ i ≤ g.

The map ϕ takes [π1(Σ), π1(Σ)] to the central subgroup ∧2(Z/ℓ̂)g and P to the central
subgroup Pg[ℓ] (see Lemma 5.6). It follows that ϕ takes π1(Σ[ℓ]) surjectively onto the

abelian subgroup Ag[ℓ] = Pg[ℓ] × ∧2(Z/ℓ̂)g identified by Lemma 5.6. The restriction of

ϕ to π1(Σ[ℓ]) thus factors through H1(Σ[ℓ];Z), and takes P ⊂ H1(Σ[ℓ];Z) to the proper
subgroup Pg[ℓ] of Ag[ℓ]. The theorem follows. □
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