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Abstract

In this paper, we construct an infinite presentation of the Torelli subgroup of the mapping
class group of a surface whose generators consist of the set of all “separating twists”, all “bound-
ing pair maps”, and all “commutators of simply intersecting pairs” and whose relations all come
from a short list of topological configurations of these generators on the surface. Aside from a
few obvious ones, all of these relations come from a set of embeddings of groups derived from
surface groups into the Torelli group. In the process of analyzing these embeddings, we derive
a novel presentation for the fundamental group of a closed surface whose generating set is the
set of all simple closed curves.

1 Introduction

Let Σg be a closed genus g surface and Modg be the mapping class group of Σg, that is, the group
of homotopy classes of orientation-preserving diffeomorphisms of Σg. The action of Modg on
H1(Σg;Z) preserves the algebraic intersection form, so it induces a representation Modg → Sp2g(Z).
The kernel I g of this representation is known as the Torelli group. It plays an important role in
both low-dimensional topology and algebraic geometry. See [16] for a survey of I g, especially the
remarkable work of Dennis Johnson.

Despite the Torelli group’s importance, little is known about its combinatorial group theory.
Generators for I g were first found by Birman and Powell [3, 28] (see below). Later, Johnson [17]
constructed a finite generating set for I g for g≥ 3, while McCullough and Miller [24] proved that
I 2 is not finitely generated. The investigation of the genus 2 case was completed by Mess [25],
who proved that I 2 is an infinitely generated free group, though no explicit free generating set is
known. However, the basic question of whether I g is ever finitely presented for g ≥ 3 remains
open.

In this paper, we construct an infinite presentation for I g whose generators and relations have
simple topological interpretations. This is not the first presentation of the Torelli group in the liter-
ature – another appears in a paper of Morita and Penner [26]. However, while their generators and
relations have nice interpretations in terms of a certain triangulation of Teichmüller space, they are
topologically and group-theoretically extremely complicated. Indeed, their generating set contains
infinitely many copies of every element of the Torelli group. Our methods and perspective are very
different from theirs.

Generators. Letting Tγ be the right Dehn twist about a simple closed curve γ , our generators are
all mapping classes of the following types.
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Figure 1: a. A separating curve x1 and a bounding pair {x2,x3} b. A simply intersecting pair {x4,x5}

1. Let γ be a simple closed curve that separates the surface (for instance, the curve x1 in Figure
1.a). Then it is not hard to see that Tγ ∈I g. These are known as separating twists.

2. Let {γ1,γ2} be a pair of non-isotopic disjoint homologous curves (for instance, the pair of
curves {x2,x3} from Figure 1.a). Then Tγ1 and Tγ2 map to the same element of Sp2g(Z), so
Tγ1T−1

γ2
∈I g. These are known as bounding pair maps. We will denote them by Tγ1,γ2 .

3. Let {γ1,γ2} be a pair of curves whose algebraic intersection number is 0. Then the images of
Tγ1 and Tγ2 in Sp2g(Z) commute, so [Tγ1 ,Tγ2 ] ∈I g. We will make use of such commutators
for simple closed curves γ1 and γ2 whose geometric intersection number is 2 (for instance, the
pair of curves {x4,x5} from Figure 1.b). We will call these commutators of simply intersecting
pairs and denote them by Cγ1,γ2 .

Remarks.

• The fact that I g is generated by separating twists and bounding pair maps follows from work
of Birman and Powell ([3, 28]; see also [29] for a different proof, as well as generalizations)

• Warning : Traditionally, the curves in a bounding pair are required to be nonseparating;
however, to simplify our statements we allow them to be separating.

• Commutators of simply intersecting pairs are not needed to generate I g, but their presence
greatly simplifies our relations. We remark that the expression of a mapping class as a com-
mutator of a simply intersecting pair is not unique; see Example 3.1 for an example.

Relations. Our relations are as follows; a more detailed description follows.

1. The formal relations (F.1)-(F.8). An example is Tγ1,γ2 = T−1
γ2,γ1

.

2. Two families of relations (the lantern relations and the crossed lantern relations) that arise
from easy identities among various ways of “dragging subsurfaces around”.

3. Two families of relations (the Witt–Hall relations and the commutator shuffle relations) that
arise from easy identities among various ways of “dragging bases of handles around”.
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Figure 2: a. Dragging a copy of Σh2,1 around a curve γ . b. Dragging the end of a handle around a curve
γ

Formal relations. These relations are formal in the sense that they are either immediate con-
sequences of the standard expressions of our generators as products of Dehn twists or are conse-
quences of the conjugation relation f Tx f−1 = Tf (x), where x is a simple closed curve and f is a
mapping class. The first three are immediate, and are true for any curves x1, x2, and x3 so that the
expressions make sense.

Tx1,x2 = T−1
x2,x1

, (F.1)

Cx1,x2 = C−1
x2,x1

, (F.2)

Tx1,x2Tx2,x3 = Tx1,x3 . (F.3)

Next, if {x1,x2} is a bounding pair so that both x1 and x2 are separating curves, we need

Tx1,x2 = Tx1T−1
x2

. (F.4)

If {x1,x2} is a bounding pair and {x3,x2} is a simply intersecting pair so that x1 and x3 are disjoint,
we need

Tx1,T−1
x3 (x2) = Cx3,x2Tx1,x2 . (F.5)

Finally, we will also need the following conjugation relations. In them, A is any generator and x, x1,
and x2 are any curves so that the expressions make sense.

ATxA−1 = TA(x), (F.6)

ATx1,x2A−1 = TA(x1),A(x2), (F.7)

ACx1,x2A−1 = CA(x1),A(x2). (F.8)

Lantern and crossed lantern relations. Letting Σh,n denote a genus h surface with n boundary
components, consider a subsurface S of Σg that is homeomorphic to Σh1,1 for some h1 < g−1. The
closure S′ of the complement of S is then homeomorphic to Σh2,1 with h1 + h2 = g and h2 > 1.
Informally, we can obtain elements of Modg by “dragging” S around a curve γ in S′ (see Figure
2.a). Using results of Birman [2] and Johnson [17], we will formalize this and show that it yields
an injection i : π1(UΣh2)→Modg, where UΣh2 is the unit tangent bundle of Σh2 (see §3.1.1 for the
details; we need the unit tangent bundle because S may “rotate” as it is being dragged). Moreover,
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i(π1(UΣh2)) ⊂ I g. If b = ∂S, then i of the loop around the fiber (with an appropriate choice of
orientation) is Tb.

We can thus find relations in I g from relations in π1(UΣh2). It will be easier to describe these
relations in terms of the group π1(Σh2). Let ρ : π1(UΣh2)→ π1(Σh2) be the projection. We thus have
an exact sequence

1−→ Z−→ π1(UΣh2)
ρ−→ π1(Σh2)−→ 1.

Since h2 > 1, this exact sequence does not split. However, in §2.1 we will give a procedure which
takes any nontrivial γ ∈ π1(Σh2) that can be represented by a simple closed curve and produces
a well-defined γ̃ ∈ π1(UΣh2) so that ρ(γ̃) = γ . Define Push(γ) = i(γ̃) ∈ I g. We will prove that
Push(γ) is a bounding pair map.

Let γ1, . . . ,γn ∈ (π1(Σh2) \ {1}) be elements all of which can be represented by simple closed
curves and which satisfy γ1 · · ·γn = 1. If γ̃i is the aforementioned lift of γi to π1(UΣh2) for 1≤ i≤ n,
then γ̃1 · · · γ̃n is equal to some power of the loop around the fiber. We conclude that for some k ∈ Z
we have the following relation in I g :

Push(γn) · · ·Push(γ1) = T k
b .

The order of the product on the left hand side is reversed because fundamental group elements are
composed via concatenation order while mapping classes are composed via functional order.

We thus need to find all relations between simple closed curves in π1(Σh2). This is provided by
the following theorem.

Theorem 1.1. Let Γ be the abstract group whose generating set consists of the symbols

{sγ | γ ∈ (π1(Σg)\{1}) is represented by a simple closed curve}

and whose relations are sγsγ−1 = 1 for all simple closed curves γ ,

sxsysz = 1 (L)

for all curves x, y, and z arranged like the curves in Figure 3.a, and

sxsy = sz (CL)

for all curves x, y, and z arranged like the curves in Figure 3.b. Then the natural map Γ→ π1(Σg)
is an isomorphism.

We will see that via the above procedure the relation (L) lifts to the well-known lantern relation (L)

Tz̃1,z̃2Tỹ1,ỹ2Tx̃1,x̃2 = Tb

depicted in Figure 3.c, while the relation (CL) lifts to the relation

Tỹ1,ỹ2Tx̃1,x̃2 = Tz̃1,z̃2

depicted in Figure 3.d. We will call this the crossed lantern relation (CL).
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Figure 3: a. Relation L b. Relation CL c. The lantern relation Tz̃1,z̃2Tỹ1,ỹ2Tx̃1,x̃2 = Tb d. The crossed
lantern relation Tỹ1,ỹ2Tx̃1,x̃2 = Tz̃1,z̃2

Witt–Hall and commutator shuffle relations. Let H be a handle on Σg; i.e. an embedded annulus
that does not separate the surface. The closure of the complement of H is homeomorphic to Σg−1,2.
In a manner similar to the previous case, dragging one end of H around curves γ on Σg−1,2 (see
Figure 2.b) yields an injection j : π1(UΣg−1,1)→Modg.

However, in this case we do not have j(π1(UΣg−1,1))⊂I g. Using previous results of the author
(see §3.2.1), we will show there is an isomorphism j−1(I g) ∼= [π1(Σg−1,1),π1(Σg−1,1)]. We thus
have an induced map j′ : [π1(Σg−1,1),π1(Σg−1,1)]→I g. Throughout the paper, we will say that two
curves x and y in the fundamental group of a surface are completely distinct if x 6= y and x 6= y−1. We
we will then show that if x,y ∈ π1(Σg−1,1) are completely distinct nontrivial elements that can be
represented by simple closed curves that only intersect at the basepoint, then j′([x,y]) has a simple
expression in terms of our generators. It follows that we can use commutator identities between
appropriate simple closed curves to obtain relations in I g. In what follows, we will frequently
use the observation that if x,y ∈ π1(Σg−1,1) can be represented by simple closed curves that only
intersect at the basepoint and z ∈ π1(Σg−1,1) is arbitrary, then xz and yz can also be represented by
simple closed curves that only intersect at the basepoint (here xz and yz denote z−1xz and z−1yz).

For the Witt–Hall relations, let g1,g2,g3 ∈ (π1(Σg−1,1)\{1}) be elements so that for each of the
sets {g1,g2,g3},{g1g2,g3} ⊂ π1(Σg−1,1), the elements of the set can be represented by completely
distinct simple closed curves that only intersect at the basepoint. Via the above procedure, we will
use the Witt–Hall commutator identity

[g1g2,g3] = [g1,g3]g2 [g2,g3]

to derive a family of relations (WH) which we will call the Witt–Hall relations.
For the commutator shuffle relations, let g1,g2,g3 ∈ (π1(Σg−1,1) \ {1}) be completely distinct

elements which can be realized by simple closed curves that only intersect at the basepoint. Via the
above procedure, we will we will use the easily-verified commutator identity

[g1,g2]g3 = [g3,g1][g3,g2]g1 [g1,g2][g1,g3]g2 [g2,g3]
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to obtain a family of relations (CS) that we will call the commutator shuffles. This final commutator
identity may be viewed as a variant of the classical Jacobi identity.

Remark. For each Witt–Hall and commutator shuffle relation, the above procedure gives a relation
that is supported on a subsurface of Σg. This subsurface may be embedded in the surface in many
different ways, and we will need all relations come from such embeddings. See the beginning of
§3.2.2 for a precise description of this.

Main theorem. We can now state our Main Theorem.

Theorem 1.2. For g ≥ 2, the group I g has a presentation whose generators are the set of all
separating twists, all bounding pair maps, and all commutators of simply intersecting pairs and
whose relations are the formal relations (F.1)-(F.8), the lantern relations (L), the crossed lantern
relations (CL), the Witt–Hall relations (WH), and the commutator shuffle relations (CS).

We also prove a similar statement for surfaces with boundary (see §4.1).
The proof of Theorem 1.2 is by induction on g. The base case g = 2 is derived from the theorem

of Mess [25] mentioned above that says that I 2 is an infinitely generated free group. For the
inductive step, the key is to show that I g has a presentation most of whose relations “live” in
the subgroups of I g stabilizing simple closed curves (these subgroups are supported on “simpler”
subsurfaces).

The proof of this, like many constructions of group presentations, relies on the study of a nat-
ural simplicial complex upon which the group acts. We will use a suitable modification of the
nonseparating complex of curves, whose definition is as follows.

Definition 1.3. The complex of curves on Σg,n, denoted C g,n, is the simplicial complex whose
(k−1)-simplices are sets {γ1, . . . ,γk} of distinct nontrivial isotopy classes of simple closed curves
on Σg,n that can be realized disjointly. The nonseparating complex of curves on Σg,n, denoted C nosep

g,n ,
is the subcomplex of C g,n whose (k− 1)-simplices are sets {γ1, . . . ,γk} of isotopy classes that can
be realized so that Σg,n \ (γ1∪·· ·∪ γk) is connected.

The complex of curves was introduced by Harvey [13], while the nonseparating complex of curves
was introduced by Harer [12]. We will usually omit the n on C g,n and C nosep

g,n when it equals 0.
Now, there are several standard methods for writing down a presentation from a group action in

terms of the stabilizers (see, e.g., the work of K. Brown [6]). However, we are unable to use these
methods here, as they all require an explicit fundamental domain for the action, which seems quite
difficult to pin down in our situation. We instead use a theorem of the author ([30]; see Theorem 4.3
below) that allows us to derive presentations from group actions without identifying a fundamental
domain.

The hypotheses of this theorem require that the quotient of the simplicial complex by the group
be 2-connected. Unfortunately, C nosep

g /I g is only (g−2)-connected (see Lemma 6.9 and Proposi-
tion 6.13), and hence C nosep

g does not work for the case g = 3. Our solution is to attach additional
cells to C nosep

g to increase the connectivity of its quotient by I g. The complex we make use of is as
follows. Denote by igeom(γ1,γ2) the geometric intersection number of two simple closed curves γ1
and γ2, i.e. the minimum over all curves γ ′1 and γ ′2 with γ ′i isotopic to γi for 1≤ i≤ 2 of the number
of points of γ ′1∩ γ ′2.
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a b c

Figure 4: a,b,c. Examples of the three kinds of simplices in MC g

Definition 1.4. The complex MC g is the simplicial complex whose (k− 1)-simplices are sets
{γ1, . . . ,γk} of isotopy classes of simple closed nonseparating curves on Σg satisfying one of the
following three conditions (for some ordering of the γi).

• The γi are disjoint and γ1∪·· ·∪ γk does not separate Σg (see Figure 4.a).

• The γi satisfy

igeom(γi,γ j) =

{
1 if (i, j) = (1,2)
0 otherwise

and γ1∪·· ·∪ γk does not separate Σg (see Figure 4.b).

• The γi are disjoint, γ1 ∪ γ2 ∪ γ3 cuts off a copy of Σ0,3 from Σg, and {γ1, . . . ,γk} \ {γ1} is a
standard simplex (see Figure 4.c).

Our main result about MC g (Proposition 4.4 below) says that MC g/I g is (g−1)-connected. In
particular, it is 2-connected for g = 3.

History and comments. Three additional results concerning presentations of the Torelli group
should be mentioned. First, Krstić and McCool [19] have proven that the analogue of the Torelli
group in Aut(Fn) is not finitely presentable for n = 3. Second, using algebreo-geometric methods,
Hain [10] has computed a finite presentation for the Malcev Lie algebra of I g for g ≥ 6. Finally,
in addition to their infinite presentation of the Torelli group, Morita and Penner [26] used Johnson’s
finite generating set for the Torelli group to give a finite presentation of the fundamental groupoid
of a certain cell decomposition of the quotient of Teichmüller space by the Torelli group.

As far as relations in the Torelli group go, Johnson’s paper [17] contains a veritable zoo of
relations, most of which are derived from clever combinations of lantern relations in the mapping
class group. An excellent discussion of these relations, plus some generalizations of them, can be
found in Brendle’s unpublished thesis [5]. The rest of our relations seem to be new, though it is
unclear which of them can be derived from Johnson’s relations.

We finally wish to draw attention to a paper of Gervais [9] that constructs an infinite presen-
tation for the whole mapping class group using the set of all Dehn twists as generators. Gervais’s
presentation was later simplified by Luo [20].

Outline. We begin in §2 with a review of the Birman exact sequence together with some basic
group theory. Next, in §3 we derive the nonformal relations in our presentation. The proof of
Theorem 1.2 is in §4. This proof depends on two propositions that are proven in §5 and §6.
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Conventions and notation. All homology groups will have Z coefficients. Throughout this pa-
per, we will systematically confuse simple closed curves with their homotopy classes. Hence
(based/unbased) curves are said to be simple closed curves if they are (based/unbased) homotopic
to simple closed curves, etc. If γ1 and γ2 are two simple closed curves, then igeom(γ1,γ2) will denote
the geometric intersection number of γ1 and γ2; i.e. the minimum over all curves γ ′1 and γ ′2 with γ ′i
isotopic to γi for 1≤ i≤ 2 of the number of points of γ ′1∩ γ ′2. If γ1 and γ2 are either oriented simple
closed curves or elements of H1(Σg), then ialg(γ1,γ2) will denote the algebraic intersection number
of γ1 and γ2. Finally, we will say that x,y ∈ π1(Σg,n) are completely distinct if x 6= y and x 6= y−1.

For surfaces with boundary, the group Modg,n is defined to be the group of homotopy classes
of orientation-preserving homeomorphisms of Σg,n that fix the boundary pointwise (the homotopies
also must fix the boundary). Like in the closed surface case, the group I g,1 is defined to be the sub-
group of Modg,1 consisting of mapping classes that act trivially on H1(Σg,1). For surfaces with more
than 1 boundary component, there is more than one useful definition for the Torelli group (see [29]
for a discussion). We discuss one special definition in §3.2.1. As far group-theoretic conventions go,
we define [g1,g2] = g−1

1 g−1
2 g1g2 and gg2

1 = g−1
2 g1g2. Finally, we wish to draw the reader’s attention

to the warning at the end of §2.1; it is the source of several somewhat counterintuitive formulas.

Acknowledgements. I wish to thank my advisor Benson Farb for his enthusiasm and encourage-
ment and for commenting extensively on previous incarnations of this paper. I also wish to thank
Joan Birman, Matt Day, Martin Kassabov, Justin Malestein, and Ben Wieland for their comments on
this project. I particularly wish to thank an anonymous referee for a very careful reading and many
useful suggestions. Finally, I wish to thank the Department of Mathematics of the Georgia Institute
of Technology for their hospitality during the time in which parts of this paper were conceived.

2 Preliminaries

2.1 The Birman exact sequence

In this section, we review the exact sequences of Birman and Johnson [2, 4, 17] that describe the
effect on the mapping class group of gluing a disc to a boundary component; these will be the basis
for our inductive arguments. We will need the following definition.

Definition 2.1. Consider a surface Σg,n. Let ∗ ∈ Σg,n be a point. We define Mod∗g,n, the mapping
class group relative to ∗, to be the group of orientation-preserving homeomorphisms of Σg,n that fix
∗ and the boundary pointwise modulo isotopies fixing ∗ and the boundary pointwise.

Let b be a boundary component of Σg,n. There is a natural embedding Σg,n ↪→ Σg,n−1 induced by
gluing a disc to b. Let ∗ ∈ Σg,n−1 be a point in the interior of the new disc. Clearly we can factor the
induced map Modg,n →Modg,n−1 into a composition

Modg,n −→Mod∗g,n−1 −→Modg,n−1 .

Now let UΣg,n−1 be the unit tangent bundle of Σg,n−1 and ∗̃ be any lift of ∗ to UΣg,n−1. The combined
work of Birman [2] and Johnson [17] shows that (except for the degenerate cases where (g,n) equals
(0,1), (0,2), or (1,1)) all of our groups fit into the following commutative diagram with exact rows
and columns.
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γ
γ1γ2 γ̃1γ̃2 b

a b c d
Figure 5: a. A simple closed curve γ ∈ π1(Σg,n−1) b. We drag ∗ around γ . c. Push(γ) = Tγ1T−1

γ2
d.

The lift Push(γ) = Tγ̃1 T−1
γ̃2

of Push(γ) to Modg,n

1 1
↓ ↓
Z = Z
↓ ↓

1 −→ π1(UΣg,n−1, ∗̃) −→ Modg,n −→ Modg,n−1 −→ 1
↓ ↓ ‖

1 −→ π1(Σg,n−1,∗) −→ Mod∗g,n−1 −→ Modg,n−1 −→ 1
↓ ↓
1 1

The Z in the first column is the loop in the fiber, while the Z in the second column corresponds
to the Dehn twist about the filled-in boundary component. For γ ∈ π1(Σg,n−1,∗), let Push(γ) be
the element of Mod∗g,n−1 associated to γ (hence Push(γ) “drags ∗ around the curve γ”). If γ is
nontrivial and can be represented by a simple closed curve, then there is a nice formula for Push(γ)
(see Figures 5.a–c). Namely, let γ1 and γ2 be the boundary of a regular neighborhood of γ . The
orientation of γ induces an orientation on γ1 and γ2; assume that γ lies to the left of γ1 and to the
right of γ2. Then Push(γ) = Tγ1T−1

γ2
.

Continue to assume that γ 6= 1 can be represented by a simple closed curve. Recall that we have
been considering Σg,n−1 to be Σg,n with a disc glued to b. In the other direction, we can consider
Σg,n to be Σg,n−1 with the point ∗ blown up to a boundary component (i.e. replaced with its circle
of unit tangent vectors). Two such identifications of Σg,n with a blow-up of Σg,n−1 may differ by a
power of Tb; however, since Tb fixes both γ1 and γ2 there are well-defined lifts γ̃1 and γ̃2 of the γi to
Σg,n (see Figure 5.d). It is not hard to see that Push(γ) := Tγ̃1T−1

γ̃2
is a lift of Push(γ).

Warning. It is traditional to compose elements of π1 from left to right (concatenation order) but to
compose mapping classes from right to left (functional order). We will (reluctantly) adhere to these
conventions, but because of them the map π1(UΣg,n−1)→Modg,n and all other maps derived from
it are anti-homomorphisms; i.e. they reverse the order of composition.

2.2 Two group-theoretic lemmas

In this section, we prove two easy group-theoretic lemmas that will form the basis for many of our
arguments. The first is a tool for proving that sequences are exact.

Lemma 2.2. Let j : G2 →G3 be a surjective homomorphism between two groups G2 and G3, and let
G1 be a normal subgroup of G2 with G1 ⊂ ker( j). Additionally, let 〈S3|R3〉 be a presentation for G3
and S2 be a generating set for G2 satisfying j(S2) = S3. Assume that the following two conditions
are satisfied.

1. For all s,s′ ∈ S2∪{1} with j(s) = j(s′), there exist k1,k2 ∈ G1 so that s = k1s′k2.
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2. For any relation r1 · · ·rk ∈ R3, we can find r̃1, . . . , r̃k ∈ S±1
2 with r̃1 · · · r̃k = 1 so that j(r̃i) = ri

for 1≤ i≤ k.

Then the sequence

1−→ G1 −→ G2
j−→ G3 −→ 1

is exact.

Proof. Let S2 ⊂ G2/G1 be the projection of S2. By condition 1 the induced map j : G2/G1 → G3

restricts to a bijection between S2 and S3. Condition 2 then implies that there is an inverse j−1; i.e.
that j is an isomorphism, as desired.

Remark. In the first condition of Lemma 2.2, since G1 is normal it is enough to assume that there
exists some k ∈ G1 so that s = s′k. We stated it the way we did to make the logic behind some of
our applications clearer.

The following special case of Lemma 2.2 will be used repeatedly.

Corollary 2.3. Let j : G2 → G3 be a surjective homomorphism between two groups. Assume that
G3 has a presentation 〈S3|R3〉 and that G2 has a generating set S2 so that j restricts to a bijection
between S2 and S3. Furthermore, assume that every relation r1 · · ·rk ∈ R3 (here ri ∈ S±1

3 ) satisfies
j−1(r1) · · · j−1(rk) = 1, where j−1(ri) is the unique element of S±1

2 that is mapped to ri. Then j is an
isomorphism.

Corollary 2.3 is interesting even if G3 is a free group – it says that if j : G → F(S) is a homomor-
phism from a group G to the free group F on the free generating set S and if for each s ∈ S there is
some s̃ ∈ j−1(s) so that the set {s̃ | s ∈ S} generates G, then j is an isomorphism.

The second lemma is a tool for proving that a set of elements generates a group.

Lemma 2.4. Let G be a group generated by a set S. Assume that a group H generated by a set T
acts on G (as a set, not necessarily as a group) and that S′ ⊂ S satisfies the following two conditions.

1. H(S′) = S

2. For t ∈ T±1 and s ∈ S′, we have t(s) ∈ 〈S′〉 ⊂ G.

Then S′ generates G.

Proof. By condition 2, the group H stabilizes 〈S′〉 ⊂ G. Condition 1 then implies that S ⊂ 〈S′〉, so
〈S′〉= G, as desired.

3 Non-formal relations in the Torelli group

In this section, we derive the non-formal relations in our presentation.

Remark. As will become clear, all the non-formal relations in our presentation arise in some fashion
from the Birman exact sequence.
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3.1 The lantern and crossed lantern relations

3.1.1 Preliminaries

We first discuss relations that arise from “dragging subsurfaces around”. Fix a simple closed sepa-
rating curve b on Σg. Cutting Σg along b, we obtain subsurfaces homeomorphic to Σh1,1 and Σh2,1
for some integers h1 and h2 satisfying h1 +h2 = g. Assume that h1 > 0 and h2 > 1. Observe that we
have an injection I h2,1 ↪→ I g. Additionally, the formulas in §2.1 imply that the kernel π1(UΣh2)
of the Birman exact sequence for Σh2,1 lies in I h2,1, so we have an exact sequence

1−→ π1(UΣh2)−→I h2,1 −→I h2 −→ 1. (1)

Combining these two observations, we obtain an injection π1(UΣh2) ↪→I g. The element of Modg

that corresponds to γ ∈ π1(UΣh2) can be informally described as “dragging Σh1,1 around γ”. We will
construct relations in π1(UΣh2) using the push-maps discussed in §2.1 and then use the aforemen-
tioned injection to map these relations into I g.

3.1.2 The lantern relation

Consider simple closed curves x,y,z ∈ (π1(Σh2)\{1}) that can be arranged like the curves drawn in
Figure 3.a. Observe that xyz = 1 and that

Push(x) = Tx̃1,x̃2 ∈ π1(UΣh2)

for the curves x̃1 and x̃2 depicted in Figure 3.c. Similar statements are true for y and z. We conclude
that in π1(UΣh2)⊂I g, we must have

Tz̃1,z̃2Tỹ1,ỹ2Tx̃1,x̃2 = T k
b

for some k (observe that we have switched the order of composition here from concatenation order
for curves to functional order for mapping classes). By examining the action on a properly embed-
ded arc exactly one of whose endpoints lies on b, one can check that k = 1. These are the classical
lantern relations (see, e.g., [14]). Summing up, we have

Tz̃1,z̃2Tỹ1,ỹ2Tx̃1,x̃2 = Tb (L)

for all curves x̃1, x̃2, ỹ1, ỹ2, z̃1, and z̃2 embedded in Σg like the curves in Figure 3.c.

Remark. This interpretation of the lantern relation was discovered independently by Margalit and
McCammond [23].

3.1.3 The crossed lantern relation

Now consider simple closed curves x,y,z ∈ (π1(Σh2) \ {1}) that can be arranged like the curves
drawn in Figure 3.b. Observe that xy = z and that

Push(x) = Tx̃1T−1
x̃2
∈ π1(UΣh2)⊂I g

for the curves x̃1 and x̃2 depicted in Figure 3.d. Similar statements are true for y and z. We conclude
that in π1(UΣh2)⊂I g, we must have

(Tỹ1T−1
ỹ2

)(Tx̃1T−1
x̃2

) = (Tz̃1T−1
z̃2

)T k
b
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for some k. By examining the action on a properly embedded arc exactly one of whose endpoints
lies on b, one can check that k = 0. We will call these the crossed lantern relations. Summing up,
our relation is

Tỹ1,ỹ2Tx̃1,x̃2 = Tz̃1,z̃2 (CL)

for all curves x̃1, x̃2, ỹ1, ỹ2, z̃1, and z̃2 that can be embedded in Σg like the curves depicted in Figure
3.d.

Alternate Derivation. Observe that for i = 1,2 we have z̃i = Tx̃2(ỹi). Expanding out the Tz̃1,z̃2 in (CL)
as Tx̃2Tỹ1,ỹ2T−1

x̃2
and rearranging terms, we see that (CL) is equivalent to Tỹ1,ỹ2Tx̃1T−1

ỹ1,ỹ2
= Tx̃2 . This

follows from the easily verified identity Tỹ1,ỹ2(x̃1) = x̃2.

3.2 The Witt–Hall and commutator shuffle relations

3.2.1 Preliminaries

We now examine the relations that arise from “dragging the end of a handle”. For use later in §5.1,
we will discuss a slightly more general situation. For g≥ 0 and n≥ 2, let i : Σg,n ↪→ Σg+n−1 be the
embedding of Σg,n into the surface obtained by gluing the boundary components of a copy of Σ0,n

to the boundary components of Σg,n. Define I g,n = i−1∗ (I g+n−1). It is not hard to see that this is
well-defined. Observe that i∗(I g,2) is the subgroup of I g+1 stabilizing the handle corresponding
to the glued-in annulus. The groups I g,n were introduced by Johnson [18] and investigated further
by van den Berg [34] and the author [29] (in the notation of [29], if the boundary components of
Σg,n are {b1, . . . ,bn}, then I g,n = I (Σg,n,{{b1, . . . ,bn}})).

We will say that a mapping class f ∈ Modg,n is a separating twist, etc., if i∗( f ) is a separating
twist, etc. It follows from [29, Theorem 1.3] that if g≥ 1, then separating twists and bounding pair
maps generate I g,n.

Remark. Not all simple closed curves that separate Σg,n are nullhomologous. By our definition,
separating twists in Modg,n are exactly Dehn twists about nullhomologous simple closed curves.

Let b be a boundary component of Σg,n. The kernel π1(UΣg,n−1) of the map Modg,n →Modg,n−1
induced by gluing a disc to b does not lie in I g,n (for instance, Tb /∈I g,n). Instead, [29, Theorem
4.1] says that we have an exact sequence

1−→ [π1(Σg,n−1),π1(Σg,n−1)]−→I g,n −→I g,n−1 −→ 1. (2)

The group [π1(Σg,n−1),π1(Σg,n−1)] is embedded in π1(UΣg,n−1) ∼= π1(Σg,n−1)⊗Z as the graph of
a homomorphism φ : [π1(Σg,n−1),π1(Σg,n−1)] → Z, that is, as the set of all pairs (x,φ(x)) for
x ∈ [π1(Σg,n−1),π1(Σg,n−1)]. The identification π1(UΣg,n−1)∼= π1(Σg,n−1)⊗Z (or, equivalently, the
splitting π1(Σg,n−1)→ π1(UΣg,n−1) of the natural surjection π1(UΣg,n−1)→ π1(Σg,n−1)) is not nat-
ural, but once a splitting ρ : π1(Σg,n−1) → π1(UΣg,n−1) is chosen φ is uniquely defined by the
requirement that the image of the homomorphism [π1(Σg,n−1),π1(Σg,n−1)]→ π1(UΣg,n−1) defined
by x 7→ ρ(x)T φ(x)

b must be contained in the pullback of I g,n under the inclusion π1(UΣg,n−1) ↪→
Modg,n.

For curves γ1,γ2 ∈ (π1(Σg,n−1) \ {1}), define Jγ1,γ2K to be the element of I g,n associated to
[γ1,γ2]. To simplify our notation, if η ∈ π1(Σg,n−1) is another simple closed curve, then we define

Jγ1,γ2Kη
:= J(η−1)(γ1)(η),(η−1)(γ2)(η)K= JPush(η)(γ1),Push(η)(γ2)K.
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γ1 γ2

˜[γ1,γ2]1
˜[γ1,γ2]2

b

γ1 γ2 γ̃1
1

γ̃1
2

γ̃2
1

γ̃2
2b

δ

a b

c d e
Figure 6: a,c. The two configurations of nontrivial simple closed curves γ1,γ2 ∈ π1(Σg,n−1,∗) with
γ1 ∩ γ2 = {∗}. b,d. Lifts of the corresponding elements of [π1(Σg,n−1,∗),π1(Σg,n−1,∗)] to I g,n e.
J(γ2)−1(γ1)−1,(γ2)−1K= [Tγ̃2

1
,T−1

δ ]

Finally, if γ ∈ (π1(Σg,n−1)\{1}) is already an element of the commutator subgroup, then let JγK be
the element of I g,n associated to γ .

We will need some explicit formulas for J·, ·K. Consider two completely distinct simple closed
curves γ1,γ2 ∈ (π1(Σg,n−1)\{1}) that only intersect at the base point. From the above description,
we see that the following procedure will yield Jγ1,γ2K.

1. Choose some ψ ∈ Modg,n which is associated to an element of π1(UΣg,n−1) that projects to
[γ1,γ2] ∈ π1(Σg,n−1).

2. Determine k ∈ Z so that ψT k
b ∈I g,n. We will then have Jγ1,γ2K= ψT k

b .

There are two cases. In the first (see Figure 6.a), a regular neighborhood of γ1∪γ2 is homeomorphic
to Σ1,1. Observe that [γ1,γ2] is homotopic to a simple closed separating curve. Our element ψ in
this case will be Push([γ1,γ2]). Observe that

Push([γ1,γ2]) = T
[̃γ1,γ2]1

T−1

[̃γ1,γ2]2

for simple closed curves [̃γ1,γ2]1 and [̃γ1,γ2]2 like the curves pictured in Figure 6.b.

Note that exactly one element of the pair {[̃γ1,γ2]1, [̃γ1,γ2]2} is a separating curve (both curves
separate Σg,n, but only one of them maps to a separating curve on Σg+n−1). In Figure 6.b, the curve

[̃γ1,γ2]2 is separating, but in other situations [̃γ1,γ2]1 will be the separating curve (for instance, this
will happen if we flip the labels on the curves γ1 and γ2 in Figure 6.a). Now, the nonseparating
curve and b form a bounding pair on Σg,n. We conclude that either

Jγ1,γ2K= T
[̃γ1,γ2]1,b

T−1

[̃γ1,γ2]2

or
Jγ1,γ2K= T

[̃γ1,γ2]1
T

b,[̃γ1,γ2]2
,

13



depending on which curve is separating. In a similar way, if γ is a separating curve then JγK equals
the product of a separating twist and a bounding pair map.

In the second case, a regular neighborhood of γ1∪ γ2 is homeomorphic to Σ0,3 (see Figure 6.c).
In this case, our element ψ will be

Push(γ2)Push(γ1)Push(γ2)
−1

Push(γ1)
−1

.

Lifting everything to Σg,n, we see that

Push(γ i) = T ei
γ̃ i

1
T−ei

γ̃ i
2

for the curves depicted in Figure 6.d and some ei =±1 (the ei depend on the orientations of γ1 and
γ2). Observe that

Push(γ2)Push(γ1)Push(γ2)
−1

Push(γ1)
−1

= T e2
γ̃2

1
T e1

γ̃1
1

T−e2
γ̃2

1
T−e1

γ̃1
1

= [T−ei
γ̃2

1
,T−ei

γ̃1
1

] ∈I g,n.

We conclude that Jγ1,γ2K= [T−e2
γ̃2

1
,T−e2

γ̃1
1

]. Now, this is the commutator of the simply intersecting pair

{γ̃2
1 , γ̃1

1} if e2 = e1 =−1; we will call a pair of curves γ1 and γ2 with this property positively aligned.
If γ1 and γ2 are not positively aligned, however, then by repeatedly applying the commutator identity
[g−1

1 ,g2] = [g2,g1]g
−1
1 and the fact that TxTyT−1

x = TTx(y) for simple closed curves x and y, we can find
a simply intersecting pair Cρ1,ρ2 with Jγ1,γ2K = Cρ1,ρ2 . We conclude that Jγ1,γ2K is a commutator
of some simply intersecting pair no matter how γ1 and γ2 are aligned.

Example 3.1. We can now give an example of the non-uniqueness of the expression of a mapping
class as a commutator of a simply intersecting pair. Orienting γ1 and γ2 as shown in Figure 6.a,
we have J(γ1)−1,(γ2)−1K = Cγ̃2

1 ,γ̃1
1

(verifying this is a good exercise in understanding the above
construction). Let δ be the curve in Figure 6.e. Observe that J(γ2)−1(γ1)−1,(γ2)−1K = [Tγ̃2

1
,T−1

δ ].
Since we have the commutator identity [(γ2)−1(γ1)−1,(γ2)−1] = [(γ1)−1,(γ2)−1], we conclude that
Cγ̃2

1 ,γ̃1
1
= [Tγ̃2

1
,T−1

δ ]. The right hand side of this is not a commutator of a simply intersecting pair, but
the above procedure shows that it equals Cδ ,T−1

δ (γ̃2
1 ).

We conclude with the following lemma.

Lemma 3.2. Let s∈I g,n be a commutator of a simply intersecting pair whose image under the map
I g,n →I g,n−1 is 1. Then there are completely distinct simple closed curves γ1,γ2 ∈ π1(Σg,n−1) that
only intersect at the basepoint so that s = Jγ1,γ2K.
Proof. Let s = Cx,y. Then a regular neighborhood N of x∪ y satisfies N ∼= Σ0,4. Moreover, our
assumptions imply that some boundary component of N must be isotopic to b. The lemma then
follows from Figures 6.c–d and the above discussion.

3.2.2 Witt–Hall relations

In this section and in §3.2.3, we will derive relations in the group I g,2. These relations give us
relations in the Torelli groups of closed surfaces in the following way. For g′ ≥ g, let Σg,2 ↪→ Σg′ be
any embedding (not just the embedding Σg,2 ↪→ Σg+1 discussed in §3.2.1). There is then an induced
map I g,2 → I g′ (“extend by the identity”; see [29, Theorem Summary 1.1]). This induced map
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z

z

xy

[y,z]

[x,z]y

(xy)2

z1

c1

c2

a1

a2

a b c
Figure 7: a. One configuration of curves yielding a Witt–Hall relation b,c. The curves needed for
Example 3.3

takes separating twists, bounding pair maps, and simply intersecting pair maps to generators of the
same type (possibly degenerate ones, such as bounding pair maps Tx,y with x isotopic to y). If

se1
1 · · ·sek

k = 1 (ei =±1)

is a relation between separating twists, bounding pair maps, and simply intersecting pair maps in
I g,2 and s′i is the image of si in I g′ via the above map, then we obtain a relation between our
generators in I g′ by deleting all the degenerate generators in the relation (s′1)

e1 · · ·(s′k)ek = 1.
The two families of relations that we derive from exact sequence (2) come from commutator

identities. First, consider the Witt–Hall commutator identity

[g1g2,g3] = [g1,g3]g2 [g2,g3].

Remark. The Witt–Hall commutator identity first appeared in [11]. Later, it appeared in a list of
basic commutator identities dubbed the “Witt–Hall identities” in [21].

Fix x,y,z∈ (π1(Σg,1)\{1}) so that for each of the sets {x,y,z} and {xy,z}, the elements of the set
can be represented by completely distinct simple closed curves that only intersect at the basepoint.
There are several different topological types of configurations of curves with these properties; an
example is in Figure 7.a. The Witt–Hall commutator identity then yields the following relation,
which we will call the Witt–Hall relation.

Jxy,zK= Jy,zKJx,zKy. (WH)

We now give an example.

Example 3.3. The curves x, y, and z depicted in Figure 7.a satisfy the conditions for the Witt–Hall
relations. In the surface group, the relation is [xy,z] = [x,z]y[y,z]. In Figure 7.b, we depict the curves
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involved in this surface group relation. Let z1, (xy)2, c1, c2, a1, and a2 be the curves depicted in
Figure 7.c. We then have Push([x,z]y) = Ta1,a2 and Push([y,z]) = Tc1,c2 . The corresponding relation
in Torelli is [T−1

z1
,T(xy)2)] = Tc1,bT−1

c2
Ta1Tb,a2 (the counterintuitive form of the initial commutator

comes from the fact that the map from the kernel of the Birman exact sequence to Torelli is an
anti-homomorphism). However, [T−1

z1
,T(xy)2)] is not a commutator of a simply intersecting pair (i.e.

z and xy are not positively aligned). Using the relation [g−1
1 ,g2] = [g1g2g−1

1 ,g1], we transform this
into the Witt–Hall relation CTz1 ((xy)2),z1 = Tc1,bT−1

c2
Ta1Tb,a2 .

3.2.3 Commutator shuffle relations

We now use another, somewhat less standard commutator identity to find relations in the Torelli
group. Our commutator identity, which is easily verified, is the following.

[g1,g2]g3 = [g3,g1][g3,g2]g1 [g1,g2][g1,g3]g2 [g2,g3].

Though it may seem a bit odd, it will become apparent in §5.2.3 that this is exactly the relation we
need to complete our picture. We will apply it to completely distinct simple closed curves x,y,z ∈
(π1(Σg,1)\{1}) that only intersect at the basepoint. Again, there are finitely many topological types
of such configurations. Our relation is then

Jx,yKz = Jy,zKJx,zKyJx,yKJz,yKxJz,xK. (CS)

We will call these relations the commutator shuffles. Pictures of them are left as an exercise for the
reader.

4 The Main Theorem

4.1 A stronger version of the Main Theorem

To facilitate our induction, we will have to consider not only the case of a closed surface but also
the case of a surface with boundary. In this section, we state a version of our Main Theorem that
applies to these cases. We begin with a definition.

Definition 4.1. For g≥ 2 and n≥ 0, define Γg,n to be the group whose generating set is the set of all
separating twists, all bounding pair maps, and all commutators of simply intersecting pairs on Σg,n

and whose relations are the following. For n = 0, they are relations (F.1)-(F.8) from §1, relations
(L) and (CL) from §3.1, and relations (WH) and (CS) from §3.2 (for the relations (WH) and (CS),
we use all ways of “embedding them in the closed surface” as described in the beginning of §3.2.2).
For n = 1, they are the set of all words r in the generators of Γg,n so that i∗(r) is one of the above
relations, where i : Σg,1 ↪→ Σg+1 is the embedding obtained by gluing a copy of Σ1,1 to Σg,1 and
i∗ is the obvious map defined on the generators. For n > 1, they are the set of all words r in the
generators of Γg,n so that i∗(r) is one of the above relations, where i : Σg,n ↪→ Σg+n−1,1 obtained by
gluing n boundary components of a copy of Σ0,n+1 to the boundary components of Σg,n and i∗ is the
obvious map defined on the generators.

Remark. The generators for Γg,n are mapping classes, not merely abstract symbols. For bounding
pair maps and separating twists, this is unimportant, as their defining curves are determined by their
mapping classes. For commutators of simply intersecting pairs, however, different pairs of curves
determine the same mapping class (see Example 3.1), and we identify these in Γg,n.

16



Since all of the relations of Γg,n also hold in I g,n, there is a natural homomorphism Γg,n →I g,n.
A stronger version of Theorem 1.2 is then the following.

Theorem 4.2 (Main Theorem, Stronger Version). For n≤ 2 and g≥ 2, the natural map Γg,n →I g,n

is an isomorphism.

Remark. In fact, this is also true for n > 2, but Theorem 4.2 is all we need. We will use the groups
Γg,n for n > 2 later for technical purposes.

4.2 Obtaining presentations from group actions

In this section, we discuss a theorem of the author [30] that we will use to prove Theorem 4.2. In
order to state it, we begin by noting that an argument of Armstrong [1] says that if X is a simply
connected simplicial complex and a group G acts without rotations on X (that is, for all simplices
s of G the stabilizer Gs stabilizes s pointwise; this can be arranged by subdividing X), then if X/G
is also simply connected we can conclude that G is generated by elements that stabilize vertices. In
other words, we have a surjective map

π : ∗
v∈X (0)

Gv −→ G.

As notation, for v ∈ X (0) denote the inclusion map

Gv ↪→ ∗
v∈X (0)

Gv

by iv.
There are then some obvious elements ker(π), which we write as relations f = g rather than as

elements f g−1. First, we have iv(g)iw(h)iv(g−1) = ig·w(ghg−1) for g∈Gv and h∈Gw. We call these
relations the conjugation relations. Second, we have iv(g) = iv′(g) if g ∈Gv∩Gv′ and {v,v′} ∈ X (1)

(here {v,v′} ∈ X (1) means that {v,v′} forms an edge in the 1-skeleton of X). We call these the edge
relations. The following theorem of the author says that under favorable circumstances these two
families of relations yield the entire kernel of the aforementioned map.

Theorem 4.3 ([30]). Let a group G act without rotations on a simply connected simplicial complex
X. Assume that X/G is 2-connected. Then

G = ( ∗
v∈X (0)

Gv)/R,

where R is the normal subgroup generated by the conjugation relations and the edge relations.

4.3 The proof of the Main Theorem

In this section, we will give the outline of the proof of Theorem 4.2. Our main tool will be Theorem
4.3 together with two other results whose proofs are postponed until later sections.

The first major ingredient in our proof will be the following proposition, which is proven in §6.
Recall that the complex MC g was defined at the end of §1.

Proposition 4.4. The simplicial complex MC g satisfies the following two properties.
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1. The complex MC g is (g−2)-connected.

2. The complex MC g/I g is (g−1)-connected.

Remark. In fact, using similar methods one can prove that C g/I g is (g−1)-connected, but Propo-
sition 4.4 suffices for our purposes, and the details of its proof are less technical. In the end, one
would get the same presentation no matter which of the two complexes one used.

Theorem 4.3 and Proposition 4.4 will allow us to give an inductive decomposition of I g,n. To
show that the groups Γg,n fit into this inductive picture, we will show that the groups Γg,n fit into
exact sequences like exact sequence (1) from §3.1.1 and exact sequence (2) from §3.2.1. More
precisely, observe that there exist natural “disc-filling” homomorphisms Γg,1 → Γg and Γg,2 → Γg,1
(defined on the generators). In §5, we will prove the following.

Proposition 4.5. The aforementioned homomorphisms fit into the following exact sequences.

1−→ π1(UΣg)−→ Γg,1 −→ Γg −→ 1, (3)

1−→ [π1(Σg,1),π1(Σg,1)]−→ Γg,2 −→ Γg,1 −→ 1. (4)

Next, we will need the following lemma, which forms part of Lemma 5.9 below.

Lemma 4.6. For g≥ 2 and 0≤ n≤ 2, using the relations in Γg,n we can write any commutator of
a simply intersecting pair as a product of bounding pairs maps and separating twists.

Finally, we will need some results of Mess and Johnson about separating twists. Recall that by
convention, all homology groups have Z-coefficients. Observe that if γ is a separating curve on Σg

that cuts Σg into two subsurfaces S1 and S2, then we have an splitting

H1(Σg)∼= H1(S1)⊕H1(S2),

where the H1(Si) are symplectic Z-modules which are orthogonal with respect to the intersection
form. We will call such a splitting a symplectic splitting. Observe that the symplectic splitting
associated to γ is a conjugacy invariant of Tγ ∈I g. We then have the following two theorems.

Theorem 4.7 (Mess, [25]). I 2 is an infinitely generated free group. Moreover, there exists a free
generating set of separating twists S containing exactly one separating twist associated to each
symplectic splitting of H1(Σ2).

Theorem 4.8 (Johnson, [15]). For g ≥ 2, two separating twists Tγ1 and Tγ2 in I g are conjugate if
and only if they induce the same symplectic splitting of H1(Σg).

We now assemble these ingredients to prove Theorem 4.2.

Proof of Theorem 4.2. The proof will be by induction on g and n. We begin with the base case
(g,n) = (2,0).

Claim 1. The natural map Γ2 →I 2 is an isomorphism.

Proof of Claim 1. Observe first that Σ2 does not contain any bounding pairs. Also, using Lemma
4.6 we see that Γ2 is generated by separating twists. Let S be the generating set for I 2 given by
Theorem 4.7. Using the conjugation relation (F.6) together with Theorem 4.8, we conclude that Γg,2
is generated by {Tγ | γ ∈ S}. Corollary 2.3 therefore implies that the natural map Γ2 → I 2 is an
isomorphism, as desired.
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Now assume by induction that for some g≥ 2 the natural map Γg →I g is an isomorphism.

Claim 2. The natural maps Γg,1 →I g,1 and Γg,2 →I g,2 are isomorphisms.

Proof of Claim 2. Using Proposition 4.5, we have the following commutative diagram of exact se-
quences.

1 → π1(UΣg) → Γg,1 → Γg → 1
‖ ↓ ↓

1 → π1(UΣg) → I g,1 → I g → 1

The right hand map is an isomorphism by induction, so the five lemma implies that the center map
is an isomorphism; i.e. that Γg,1 ∼= I g,1. The proof that Γg,2 ∼= I g,2 is similar.

We now prove the following.

Claim 3. The natural map Γg+1 →I g+1 is an isomorphism.

Proof of Claim 3. Since no two curves in a simplex of MC g+1 are homologous, the group I g+1
acts on MC g+1 without rotations. Since g + 1 ≥ 3, Proposition 4.4 and Theorem 4.3 thus imply
that

I g+1 ∼= ( ∗
γ ∈ (MC g+1)(0)

(I g+1)γ)/R,

where (I g+1)γ denotes the stabilizer in I g+1 of γ and where R is the normal subgroup generated
by the edge relations and the conjugation relations coming from the action of I g+1 on MC g+1.
Now, consider a simple closed nonseparating curve γ , and let b and b′ be the boundary components
of the copy of Σg,2 that results from cutting Σg+1 along γ . By [27, Theorem 4.1], we have an exact
sequence

1−→ 〈Tb,b′〉 −→I g,2 −→ (I g+1)γ −→ 1.

If we denote by (Γg+1)γ the subgroup of Γg+1 generated by the subset of generators that do not
intersect γ , then there is a surjective homomorphism Γg,2 → (Γg+1)γ . Letting K denote the kernel
of this surjection, we have a commutative diagram of exact sequences

1 → K → Γg,2 → (Γg+1)γ → 1
↓ ↓ ↓

1 → 〈Tb,b′〉 → I g,2 → (I g+1)γ → 1

By induction, the center map is an isomorphism. Also, we have Tb,b′ ∈ K, so the left hand ver-
tical map is surjective. By the five lemma, we conclude that the map (Γg+1)γ → (I g+1)γ is an
isomorphism.

Now, every generator of Γg+1 lies in (Γg+1)γ for some simple closed nonseparating curve γ .
Hence there is a surjection ∗

γ ∈ (MC g+1)(0)
(Γg+1)γ −→ Γg+1.

Since the map (Γg+1)γ → (I g+1)γ is an isomorphism, we conclude that there is a surjective map

∗
γ ∈ (MC g+1)(0)

(I g+1)γ −→ Γg+1.
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The edge relations in R project to trivial relations in Γg+1. Also, using relations (F.6)–(F.8), we see
that the conjugation relations in R project to relations in Γg+1. We conclude that we have a sequence
of surjections

( ∗
γ ∈ (MC g+1)(0)

(I g+1)γ)/R−→ Γg+1 −→I g+1.

Since the composition of these two maps is an isomorphism, we conclude that the natural map
Γg+1 →I g+1 is an isomorphism, as desired.

This completes the proof of Theorem 4.2, which we recall is stronger than Theorem 1.2 from the
introduction.

It remains to prove Propositions 4.4 and 4.5 and Lemma 4.6. The proofs of Proposition 4.4 and
Lemma 4.6 are contained in §5, while the proof of Proposition 4.4 is contained in §6.

5 Exact sequences for Γg,n : The proof of Proposition 4.5

The proof of Proposition 4.5 will be split into two pieces. Before discussing these two pieces, recall
the following.

• In §2.1, we defined a bounding pair map Push(γ) ∈ I g,1 for every nontrivial γ ∈ π1(Σg)
that can be realized by a simple closed curve. Together with the twist about the boundary
component, these bounding pair maps generate the kernel of the Birman exact sequence

1−→ π1(UΣg)−→I g,1 −→I g −→ 1;

the key observation is that π1(Σg) is generated by simple closed curves.

• Consider n≥ 2. In §3.2.1, we defined an element Jx,yK∈I g,n for every pair x,y∈ π1(Σg,n−1)
of completely distinct nontrivial elements that can be realized by simple closed curves that
only intersect at the basepoint. Additionally, we showed that Jx,yK is either a commutator of
a simply intersecting pair or a well-defined product of a bounding pair map and a separating
twist. The group [π1(Σg,n−1),π1(Σg,n−1)] is generated by the set of all [x,y] where x,y ∈
π1(Σg,n−1) range over pairs satisfying the above conditions. Thus the elements Jx,yK generate
the kernel of the Birman exact sequence

1−→ [π1(Σg,n−1),π1(Σg,n−1)]−→I g,n −→I g,n−1 −→ 1.

For most of this section, we will only consider I g,n for n≤ 2; the cases where n > 2 will play
a small role in §5.1.2. In the following definition, we will abuse notation and identify Push(γ) and
Jx,yK with the corresponding products of generators in Γg,1 and Γg,2.

Definition 5.1. For g ≥ 2, let Kg,1 be the subgroup of Γg,1 generated by the set SK
g,1 that is defined

as follows (here b is the boundary component of Σg,1).

SK
g,1 := {Tb}∪{Push(γ) | γ ∈ (π1(Σg)\{1}) can be realized by a simple closed curve}.

Also, let Kg,2 be the subgroup of Γg,2 generated by the set SK
g,2 that is defined as follows.

SK
g,2 := {Jx,yK | x,y ∈ (π1(Σg,1,∗)\{1}) are completely distinct and can be realized by

simple closed curves that only intersect at the basepoint}.
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Remark. The set SK
g,1 is contained in the generating set for Γg,1, but the set SK

g,2 is not contained in
the generating set for Γg,2.

The first part of our proof of Proposition 4.5 is the following lemma, which will be proven in §5.1.

Lemma 5.2. For g≥ 2 and 1≤ n≤ 2 we have an exact sequence

1−→ Kg,n −→ Γg,n −→ Γg,n−1 −→ 1.

The second part of our proof is the following lemma, which will be proven in §5.2.

Lemma 5.3. For g≥ 2, the natural maps Kg,1 → π1(UΣg) and Kg,2 → [π1(Σg,1),π1(Σg,1)] are iso-
morphisms.

Proposition 4.5 is an immediate consequence of Lemmas 5.2 and 5.3.

5.1 Constructing the exact sequences : Lemma 5.2

The goal of this section is to prove Lemma 5.2. There are three parts.

• In §5.1.1, we investigate the effect of the map Γg,n → Γg,n−1 on the generators of Γg,n.

• In §5.1.2 – §5.1.3, we work out several consequences of the relations in Γg,n.

• In §5.1.4, we give the proof of Lemma 5.2.

5.1.1 The effect on generators of filling in boundary components

In this section, fix g≥ 0 and 1≤ n≤ 2. Also, fix a boundary component b of Σg,n, and let i : Σg,n ↪→
Σg,n−1 be the embedding induced by gluing a disc to b. This induces a map i∗ : Modg,n →Modg,n−1
(“extend by the identity”). We begin with the following definition.

Definition 5.4. Let x and x′ be two nontrivial simple closed curves on Σg,n. We say that x and x′

differ by b if there is an embedding Σ0,3 ↪→ Σg,n that takes the boundary components of Σ0,3 to x, x′,
and b.

The following lemma is immediate.

Lemma 5.5. If x and x′ are nontrivial simple closed curves that differ by b, then i∗(Tx) = i∗(Tx′),
and additionally there is a simple closed curve γ ∈ π1(Σg,n−1) with Tx,x′ = Push(γ).

Also, the following lemma follows from the discussion in §3.2.1 (see especially Figure 6).

Lemma 5.6. Assume that n = 2 and that x and x′ are simple closed curves that differ by b. Also,
assume that Tx is a separating twist. Thus x′ separates the two boundary components, so Tb,x′ is
a bounding pair map. Then there is some γ ∈ π1(Σg,1) that can be realized by a simple closed
separating curve so that TxTb,x′ = JγK.
Lemma 5.5 shows that i∗(s) = i∗(s′) if the generators s and s′ differ by the following moves.
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Definition 5.7. Let s and s′ be either separating twists, bounding pair maps, or commutators of
simply intersecting pairs. We say that s differs from s′ by b if they satisfy one of the following
conditions.

• s = Tx and s′ = Tx′ for separating curves x and x′ that differ by b. This can only occur if n = 1.

• Either s = Tx,y and s′ = Tx′,y or s = Ty,x and s′ = Ty,x′ for bounding pairs {x,y} and {x′,y} so
that x differs from x′ by b. This can only occur if n = 1.

• Either s = Tx,b and s′ = Tx′ or s = Tx′ and s′ = Tx,b for a bounding pair {x,b} and a separating
curve x′ so that either x = x′ or x differs from x′ by b. This can occur if n = 1 or n = 2; if
n = 1, then Tx is also a separating twist.

• Either s = Cx,y and s′ = Cx′,y or s = Cy,x and s′ = Cy,x′ for simply intersecting pairs {x,y} and
{x′,y} so that x differs from x′ by b. This can occur if n = 1 or n = 2.

Also, we say that s and s′ differ by a b-push map if there exists some φ ∈ π1(UΣg,n−1) = ker(i∗) so
that s and s′ satisfy one of the following conditions.

• For a separating curve x we have s = Tx and s′ = Tφ(x).

• For a bounding pair {x,y} we have s = Tx,y and s′ = Tφ(x),φ(y).

• For a simply intersecting pair {x,y} we have s = Cx,y and s′ = Cφ(x),φ(y).

We say that s and s′ are b-equivalent if there is a sequence s1, . . . ,sk of separating twists, bounding
pair maps, or commutators of simply intersecting pairs so that s = s1, so that s′ = sk, and so that for
1≤ j < k either s j differs from s j+1 by b or s j and s j+1 differ by a b-push map.

We now prove the following.

Lemma 5.8. Let s,s′ ∈ I g,n be separating twists, bounding pair maps, or commutators of simply
intersecting pairs that satisfy i∗(s) = i∗(s′) 6= 1. Then s and s′ are b-equivalent.

Proof. Assume first that s and s′ are separating twists Tx and Tx′ . Observe that the curve i∗(x) is
isotopic to the curve i∗(x′) (here we are using the fact that if γ1 and γ2 are separating curves, then
Tγ1 = Tγ2 if and only if γ1 is isotopic to γ2). Let φt : Σg,n−1 → Σg,n−1 be an isotopy so that φ0 = 1 and
φ1(i∗(x)) = i∗(x′). Restricting φt to the disc glued to b, we get a family of embeddings of a disc into
Σg,n−1. If i∗(x′) does not separate b from φ1(b), then we can modify φt so that φ1(i∗(x)) = i∗(x′) and
φ1(b) = b. In this case, φt determines a mapping class φ ∈ π1(UΣg,n−1) ⊂ Modg,n with φ(x) = x′,
and we are done. If instead i∗(x′) separates b from φ1(b), then we can modify φt so that φ1(b) = b
but (letting φ ∈ π1(UΣg,n−1)⊂Modg,n be the mapping class induced by φt) so that φ(x) and x′ differ
by b (we “pull b through x′”). The desired sequence of generators is then Tx,Tφ(x),Tx′ .

The proof is similar if s and s′ are both bounding pair maps or both commutators of simply
intersecting pairs. Only two addenda are necessary.

• In both cases we may need to “pull b” through both of the curves that define s′.
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• While bounding pair maps are determined by their defining curves, simply intersecting pair
maps are not. However, in the definition of differing by b and differing by a b-push map we
only required that there be some simply intersecting pairs {x,y} and {x′,y′} satisfying the
conditions so that s = Cx,y and s′ = Cx′,y′ . To make the above argument work, we need to
choose these pairs so that they become isotopic after gluing a disc to b.

It remains to consider the case that (reordering s and s′ if necessary) s is a bounding pair map
and s′ is a separating twist – it is not hard to see that the other possibilities (for instance, that s is a
separating twist while s′ is a simply intersecting pair map) are impossible. In this case, we must have
s = Tx,b (we cannot have s = Tb,x since s′ is a positive twist). An argument similar to the argument
in the previous two paragraphs then shows that s and s′ are b-equivalent.

5.1.2 Consequences of our relations : commutators of simply intersecting pairs

Fix a surface Σg,n with g≥ 1, with n≥ 0, and with (g,n) 6= (1,1). If n≥ 1, then let b⊂ ∂Σg,n be a
boundary component and let i : Σg,n ↪→ Σg,n−1 and i∗ : Modg,n →Modg,n−1 be the maps induced by
gluing a disc to b. The main result of this section is the following.

Lemma 5.9. Assume that n≤ 2. Let s be a commutator of a simply intersecting pair on Σg,n.

1. Using the relations in Γg,n, we can write s = s1 · · ·sk for some k, where the s j are separating
twists or bounding pair maps.

2. If 1≤ n≤ 2 and if t is another commutator of a simply intersecting pair that differs from s by
b, then using the relations in Γg,n, we can write s = s1 · · ·sk and t = t1 · · · tk for some k, where
s j and t j are separating twists or bounding pair maps with i∗(s j) = i∗(t j) for 1≤ j ≤ k.

3. If 1≤ n≤ 2 and i∗(s) = 1, then using the relations in Γg,n, we can write s = s1 · · ·sk for some
k, where s j ∈ SK

g,n for 1≤ j ≤ k.

For the proof of Lemma 5.9, we will need a lemma. For n≥ 2, define

T K
g,n = {JxK | x ∈ (π1(Σg,n−1,∗)\{1}) can be realized by a simple closed curve that

cuts off a subsurface homeomorphic to Σ1,1}.
Our lemma is as follows.

Lemma 5.10. Consider n≥ 2. Let s be a commutator of a simply intersecting pair on Σg,n. Assume
that i∗(s) = 1. Then by using the relations in Γg,n, we can write s = s1 · · ·sk for some k, where
s j ∈ T K

g,n for 1≤ j ≤ k.

In fact, Lemma 5.10 follows immediately from a known result about commutator subgroups of
surface groups. If (Σ,∗) is a compact surface with a basepoint ∗ ∈ Int(Σ) and x,y,z∈ (π1(Σ,∗)\{1})
are such that for each of the sets {x,y,z} and {xy,z}, all the curves in the set can be realized by
completely distinct nontrivial simple closed curves that only intersect at the basepoint, then we will
call the relation

[xy,z] = [x,z]y[y,z]

a Witt–Hall relation in [π1(Σ,∗),π1(Σ,∗)]. Observe that since x and z can be realized by simple
closed curves that only intersect at the basepoint, so can xy = Push(y)(x) and zy = Push(y)(z). Of
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course, the Witt–Hall relation in the Torelli group is modeled on this commutator relation. It is
obvious that Lemma 5.10 follows from the following lemma combined with Lemma 3.2.

Lemma 5.11 ([29, Lemma A.1]). Let (Σ,∗) be a compact surface of positive genus with a basepoint
∗ ∈ Int(Σ). Let γ1,γ2 ∈ π1(Σ,∗) be completely distinct simple closed curves that only intersect at
the basepoint. Then by using a sequence of Witt–Hall relations in [π1(Σ,∗),π1(Σ,∗)], we can write

[γ1,γ2] = [η1
1 ,η2

1 ] · · · [η1
k ,η2

k ],

where for 1 ≤ j ≤ k the curves η1
j and η1

j are completely distinct simple closed curves so that
[η1

j ,η2
j ] can be realized by a simple closed separating curve that cuts off a subsurface homeomor-

phic to Σ1,1.

Remark. This result as stated is more precise than [29, Lemma A.1]; the proof there actually proves
the indicated result.

Proof of Lemma 5.9. We begin with conclusion 3. The case n = 2 follows from Lemma 3.2, so
we only need to consider the case n = 1 (the reason the case n = 1 is harder is that Kg,1 does not
contain any commutators of simply intersecting pairs). Let i′ : Σg,2 ↪→ Σg,1 be an embedding so that
if the boundary components of Σg,2 are b′ and b′′, then i′(b′) = b and i′(b′′) is a simple closed curve
that bounds a disc. By [29, Theorem Summary 1.1], there is an induced map i′∗ : I g,2 →I g,1. Let
π : I g,2 →I g,1 be the map induced by gluing a disc to b′ (this is different from the map i′∗). There is
then a simply intersecting pair s′ ∈ SK

g,2 so that i′∗(s′) = s and π(s′) = 1. Lemma 5.10 shows that using
the relations in Γg,2, we can write s′ = Jz1K · · ·JzkK, where for 1 ≤ j ≤ k the element z j ∈ π1(Σg,1)
can be represented by a nontrivial simple closed separating curve. Hence s = i′∗(Jz1K) · · · i′∗(JzkK) is
a consequence of the Witt–Hall relations. Now, for 1 ≤ j ≤ k the mapping class i′∗(Jz jK) is equal
(up to taking inverses) to Tρ j,bTρ ′j , where ρ j and ρ ′j are separating curves that differ by b. This is
not a generator for Kg,1, but we can use relation (F.4) twice together with (F.6) (which says that
Tb commutes with Tρ ′j ) to rewrite it as Tρ j,ρ ′j T

−1
b , which is a product of two generators for Kg,1 by

Lemma 5.5. This completes the proof of conclusion 3.
To prove conclusion 1, we first show that for some m≥ 2 there exists an embedding i′′ : Σ1,m ↪→

Σg,n with an associated homomorphism i′′∗ : I 1,m → I g,n so that the following holds. For some
simply intersecting pair map s′′ ∈ I 1,m that gets mapped to 1 when a disc is glued to one of the
boundary components of Σ1,m, we have s = i′′∗(s′′). Indeed, let N ∼= Σ0,4 be a regular neighborhood
of the curves defining s. We then simply choose a genus 1 subsurface containing N and sharing a
boundary component with N.

Now, in Lemma 5.10 we proved that we can use the relations in Γ1,m to write s′′ as a product of
elements of T K

1,m. Since every element of T K
1,m is the product of a separating twist and a bounding

pair map, we obtain an expression s′′ = y1 · · ·yl , where y j is a separating twist or bounding pair
map on Σ1,m for 1 ≤ j ≤ l. We conclude that the relations in Γg,n yield the desired expression
s = i′′∗(y1) · · · i′′∗(yl).

For conclusion 2, observe that there must exist an embedding i′′′ : Σ1,m ↪→ Σg,n with an associated
homomorphism i′′′∗ : I 1,m→I g,n so that i′′′∗ (s′′) = t and so that the embeddings i◦ i′′ : Σ1,m ↪→Σg,n−1
and i◦ i′′′ : Σ1,m ↪→ Σg,n−1 are isotopic. The desired expression for t is then t = i′′′∗ (y1) · · · i′′′∗ (yl).
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Figure 8: The various configurations of curves needed for the proof of Lemma 5.12

5.1.3 Consequences of our relations : generators differing by a b-push map

In this section, we prove the following.

Lemma 5.12. Fix g≥ 2 and 1≤ n≤ 2, and let s and s′ be either separating twists, bounding pair
maps, or commutators of simply intersecting pairs. If s and s′ differ by a b-push map, then in Γg,n

the element s is equal to k1s′k2 with k1,k2 ∈ Kg,n.

Proof. We begin by observing that for n = 1, this is an immediate consequence of the conjugation
relations (F.6)–(F.8) (the point being that π1(UΣg)⊂I g,1 and Kg,1 surjects onto π1(UΣg)). We can
therefore assume that n = 2.

Next, we claim that it is enough to prove the lemma for bounding pair maps s and s′ so that s
(and hence s′) does not equal Tx,y with Tx (and hence Ty) a separating twist. Indeed, assume that the
lemma is true for such bounding pair maps and that s = Tz and s′ = Tψ(z) for a separating curve z and
some ψ ∈ π1(UΣg,1) ⊂Modg,2. We can then find a simple closed curve z′ that differs from z by b.
By Lemma 5.6, we have TzTb,z′ ∈Kg,n and Tψ(z)Tb,ψ(z′) ∈Kg,n. Now, neither Tb nor Tz′ is a separating
twist, so by assumption there exists k′1,k

′
2 ∈ Kg,n so that Tb,ψ(z′) = k′1Tz′,bk′2. We conclude that

Tψ(z) = (Tψ(z)Tb,ψ(z′))T
−1

b,ψ(z′) = (Tψ(z)Tb,ψ(z′))(k
′
2)
−1T−1

b,z′ (k
′
1)
−1

= (Tψ(z)Tb,ψ(z′))(k
′
2)
−1(TzTb,z′)−1Tz(k′1)

−1,

so we can take k1 = (Tψ(z)Tb,ψ(z′))(k′2)
−1(TzTb,z′)−1 and k2 = (k′1)

−1.
If instead s is a commutator of a simply intersecting pair, then we can use Lemma 5.9 to write

s = s±1
1 · · ·s±1

k , where the si are separating twists or bounding pair maps. Since Kg,n is normal, this
reduces us to the previous cases. Finally, if s = Tx,y with Tx (and hence Ty) a separating twist, then
we can use relation (F.4) to reduce ourselves to the case of separating twists.

We can therefore assume that both s and s′ are bounding pair maps of the above form. We claim
that we can assume furthermore that either s = Tz,b or s = Tx,y with neither x nor y separating the
surface (we remark that since n = 2, separating the surface is strictly weaker than being the curve
in a separating twist). Indeed, assume that s = Tx,y, where both x and y separate the surface (it
is impossible for only one of them to separate the surface) but where Tx (and hence Ty) is not a
separating twist. Both {x,b} and {y,b} are bounding pairs, and hence we can use relation (F.3) to
write s = Tx,bTb,y, reducing ourselves to the indicated situation.
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We will do the case that s = Tx,y with neither x nor y separating the surface; the other case is
similar. We must show that for all φ ∈ π1(UΣg,1) ⊂ Modg,2, there exists some k1,k2 ∈ Kg,2 so that
Tφ(x),φ(y) = k1Tx,yk2. It is enough check this for all φ in a generating set for π1(UΣg,1). Draw x and
y like the curves in Figure 8.a (we will systematically confuse the surface Σg,2 with the surface Σg,1
that results from gluing a disc to b). Our generating set SUΣ for π1(UΣg,1) will consist of Tb plus the
set of all Push(γ) for based simple closed curves γ that are either disjoint from x and y or intersect
x and y like either the curve depicted in the top of Figure 8.a or the curve depicted in Figure 8.b.

Consider φ ∈ SUΣ. Since Tb fixes x and y, the case φ = Tb is trivial. We therefore can assume
that φ = Push(γ) for a based curve γ like those described above. If γ is disjoint from x and y, then
the proof is trivial. If γ is a curve that intersects x and y like the curve in the top of Figure 8.a, then
Push(γ) = Tγ1,γ2 for the curves γ1 and γ2 shown in the bottom of Figure 8.a. We conclude that using
relation (F.5), we have

TPush(γ)(x),Push(γ)(y) = Tx,T−1
γ2 (y) = Cγ2,yTx,y.

Since Cγ2,y ∈ Kg,n (see §3.2.1), this proves the claim.
If instead γ is a curve that intersects x and y like the curve in Figure 8.b, then observe that

TPush(γ)(x),Push(γ)(y) = Tx′,y′ for the curves x′ and y′ depicted in Figure 8.c. Letting ρ and η be the
other curves in Figure 8, there is a lantern relation (L)

Tρ = Tb,ηTy′,x′Tx,y.

Here the four boundary components of the lantern are ρ , b, y′, and x. Using relation (F.1), we can
rearrange this formula and get

Tx,y = Tx′,y′(Tη ,bTρ).

Lemma 5.6 says that Tη ,bTρ is a generator for Kg,2, so the proof follows.

5.1.4 The proof of Lemma 5.2

We now prove Lemma 5.2. Let the boundary component b ⊂ Σg,n and the maps i : Σg,n ↪→ Σg,n−1
and i∗ : Modg,n →Modg,n−1 be as in §5.1.1.

Proof of Lemma 5.2. Let Sg,n be the generating set for Γg,n. Observe that for n = 1,2, the groups
Kg,n are normal subgroups of Γg,n (this uses the conjugation relations (F.6)-(F.8)). Additionally, they
are contained in the kernels of the disc-filling maps Γg,n → Γg,n−1. We will apply Lemma 2.2.

We must verify the two conditions of Lemma 2.2. We begin with the second condition (that
relations in Γg,n−1 lift to relations in Γg,n). Observe that Σg,n \ i(Σg,n−1) is a disc D. What we must
show is that for every relation

s1 · · ·sk = 1 (s j ∈ S±1
g,n−1)

in Γg,n−1 we can homotope the curves involved in the definitions of the s j so that D is disjoint from
all these curves and so that if we let s̃ j for 1 ≤ j ≤ k be the generators of Γg,n defined by these
curves, then s̃1 · · · s̃k is a relation of the same type (lantern, crossed lantern, etc.) in Γg,n. This is an
easy case by case check and the details are left to the reader.

It remains to verify the first condition. Consider s,s′ ∈ Sg,n∪{1} that project to the same element
of Γg,n−1. We must find k1,k2 ∈ Kg,n so that s′ = k1sk2 in Γg,n. We first assume that one of s and
s′ (say s′) equals 1. Consider the case n = 1. If s is a bounding pair map or a separating twist,
then (using Lemma 5.5 if s is a bounding pair map) it follows that s is a generator of Kg,n. Hence
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in this case we can take k1 = k2 = 1. Also, if s is a commutator of a simply intersecting pair,
then by Lemma 5.9 we can write s = s1 · · ·sk, where the s j are separating twists or bounding pair
maps with i∗(s j) = 1. Hence by the previous case we have s j ∈ Kg,n, so s ∈ Kg,n. Again we can take
k1 = k2 = 1. Now consider the case n = 2. It is easy to see that the generator s cannot be a separating
twist or a bounding pair map (the key point is that both boundary components of Σg,2 must lie in
the same component of the disconnected surface one gets when one cuts along the curves defining
a separating twist or bounding pair map). We conclude that s must be a commutator of a simply
intersecting pair, so by Lemma 5.9 we can again take k1 = k2 = 1.

We now assume that neither s nor s′ equals 1. By Lemma 5.8, it is enough to show that the
appropriate k1,k2 ∈ Kg,n exist if s and s′ either differ by b or differ by a b-push map. The case that
they differ by a b-push map being a consequence of Lemma 5.12, we only need to consider the case
that s and s′ differ by b. We first assume that n = 1. If s and s′ are both bounding pair maps, then
without loss of generality we can assume that s = Tx,y and s = Tx′,y for curves x and x′ that differ by
b. By Lemma 5.5, {x,x′} forms a bounding pair and Tx,x′ ∈ Kg,n, so relation (F.2) implies that

s = Tx,y = Tx,x′Tx′,y = Tx,x′s′,

as desired. The case where s and s′ are both separating twists is dealt with in a similar way, using
relation (F.4) instead of (F.2). If s is a bounding pair map Tx,b and s′ is a separating twist Tx′ so that
x and x′ differ by b, then since n = 1, both Tx and Tb are separating twists, and the proof is similar to
the case that s and s′ are both separating twists. Finally, if s and s′ are both commutators of simply
intersecting pairs, then using Lemma 5.9 together with the normality of Kg,n we can reduce to the
previously proven cases

We conclude by considering the case n = 2. Observe first that s and s′ cannot both be bounding
pair maps or separating twists. Again, the key point is that the curves defining both s and s′ cannot
separate the boundary components of Σg,2. If s is a bounding pair map and s′ is a separating twist,
then s(s′)−1 is a generator of Kg,2 (see Lemma 5.6). Finally, if s and s′ are both commutators of
simply intersecting pairs, then using Lemma 5.9, we can reduce to the previously proven cases.

5.2 Identifying the kernels : Lemma 5.3

The goal of this section is to prove Lemma 5.3, which we recall says that for g≥ 2 the natural maps
Kg,1 → π1(UΣg) and Kg,2 → [π1(Σg,1),π1(Σg,1)] are isomorphisms.. There are four parts.

• In §5.2.1, we record some formulas for the action of the Modg,n on π1(Σg,n).

• In §5.2.2, we construct a new presentation for π1(UΣg). Along the way, we prove Theorem
1.1, giving a presentation for π1(Σg) whose generating set is the set of all simple closed
curves.

• In §5.2.3, by the same method we construct a new presentation for [π1(Σg,1),π1(Σg,1)].

• In §5.2.4, we put these ingredients together to prove Lemma 5.3.

5.2.1 The action of the mapping class group on π1

In this appendix, we record some formulas for the action of certain elements of Mod∗g,n on π1(Σg,n,∗)
for n≤ 1. The elements of Mod∗g,n we will consider are the right Dehn twists

{Ta1 , . . . ,Tag ,Tb1 , . . . ,Tbg ,Tc1 , . . . ,Tcg−1},
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α1

α2 α3

β1 β2 β3

γ1 γ2
η1 η2

a1 a2 a3

b1 b2 b3

c1 c2

a b

c d

Figure 9: a. Some curves on Σ∗g,n b. The generators for π1(Σg,n,∗) c, d. Extra elements of π1(Σg,n,∗)

Tai(βi) = αiβi T−1
ai

(βi) = α−1
i βi

Tbi(αi) = β−1
i αi T−1

bi
(αi) = βiαi

Tci(αi) = γiαi Tci(βi) = γiβiγ−1
i Tci(αi+1) = αi+1γ−1

i
T−1

ci
(αi) = γ−1

i αi T−1
ci

(βi) = γ−1
i βiγi T−1

ci
(αi+1) = αi+1γi

Table 1: Formulas for the action of Mod∗g,n on π1(Σg,n,∗).

where the curves ai, bi, and ci are as depicted in Figure 9.a, which depicts the case g = 3. This figure
depicts a surface with one boundary component; our formulas will also hold on a closed surface,
where we interpret all maps as occurring on Σg,1 with a disc glued to its boundary component. Our
generators for π1(Σg,n,∗) are the oriented loops

{α1, . . . ,αg,β1, . . . ,βg}

depicted in Figure 9.b in the case g = 3. To simplify our formulas, we will make use of the additional
elements

{γ1, . . . ,γg−1,η1, . . . ,ηg−1} ⊂ π1(Σg,n,∗)
depicted in Figures 9.c and 9.d in the case g = 3. The following formulas express these additional
elements in terms of our generators for π1(Σg,n,∗).

γi = ηiβ−1
i ,

ηi = α−1
i+1βi+1αi+1.

With these definitions, the formulas in Table 1 hold.

5.2.2 A presentation for π1(UΣg)

We now prove the following.
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Proposition 5.13. Let Γ be the group whose generators are the symbols

S = {Tb}∪{Tx1,x2 | there exists some nontrivial simple closed curve γ ∈ π1(Σg)
so that Push(γ) = Tx1,x2}

subject to the relations (L), (CL), Tx1,x2Tx2,x1 = 1, and [Tb,s] = 1 for all s ∈ S. Then the natural map
Γ→ π1(UΣg) is an isomorphism.

This will be a consequence of Theorem 1.1, which we now prove.

Proof of Theorem 1.1. Let S be the generating set for Γ and let

Sπ1 = {α1, . . . ,αg,β1, . . . ,βg}

be the set of generators for π1(Σg,∗) depicted in Figure 9 (remember the convention we discussed
in §5.2.1 – since we are working on a closed surface we view Σg as the surface Σg,1 in Figure 9 with
a disc attached to the boundary component). Observe that Sπ1 may be naturally identified with the
subset

S′ = {sx | x ∈ Sπ1}
of S. By Corollary 2.3, to prove the theorem, it is enough to prove that S′ generates Γ and that the
sx satisfies the surface relation

[sα1 ,sβ1 ] · · · [sαg ,sβg ] = 1.

The latter claim follows from the following easy calculation, where we indicate above each = sign
the relation used.

[sα1 ,sβ1 ] · · · [sαg ,sβg ]
CL= (sα−1

1 β−1
1

sα1β1) · · ·(sα−1
g β−1

g
sαgβg)

L= s[α1,β1] · · ·s[αg,βg]

L= s[α1,β1][α2,β2]s[α3,β3] · · ·s[αg,βg]

= . . . = s[α1,β1]···[αg,βg] = 1.

We now prove the former claim. Observe first that we can express sx for x a separating curve as a
product of commutators of sy for nonseparating curves y. Indeed, this is essentially contained in the
above calculation. Hence Γ is generated by

Snosep = {sx | x ∈ π1(Σg,∗) is a nonseparating simple closed curve}.

Observe that Mod∗g acts on Snosep and that Mod∗g ·S′ = Snosep. Let

SMod = {Ta1 , . . . ,Tag ,Tb1 , . . . ,Tbg ,Tc1 , . . . ,Tcg−1}

be the set of generators for Mod∗g defined in §5.2.1 and let

{γ1, . . . ,γg−1,η1, . . . ,ηg−1}

be the elements of the surface group defined in §5.2.1. By Lemma 2.4, to prove that S′ generates Γ,
it is enough to prove that for f ∈ S±1

Mod and sx ∈ S′, the element s f (x) can be expressed as a product
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of elements of (S′)±1. This is essentially immediate from the formulas in Table 1 in §5.2.1. We give
one of the calculations as a example. Recall that γi = ηiβ−1

i and ηi = α−1
i+1βi+1αi+1.

sTci ai = sγiαi

CL= sγisαi = sηiβ−1
i

sαi

L= sηis
−1
βi

sαi = sα−1
i+1βi+1αi+1

s−1
βi

sαi

CL= sα−1
i+1βi+1

sαi+1s−1
βi

sαi

CL= s−1
αi+1

sβi+1sαi+1s−1
βi

sαi .

The others are similar.

We now prove Proposition 5.13.

Proof of Proposition 5.13. Let Γ′ be the group from Theorem 1.1. Observe that Γ′ ∼= Γ/〈Tb〉. We
therefore have the following commutative diagram of exact sequences.

1 → Z → Γ → Γ′ → 1
‖ ↓ ↓

1 → Z → π1(UΣg, ∗̃) → π1(Σg,∗) → 1

By Theorem 1.1, the right hand arrow is an isomorphism. The five lemma therefore implies that the
center arrow is also an isomorphism, as desired.

5.2.3 A presentation for [π1(Σg,1),π1(Σg,1)]

Throughout this section, we will assume that g ≥ 1. We begin with some definitions (these def-
initions will not be used outside of this section). We define the group Γ to be the group whose
generating set is the set of symbols

S = {[x,y]0 | x,y ∈ (π1(Σg,1,∗)\{1}) are completely distinct and can be realized by

simple closed curves that only intersect at the basepoint}

subject to following set of relations. For simplicity, for z ∈ π1(Σg,1,∗), we define

[x,y]z0 := [z−1xz,z−1yz]0 = [Push(z)(x),Push(z)(y)]0.

Also, call a set X ⊂ π1(Σg,1) a good set if the elements of X are completely distinct, nontrivial,
and can be represented by simple closed curves that only intersect at the basepoint. The first set of
relations are the Witt–Hall relations

[g1g2,g3]0 = [g1,g3]
g2
0 [g2,g3]0 (WH)

for all g1,g2,g3 ∈ π1(Σg,1) so that the sets {g1,g2,g3} and {g1g2,g3} are good. Next, we will need
the commutator shuffle relation

[g1,g2]
g3
0 = [g3,g1]0[g3,g2]

g1
0 [g1,g2]0[g1,g3]

g2
0 [g2,g3]0 (CS)

for all g1,g2,g3 ∈ π1(Σg,1) so that {g1,g2,g3} is a good set. Next, we will need the relation

[g1,g2]0 = [g3,g4]0 (ID)
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for all g1,g2,g3,g4 ∈ π1(Σg,1) with [g1,g2] = [g3,g4] (we emphasize that this is equality in the
commutator subgroup; an example of this phenomenon is [yx,y] = [x,y]) so that the sets {g1,g2}
and {g3,g4} are good. Finally, we will need the following relations for all x,y,z,w ∈ π1(Σg,1,∗) so
that each of the sets {x,y} and {z,w} are good.

[x,y]0[y,x]0 = 1, (R.1)

[z,w]−1
0 [x,y]0[z,w]0 = [x,y][z,w]

0 . (R.2)

Observe the following.

Lemma 5.14. The map [x,y]0 7→ Jx,yK induces a surjective homomorphism Γ→ Kg,2.

Proof. We must check that relations go to relations. The only relations for which this is not clear
are the relations (ID). Consider such a relation [g1,g2]0 = [g3,g4]0. There are two cases. In the
first, [g1,g2] can be represented by a simple closed separating curve γ . By definition Jg1,g2K only
depends on γ , so since [g3,g4] = γ it follows that Jg1,g2K= Jg3,g4K. In the other case, Jg1,g2K=Ca,b
and Jg3,g4K= Ca′,b′ for simply intersecting pairs {a,b} and {a′,b′}. We might not have a = a′ and
b = b′, but we must have Ca,b = Ca′,b′ in Modg,2. Since the generators of Kg,2 are mapping classes,
we must have Ca,b = Ca′,b′ in Kg,2, as desired.

Let
ψ : Γ→ [π1(Σg,1,∗),π1(Σg,1,∗)]

be the homomorphism defined on the generators of Γ by ψ([x,y]0) = [x,y]. Our main result will be
the following.

Proposition 5.15. The map ψ is an isomorphism.

The proof will be modeled on the proof of Theorem 1.1 above. To that end, we will need a
useful free generating set for the commutator subgroup of the free group π1(Σg,1,∗). Let

Sπ1 = {α1, . . . ,αg,β1, . . . ,βg}
be the set of generators for π1(Σg,1,∗) described in §5.2.1, and let ≺ be any total ordering on Sπ1 .
We then have the following theorem of Tomaszewski.

Theorem 5.16 ([33]). The set

{[x,y]zd1
1 ···z

dk
k | x,y ∈ Sπ1 , x≺ y, zi ∈ Sπ1 and di ∈ Z for all i,

and x¹ z1 ≺ z2 ≺ . . .≺ zk},
is a free generating set for [π1(Σg,1,∗),π1(Σg,1,∗)].

The proof of Proposition 5.15 will be preceeded by four lemmas. For the first, define

S1 = {[x,y]z
d1
1 ···z

dk
k

0 | x,y ∈ Sπ1 , x≺ y, zi ∈ Sπ1 and di ∈ Z for all i,

and x¹ z1 ≺ z2 ≺ . . .≺ zk},
and let Γ′ be the subgroup of Γ generated by S1. We then have the following.
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Lemma 5.17. The map ψ maps Γ′ isomorphically onto [π1(Σg,1,∗),π1(Σg,1,∗)].
Proof. The set ψ(S1) is the free generating given by Theorem 5.16, so the lemma follows from
Corollary 2.3.

Remark. No relations were used in the proof of Lemma 5.17! The purpose of the relations is to
show that S1 generates Γ.

Our goal is thus to prove that Γ′ = Γ. Define

S4 := {[x,y] f
0 | x,y ∈ Sπ1 , x≺ y, and f ∈ π1(Σg,1,∗)}.

The first step is the following lemma.

Lemma 5.18. S4 ⊂ Γ′.

Proof. This will be a three step process. We will first prove that we can reorder the generators in
the exponents of elements of S1. Define

S2 = {[x,y]z
d1
1 ···z

dk
k

0 | x,y ∈ Sπ1 , x≺ y, and for all i we

have zi ∈ Sπ1 , di ∈ Z, and x¹ zi}.
Claim 1. S2 ⊂ Γ′.

Proof of Claim 1. Consider µ = [x,y]z
d1
1 ···z

dk
k

0 ∈ S2. Observe that relation (R.2) (from the definition of
Γ) says that by conjugating µ by elements of S1, we may multiply the exponent zd1

1 · · ·zdk
k of µ by any

element of [π1(Σg,1,∗),π1(Σg,1,∗)] in ψ(Γ′). Lemma 5.17 says that ψ(Γ′) is the entire commutator
subgroup, so we can multiply the exponent of µ by any desired commutator. By doing this, we can
reorder the terms in it in an arbitrary way. We conclude that by conjugating µ by elements of S1,
we can transform it into an element of S1; i.e. that µ ∈ Γ′, as desired.

Next, we will show that we can have any generators we want in the exponents (in other words,
in the exponent of [x,y]0 we can have z with z≺ x). Define

S3 = {[x,y]z
d1
1 ···z

dk
k

0 | x,y ∈ Sπ1 , x≺ y, zi ∈ Sπ1 and di ∈ Z for all i,

and z1 ≺ z2 ≺ ·· · ≺ zk}.
Claim 2. S3 ⊂ Γ′.

Proof of Claim 2. Consider µ = [x,y]z
d1
1 ···z

dk
k

0 ∈ S3 with d1 6= 0. Set

N = ∑
zi≺x

|di|.

We will prove that µ ∈ Γ′ by induction on N. The base case N = 0 being a consequence of the fact
that S2 ⊂ Γ′, we assume that N > 0. We consider the case d1 > 0; the case d1 < 0 is exactly the
same. Set f = zd1−1

1 · · ·zdk
k . Observe that the following is a consequence of (CS), (R.1), and (R.2)

(this calculation is the purpose of the commutator shuffle).

µ = [x,y]z1 f
0 = [z1,x]

f
0 [z1,y]

x f
0 [x,y] f

0 [x,z1]
y f
0 [y,z1]

f
0

By the relation (R.1), the 1st, 2nd, 4th and 5th terms on the right hand side or their inverses are in S2,
and hence in Γ′. Also, by induction, the 3rd term is in Γ′. We conclude that µ ∈ Γ′, as desired.
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An argument identical to the proof that S2 ⊂ Γ′ now establishes that S4 ⊂ Γ′, as desired.

Now let
{γ1, . . . ,γg−1,η1, . . . ,ηg−1}

be the elements of the surface group defined in §5.2.1.

Lemma 5.19. Fix 1≤ i≤ g−1. For any x ∈ Sπ1 and f ∈ π1(Σg,1,∗), the group Γ′ contains [γi,x]
f
0

and [ηi,x]
f
0 .

Proof. The proofs for [γi,x]
f
0 and [ηi,x]

f
0 are similar. We will do the case of [ηi,x]

f
0 and leave the

other case to the reader. Assume first that x 6= αi+1,βi+1. Since ηi = α−1
i+1βi+1αi+1, we can perform

the following calculation.

[ηi,x]
f
0 = [α−1

i+1βi+1αi+1,x]
f
0

WH= [α−1
i+1βi+1,x]

αi+1 f
0 [αi+1,x]

f
0

WH= [α−1
i+1,x]

βi+1αi+1x
0 [βi+1,x]

αi+1 f
0 [αi+1,x]

f
0

ID= [x,αi+1]
α−1

i+1βi+1αi+1x
0 [βi+1,x]

αi+1 f
0 [αi+1,x]

f
0 .

Each of these terms is in S4, so by Lemma 5.18 we conclude that [ηi,x]
f
0 ∈ Γ′, as desired. Next, if

x = αi+1 we have [ηi,x]
f
0 = [βi+1,αi+1]

αi+1 f
0 ∈ S4, so the lemma is trivially true. Finally, if x = βi+1,

then we have the following calculation.

[ηi,x]
f
0 = [α−1

i+1βi+1αi+1,βi+1]
f
0

WH= [α−1
i+1βi+1,βi+1]

αi+1 f
0 [αi+1,βi+1]

f
0

ID= [α−1
i+1,βi+1]

βi+1αi+1 f
0 [αi+1,βi+1]

f
0

ID= [βi+1,αi+1]
α−1

i+1βi+1αi+1 f
0 [αi+1,βi+1]

f
0

Again, each of these terms is in S4, so by Lemma 5.18 we are done.

Lemma 5.20. Let Mod∗g,1 act on Γ in the natural way. Then Mod∗g,1 ·S1 generates Γ.

Proof. Observe that [α1,β1] can be realized by a simple closed separating curve which cuts off
a subsurface homeomorphic to Σ1,1. By the classification of surfaces, Mod∗g,1 acts transitively on
such curves (ignoring their orientations). Hence for every ρ ∈ π1(Σg,1,∗) that can be realized by
a simple closed separating curve that cuts off a subsurface homeomorphic to Σ1,1, there is some
[α,β ]0 ∈ Mod∗g,1 ·S1 so that either [α,β ] = ρ or [α,β ] = ρ−1. Combining Lemma 5.11 with the
relations (ID), (WH), and (R.1), we conclude that every generator of Γ or its inverse is contained in
the subgroup generated by Mod∗g,1 ·S1, as desired.

Proof of Proposition 5.15. Recall that our goal is to show that Γ = Γ′. We will now use Lemma 2.4.
Consider the natural action of Mod∗g,1 on Γ. By Lemmas 5.20, 5.17 and 2.4, to prove that Γ = Γ′ it
is enough to find some set of generators for Mod∗g,1 that takes S1 into Γ′. Recall that Mod∗g,1 fits into
the Birman exact sequence

1−→ π1(Σg,1,∗)−→Mod∗g,1 −→Modg,1 −→ 1.

Now, the kernel π1(Σg,1,∗) acts on S1 by conjugation. Since S4 contains all conjugates (by elements
of the surface group) of elements of S1, by Lemma 5.18 it is enough to find some set of elements of
Mod∗g,1 which project to generators for Modg,1 and that take S1 into Γ′. Let

SMod = {Ta1 , . . . ,Tag ,Tb1 , . . . ,Tbg ,Tc1 , . . . ,Tcg−1}
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be the elements of Mod∗g,1 from §5.2.1. Observe that SMod projects to a set of generators for Modg,1.
We conclude by observing that the formulas in Table 1 in §5.2.1 imply that S±1

Mod(S1) ⊂ Γ′; the
calculations are similar to the ones that showed that [ηi,x]

f
0 ∈ Γ′.

5.2.4 The proof of Lemma 5.3

We now prove Lemma 5.3, completing the proof of Proposition 4.5.

Proof of Lemma 5.3. Observe that Proposition 5.13 tells us that Kg,1 is a quotient of π1(UΣg). Since
the map Γg,1 →I g fits into the commutative diagram

1 → Kg,1 → Γg,1 → Γg → 1
↓ ↓ ↓

1 → π1(UΣg) → I g,1 → I g → 1

we conclude that in fact Kg,1 ∼= π1(UΣg). In a similar way (using Lemma 5.14 and Proposition 5.15
instead of Proposition 5.13), we prove that Kg,2 ∼= [π1(Σg,1),π1(Σg,1)], as desired.

6 The proof of Proposition 4.4

This section is devoted to the proof of Proposition 4.4, which we recall has the following two
conclusions for g≥ 1.

1. The complex MC g is (g−2)-connected.

2. The complex MC g/I g is (g−1)-connected.

We begin in §6.1 with some preliminary material on simplicial complexes. Next, in §6.2 we recall
the definition of MC g and prove the first conclusion of Proposition 4.4. Next, in §6.3 we give
a linear-algebraic reformulation of the second conclusion of Proposition 4.4. The skeleton of the
proof of this linear-algebraic reformulation is contained in §6.4. This proof depends on a proposition
whose proof is contained in §6.5 - §6.7.

Remark. The proof shares many ideas with the proof of [29, Theorem 5.3], though the details are
more complicated.

6.1 Generalities about simplicial complexes

Our basic reference for simplicial complexes is [32, Chapter 3]. Let us recall the definition of a
simplicial complex given there.

Definition 6.1. A simplicial complex X is a set of nonempty finite sets (called simplices) so that if
∆ ∈ X and /0 6= ∆′ ⊂ ∆, then ∆′ ∈ X . If ∆,∆′ ∈ X and ∆′ ⊂ ∆, then we will say that ∆′ is a face of
∆. The dimension of a simplex ∆ ∈ X is |∆|−1 and is denoted dim(∆). A simplex of dimension 0
will be called a vertex and a simplex of dimension 1 will be called an edge; we will abuse notation
and confuse a vertex {v} ∈ X with the element v. For k ≥ 0, the subcomplex of X consisting of all
simplices of dimension at most k (known as the k-skeleton of X) will be denoted X (k). If X and Y
are simplicial complexes, then a simplicial map from X to Y is a function f : X (0) → Y (0) so that if
∆ ∈ X , then f (∆) ∈ Y .
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If X is a simplicial complex, then we will define the geometric realization |X | of X in the
standard way (see [32, Chapter 3]). When we say that X has some topological property (e.g. simple-
connectivity), we will mean that |X | possesses that property.

Next, we will need the following definitions.

Definition 6.2. Consider a simplex ∆ of a simplicial complex X .

• The star of ∆ (denoted starX(∆)) is the subcomplex of X consisting of all ∆′ ∈ X so that there
is some ∆′′ ∈ X with ∆,∆′ ⊂ ∆′′. By convention, we will also define starX( /0) = X .

• The link of ∆ (denoted linkX(∆)) is the subcomplex of starX(∆) consisting of all simplices
that do not intersect ∆. By convention, we will also define linkX( /0) = X .

If X and Y are simplicial complexes, then the join of X and Y (denoted X ∗Y ) is the simplicial
complex whose simplices are all sets ∆t∆′ satisfying the following.

• ∆ is either /0 or a simplex of X .

• ∆′ is either /0 or a simplex of Y .

• One of ∆ or ∆′ is nonempty.

Observe that starX(∆) = ∆∗ linkX(∆) (this is true even if ∆ = /0).

For n≤−1, we will say that the empty set is both an n-sphere and a closed n-ball. Also, if X is
a space then we will say that π−1(X) = 0 if X is nonempty and that πk(X) = 0 for all k ≤−2. With
these conventions, it is true for all n ∈ Z that a space X satisfies πn(X) = 0 if and only if every map
of an n-sphere into X can be extended to a map of a closed (n+1)-ball into X .

Finally, we will need the following definition. A basic reference is [31].

Definition 6.3. For n ≥ 0, a combinatorial n-manifold M is a nonempty simplicial complex that
satisfies the following inductive property. If ∆ ∈M, then dim(∆)≤ n. Additionally, if n−dim(∆)−
1 ≥ 0, then linkM(∆) is a combinatorial (n− dim(∆)− 1)-manifold homeomorphic to either an
(n−dim(∆)−1)-sphere or a closed (n−dim(∆)−1)-ball. We will denote by ∂M the subcomplex
of M consisting of all simplices ∆ so that dim(∆) < n and so that linkM(∆) is homeomorphic to a
closed (n− dim(∆)− 1)-ball. If ∂M = /0 then M is said to be closed. A combinatorial n-manifold
homeomorphic to an n-sphere (resp. a closed n-ball) will be called a combinatorial n-sphere (resp.
a combinatorial n-ball).

It is well-known that if ∂M 6= /0, then ∂M is a closed combinatorial (n− 1)-manifold and that
if B is a combinatorial n-ball, then ∂B is a combinatorial (n− 1)-sphere. Also, if M1 and M2 are
combinatorial manifolds and if M1×M2 is the standard triangulation of |M1|× |M2|, then M1×M2
is a combinatorial manifold. Finally, subdivisions of combinatorial manifolds are combinatorial
manifolds.

Warning. There exist simplicial complexes that are homeomorphic to manifolds but are not combi-
natorial manifolds.

The following is an immediate consequence of the Zeeman’s extension [35] of the simplicial
approximation theorem.
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a b c

Figure 10: Effect on starS(∆)⊂ S of a link move with a. dim(∆) = 2 b. dim(∆) = 1 c. dim(∆) = 0.

a b c

Figure 11: a. A standard simplex b. A simplex of type σ c. A simplex of type δ

Lemma 6.4. Let X be a simplicial complex and n≥ 0. The following hold.

1. Every element of πn(X) is represented by a simplicial map S→ X, where S is a combinatorial
n-sphere.

2. If S is a combinatorial n-sphere and f : S→ X is a nullhomotopic simplicial map, then there
is a combinatorial (n+1)-ball B with ∂B = S and a simplicial map g : B→ X so that g|S = f .

A consequence of the first conclusion of Lemma 6.4 is that we can prove that simplicial com-
plexes are n-connected by attempting to simplicially homotope maps of combinatorial n-spheres
to constant maps. The basic move by which we will do this is the following (see Figure 10 for
examples).

Definition 6.5. Let φ : S → X be a simplicial map of a combinatorial n-sphere into a simplicial
complex. For some ∆ ∈ S, let T be a combinatorial (n−dim(∆))-ball so that ∂T = linkS(∆) and let
f : T → starX(φ(∆)) be a simplicial map so that f |∂T = φ |linkS(∆). Define S′ to be S with starS(∆)
replaced with T and define φ ′ : S′→ X in the following way. For v ∈ (S′)(0) \T (0), define φ ′(v) =
φ(v). For v ∈ B(0), define φ ′(v) = f (v). Observe that φ ′ extends linearly to a simplicial map. We
will call φ ′ : S′→ X the result of performing a link move to φ : S→ X on ∆ with f .

Observe that if a map S′→ X is the result of performing a link move on a map S→ X , then |S′|
is naturally homeomorphic to |S| and the induced maps |S′| → |X | and |S| → |X | are homotopic.

6.2 MC g and the proof of the first conclusion of Proposition 4.4

We begin by recalling the definition of MC g and giving names to the various types of simplices.

Definition 6.6. The complex MC g is the simplicial complex whose (k− 1)-simplices are sets
{γ1, . . . ,γk} of isotopy classes of simple closed nonseparating curves on Σg satisfying one of the
following three conditions (for some ordering of the γi).

• The γi are disjoint and γ1∪·· ·∪γk does not separate Σg (see Figure 11.a). These will be called
the standard simplices.
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• The γi satisfy

igeom(γi,γ j) =

{
1 if (i, j) = (1,2)
0 otherwise

and γ1∪·· ·∪ γk does not separate Σg (see Figure 11.b). These will be called simplices of type
σ .

• The γi are disjoint, γ1 ∪ γ2 ∪ γ3 cuts off a copy of Σ0,3 from Σg, and {γ1, . . . ,γk} \ {γ3} is a
standard simplex (see Figure 11.c). These will be called simplices of type δ .

We now wish to prove the first conclusion of Proposition 4.4, which we recall says that MC g is
(g−2)-connected. We will need the following theorem of Harer. Recall that C nosep

g,n is the simplicial
complex whose (k−1)-simplices are sets {γ1, . . . ,γk} of isotopy classes of simple closed curves on
Σg,n which can be realized so that Σg,n \ (γ1∪·· ·∪ γk) is connected.

Theorem 6.7 ([12, Theorem 1.1]). For g≥ 1 and n≥ 0, the complex C nosep
g,n is (g−2)-connected.

Proof of Proposition 4.4, first conclusion. For some −1 ≤ i ≤ g− 2, let S be a combinatorial i-
sphere (remember our conventions about the (−1)-sphere!) and let φ : S →MC g be a simplicial
map. By Lemma 6.4 and Theorem 6.7, it is enough to homotope φ so that φ(S)⊂ C nosep

g . If e ∈ S(1)

is such that φ(e) is a 1-simplex of type σ (this can only happen if i ≥ 1), then Σg cut along the
curves in φ(e) is homeomorphic to Σg−1,1. This implies that φ(linkS(e))⊂ linkMC g(φ(e))∼= C nosep

g−1,1.
Now, linkS(e) is a combinatorial (i−2)-sphere, so Theorem 6.7 and Lemma 6.4 imply that there is
some map f : B→ linkMC g(φ(e)), where B is a combinatorial (i−1)-ball with ∂B = linkS(e) and
f |∂B = φ |linkS(e). We can therefore perform a link move to φ on e with f , eliminating e. This allows
us to remove all simplices of S mapping to simplices of type σ . A similar argument allows us to
remove all simplices of S mapping to simplices of type δ , and we are done.

6.3 A linear-algebraic reformulation of the second conclusion of Proposition 4.4

The second conclusion of Proposition 4.4 asserts that MC g/I g is (g− 1)-connected. In this
section, we will reformulate this by giving a concrete description of MC g/I g. One obvious
thing associated to a nonseparating curve γ on Σg that is invariant under I g is the 1-dimensional
submodule 〈[γ]〉 of H1(Σg) (the vector [γ] is not well-defined since γ is unoriented). Now, 〈[γ]〉 is not
an arbitrary submodule of H1(Σg) : since {[γ]} can be completed to a symplectic basis for H1(Σg),
it follows that 〈[γ]〉 is actually a 1-dimensional summand of H1(Σg). The following definition is
meant to mimic the definition of MC g in terms of summands of H1(Σg).

Definition 6.8. A subspace X of H1(Σg) is isotropic if i(x,y) = 0 for all x,y ∈ X . The genus g
complex of unimodular isotropic lines, denoted L (g), is the simplicial complex whose (k− 1)-
simplices are sets {L1, . . . ,Lk} of 1-dimensional summands Li of H1(Σg) so that 〈L1, . . . ,Lk〉 is a
k-dimensional isotropic summand of H1(Σg). These will be called the standard simplices. Now
consider a set ∆ = {〈v1〉, . . . ,〈vk〉} ⊂ (L (g))(0).

• ∆ forms a simplex of type σ if

ialg(vi,v j) =

{
±1 if (i, j) = (1,2)
0 otherwise

and 〈v1, . . . ,vk〉 is a k-dimensional summand of H1(Σg).
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`

a b c
Figure 12: a. Curves used in Lemma 6.10 b,c. With an appropriate choice of orientation, a component
of α ′

h+1∪ `∪αn is homologous to the following : (b) [α ′
h+1]− [αn], (c) [α ′

h+1]+ [αn].

• ∆ forms a simplex of type δ if v3 =±v1± v2 and ∆\{〈v3〉} is a standard simplex.

We will denote L (g) with all simplices of type σ and δ attached by L σ ,δ (g). Similarly, L σ (g)
(resp. L δ (g)) will denote L (g) with all simplices of type σ (resp. δ ) attached.

The map γ 7→ 〈[γ]〉 induces a map π : MC g/I g →L σ ,δ (g) that is invariant under the action of
I g and preserves the types of simplices. We now prove the following (this generalizes [29, Lemma
6.2]).

Lemma 6.9. For g≥ 1, the map π induces an isomorphism from MC g/I g to L σ ,δ (g).

For the proof of Lemma 6.9, we will need the following lemma (cf. [29, Lemma 8.3]).

Lemma 6.10. Let g≥ 1, let 0≤ k≤ h < g, let {a1,b1, . . . ,ag,bg} be a symplectic basis for H1(Σg),
and let {α1, . . . ,αh,β1, . . . ,βk} be a set of oriented simple closed curves on Σg. If h ≥ 2, then we
are also possibly given some curve α1,2. Assume that our curves satisfy the following conditions for
1≤ i, i′ ≤ h and 1≤ j, j′ ≤ k (see Figure 12.a).

1. [αi] = ai and [β j] = b j

2. igeom(αi,αi′) = igeom(β j,β j′) = 0. Also, igeom(αi,β j) is 1 if i = j and is 0 otherwise. Finally, if
α1,2 is given, then igeom(αi,α1,2) = 0 and igeom(β j,α1,2) is 1 if 1≤ j ≤ 2 and is 0 otherwise.

3. If α1,2 is given, then α1∪α2∪α1,2 separates Σg into two components, one of which is home-
omorphic to Σ0,3.

Then there exists oriented curves {αh+1, . . . ,αg,βk+1, . . . ,βg} so that that the above three conditions
are satisfied for all 1≤ i, i′ ≤ g and 1≤ j, j′ ≤ g.

Proof. Let S be {α1, . . . ,αh,β1, . . . ,βk} together with α1,2 if it is given. Assume first that h < g.
We will show how to find αh+1. Let Σ′ the component of Σg cut along the curves in S whose
genus is positive and let i : Σ′→ Σg be the inclusion. If i∗ : H1(Σ′)→ H1(Σg) is the induced map,
then i∗(H1(Σ′)) = [S]⊥, where by [S]⊥ we mean the subspace of H1(Σg) consisting of all vectors
orthogonal with respect to the algebraic intersection form to the homology classes of all the curves
in S. Next, let Σ′′ be the surface that results from gluing discs to all boundary components of Σ′, let
i′ : Σ′ ↪→ Σ′′ be the inclusion, and let i′∗ : H1(Σ′)→ H1(Σ′′) be the induced map. Let ãh+1 ∈ H1(Σ′)
be a primitive vector so that i∗(ãh+1) = ah+1 and let ah+1 := i′∗(ãh+1). Then ah+1 ∈ H1(Σ′′) is a
primitive vector in the first homology group of a closed surface, so there exists some simple closed
curve αh+1 on Σ′′ so that [αh+1] = ah+1. We then isotope αh+1 so that it lies in Σ′ ↪→ Σ′′, define
α̃h+1 to be the preimage of αh+1 in Σ′, and define α ′

h+1 to be the image in Σg of α̃h+1 under the map
i.
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Observe that [α ′
h+1]− ah+1 ∈ i∗(ker(i′∗)). Also, since ker(i′∗) is generated by the homology

classes of the boundary components of Σ′, it follows that i∗(ker(i′∗)) = 〈ak+1, . . . ,ah〉. Thus there
exists some ck+1, . . . ,ch ∈ Z so that [α ′

h+1] = ah+1 + ∑h
j=k+1 c ja j. Assume that α ′

h+1 is chosen so
that ∑h

j=k+1 |c j] is as small as possible. We claim that all the c j are zero. Indeed, assume that cn 6= 0
for some k + 1 ≤ n ≤ h. We can then (see Figures 12.b–c) find some arc ` on Σg satisfying the
following three properties.

• One of the two points of ∂` lies on α ′
h+1 and the other lies on αn.

• Int(`) is disjoint from every curve in S

• Letting e equal −1 if cn > 0 and 1 if cn < 0, a boundary component α ′′
h+1 of a regular neigh-

borhood of αh+1∪ `∪αn is homologous to [αh+1]+ e[αn].

We can then replace α ′
h+1 with α ′′

h+1 and reduce ∑h
j=k+1 |c j|, a contradiction.

We can therefore assume that h = g. Assuming now that k < g, our goal is to show how to find
βk+1. Let βk+1 be some curve so that the set {α1, . . . ,αh,β1, . . . ,βk,βk+1} (plus α1,2 if it is given)
satisfies conditions 2–3 but not necessarily condition 1. From the conditions on the geometric inter-
section number, it follows that [βk+1] = bk+1 +∑g

n=k+1 dnan for some dk+1, . . . ,dg ∈ Z. Choose βk+1
so that ∑g

n=k+1 |dn| is as small as possible. We claim that dn = 0 for all k + 1 ≤ n ≤ g. Indeed, as-
sume that dm 6= 0 for some k+1≤m≤ g. If m = k+1, then we can replace βk+1 with T−ck+1

αk+1 (βk+1),
decreasing dm to 0 without changing the other dn. If instead m≥ k +2, then by an argument like in
the previous paragraph we can modify β ′k+1 so as to decrease ∑g

n=k+1 |dn|, and we are done.

Proof of Lemma 6.9. We have a series of projections

MC g
π̃−→MC g/I g

π−→L σ ,δ (g).

We must prove that for all simplices s of L σ ,δ (g), there is some simplex s̃ of MC g so that π ◦
π̃(s̃) = s, and in addition if s̃1 and s̃2 are simplices of MC g so that π ◦ π̃(s̃1) = π ◦ π̃(s̃2), then there
is some f ∈I g so that f (s̃1) = s̃2. We begin with the first assertion. Let s be a simplex of L σ ,δ (g).
There exists some simplex s̃0 in MC g with the same dimension and type as s. Moreover, the group
Sp2g(Z) acts on L σ ,δ (g), and this action is clearly transitive on simplices of the same dimension
and type. There thus exists some f ∈ Sp2g(Z) so that f (π ◦ π̃(s̃0)) = s. Let f̃ ∈Modg be a mapping
class that projects to f ∈ Sp2g(Z). The desired simplex of MC g is s̃ = f̃ (s̃0).

We now prove the second assertion. Let s̃1 and s̃2 be two simplices of MC g with π ◦ π̃(s̃1) = π ◦
π̃(s̃2). We will do the case that s̃1 and s̃2 are simplices of type δ ; the other cases are similar. Let the
vertices of the s̃i be {α i

1, . . . ,α
i
h,α

i
1,2}. Order these and pick orientations so that [α1

j ] = [α2
j ] for 1≤

j ≤ h and so that α i
1∪α i

2∪α i
1,2 separates Σg into two components, one of which is homeomorphic

to Σ0,3. Set a j = [α1
j ] for 1 ≤ j ≤ h, and extend this to a symplectic basis {a1,b1 . . . ,ag,bg} for

H1(Σg). For i = 1,2, use Lemma 6.10 to extend {α i
1, . . . ,α

i
h,α

i
1,2} to a set of oriented simple closed

curves {α i
1,β

i
1, . . . ,α

i
g,β i

g,α i
1,2} satisfying the conditions of the lemma for the given symplectic

basis {a1,b1, . . . ,ag,bg}. Using the classification of surfaces, there must exist some f ∈ Modg so
that f (α1

j ) = α2
j and f (β 1

j ) = β 2
j for all j and so that f (α1

1,2) = α2
1,2. Since we have chosen f so

that it fixes a basis for homology, it follows that f ∈I g. The proof concludes with the observation
that f (s̃1) = s̃2.
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We conclude that the second conclusion of Proposition 4.4 is equivalent to the following.

Proposition 6.11. For g≥ 1, the complex L σ ,δ (g) is (g−1)-connected.

6.4 Skeleton of the proof of Proposition 6.11

This section is devoted to the skeleton of the proof of Proposition 6.11; most of the work will be
contained in a proposition whose proof will occupy §6.5 - §6.7. The bulk of the proof will consist
of careful modifications of spheres in the links of simplices. To keep our modifications from getting
out of hand, we will make use of the following subcomplexes of linkL D(∆).

Definition 6.12. For 0 ≤ k ≤ g, let ∆k be a (k− 1)-dimensional standard simplex of L (g) (when
k = 0, we interpret ∆k as the empty set; this is a slight abuse of notation). We will denote by L ∆k

(g)
the complex linkL (g)(∆k). Now consider a set ∆′ ⊂ (L ∆k

(g))(0).

• If ∆′ is a simplex of type σ in L (g) and ∆k ∪∆′ is also a simplex of type σ in L (g), then
we will say that ∆′ is a simplex of type σ in L ∆k

(g). We remark that the key point of this
definition is that we do not allow one of the “intersecting” vertices of a simplex ∆′ of type σ
in L ∆k

(g) to lie in ∆k and the other in ∆′.

• If ∆k ∪∆′ is a simplex of type δ in L (g), let 〈v1〉, 〈v2〉, and 〈v3〉 be the vertices of ∆k ∪∆′
satisfying v3 =±v1± v2.

– If 〈vi〉 ∈ ∆′ for 1≤ i≤ 3, then we will say that ∆′ is a simplex of type δ1 in L ∆k
(g).

– If one of the 〈vi〉 lies in ∆k and the other two lie in ∆′, then we will say that ∆′ is a
simplex of type δ2 in L ∆k

(g).

– We will say that ∆′ is a simplex of type δ if it is either a simplex of type δ1 or a simplex
of type δ2.

We will then denote by L ∆k

σ ,δ (g) the complex L ∆k
(g) with all simplices of types σ and δ attached.

Similarly, we will denote by L ∆k

σ (g) (resp. L ∆k

δ (g)) the complex L ∆k
(g) with all simplices of

type σ (resp. δ ) attached. Next, let W be a submodule of H1(Σg). We define L ∆k,W (g) to be the
subcomplex of L ∆k

(g) consisting of all simplices {L1, . . . ,Lk} ∈ L ∆k
(g) so that Li ⊂W for all

1≤ i≤ k. We define L ∆k,W
σ ,δ (g), etc. similarly.

We can now state the following.

Proposition 6.13. For g ≥ 1, let {a1,b1, . . . ,ag,bg} be a symplectic basis for H1(Σg), and fix 0 ≤
k ≤ g. Set ∆k = {〈a1〉, . . . ,〈ak〉} and W = {〈a1,b1, . . . ,ag−1,bg−1,ag〉}. Then the following hold.

1. For −1≤ n≤ g− k−2, we have πn(L ∆k,W (g)) = 0.

2. For −1≤ n≤ g− k−2, we have πn(L ∆k
(g)) = 0.

3. For 0≤ n≤ g− k−1, we have πn(L
∆k,W
δ (g)) = 0.

4. For 0≤ n≤ g− k−1, the map L ∆k

δ (g) ↪→L ∆k

σ ,δ (g) induces the zero map on πn.
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Remark. The second conclusion of Proposition 6.13 should be compared to [7, Theorem 2.9]. We
also remark that our proof of Proposition 6.13 is partly inspired by the unpublished thesis of Maazen
[22].

The proof of the first and second conclusions of Proposition 6.13 are contained in §6.5, the third
in §6.6, and the fourth in §6.7. We remark that conclusions one and three are used in the proofs
of conclusions two and four. Also, conclusions three and four make strong use of the additional
simplices (of type δ for conclusion three and types σ and δ for conclusion four) – they are precisely
the reason we introduced these simplices. We now show that Proposition 6.13 implies Proposition
6.11.

Proof of Proposition 6.11. Fix g ≥ 1. We wish to show that πn(L σ ,δ (g)) = 0 for 0 ≤ n ≤ g− 1.
By the fourth conclusion of Proposition 6.13, it is enough to show that the map L δ (g) ↪→L σ ,δ (g)
induces a surjection on πn for 0 ≤ n ≤ g− 1. For some 0 ≤ n ≤ g− 1, let S be a combinatorial
n-sphere and let φ : S→L σ ,δ (g) be a simplicial map. We must homotope φ so that φ(S)⊂L δ (g).
Assume that e ∈ S(1) is such that φ(e) is a 1-simplex of type σ . Observe that

φ(linkS(e))⊂ linkL σ ,δ (g)(φ(e))∼= L (g−1).

Since linkS(e) is a combinatorial (n− 2)-sphere, the second conclusion of Proposition 6.13 im-
plies that there is a combinatorial (n− 1)-ball B with ∂B = linkS(e) and a simplicial map f : B →
linkL σ ,δ (g)(φ(e)) so that f |∂B = φ |linkS(e). We can thus perform a link move to φ on e with f , elim-
inating e. Iterating this process, we can ensure that no simplices of S are mapped to simplices of
type σ , as desired.

6.5 The proof of the first two conclusions of Proposition 6.13

We will need the following definition.

Definition 6.14. Assume that a symplectic basis {a1,b1, . . . ,ag,bg} for H1(Σg) has been fixed and
that ρ ∈ {a1,b1, . . . ,ag,bg}. For a 1-dimensional summand L of H1(Σg), pick v ∈ H1(Σg) so that
L = 〈v〉 (the vector v is unique up to multiplication by ±1). Express v as ∑(caiai + cbibi) with
cai ,cbi ∈ Z for 1≤ i≤ g. We define the ρ-rank of L (denoted rkρ(L)) to equal |cρ |.

We will also need the following obvious lemma, whose proof is omitted.

Lemma 6.15. Fix 1≤ k < g and let ∆k be a (k−1)-simplex in L (g). Also, let v1, . . . ,vn ∈ H1(Σg)
be so that {〈v1〉, . . . ,〈vn〉} is an (n− 1)-simplex of L ∆k

σ . Then for 〈v〉 ∈ ∆k and q1, . . . ,qn ∈ Z, the
set {〈v1 +q1v〉, . . . ,〈vn +qnv〉} is another simplex of L ∆k

σ (g) of the same type as {〈v1〉, . . . ,〈vn〉}.

Proof of Proposition 6.13, first conclusion. We must show that πn(L ∆k,W (g)) = 0 for−1≤ n≤ g−
k−2. The proof will be by induction on n. The base case n =−1 is equivalent to the observation that
if k < g, then L ∆k,W (g) is nonempty. Assume now that 0≤ n≤ g−k−2 and that πn′(L ∆k′ ,W (g))= 0
for all 0 ≤ k′ < g and −1 ≤ n′ ≤ g− k′− 2 so that n′ < n. Let S be a combinatorial n-sphere and
let φ : S → L ∆k,W (g) be a simplicial map. By Lemma 6.4, it is enough to show that S may be
homotoped to a point.

Set
R = max{rkag(φ(x)) | x ∈ S(0)}.
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If R = 0, then φ(S)⊂ star
L ∆k ,W (g)

(〈ag〉). Since stars are contractible, the map φ can be homotoped
to a constant map.

Assume, therefore, that R > 0. Let ∆′ be a simplex of S with rkag(φ(x)) = R for all vertices x
of ∆′. Choose ∆′ so that m := dim(∆′) is maximal, which implies that for all vertices x of linkS(∆′),
we have rkag(φ(x)) < R. Now, linkS(∆′) is a combinatorial (n−m−1)-sphere and φ(linkS(∆′)) is
contained in

link
L ∆k ,W (g)

(φ(∆′))∼= L ∆k+m′ ,W (g)

for some m′ ≤ m (it may be less than m if φ |∆′ is not injective). The inductive hypothesis together
with Lemma 6.4 therefore tells us that there a combinatorial (n−m)-ball B with ∂B = linkS(∆′) and
a simplicial map f : B→ link

L ∆k ,W (g)
(φ(∆′)) so that f |∂B = φ |linkS(∆′).

Our goal now is to adjust f so that rkag(φ(x)) < R for all x ∈ B(0). Let 〈v〉 be a vertex in φ(∆′);
choose v so that its ag-coordinate is positive. We define a map f ′ : B → link

L ∆k ,W (g)
(φ(∆′)) in the

following way. Consider x ∈ B(0), and let vx ∈ H1(Σg) be a vector so that f (x) = 〈vx〉. Choose vx so
that its ag-coordinate is nonnegative. By the division algorithm, there exists a unique qx ∈ Z so that
vx +qxv has a nonnegative ag-coordinate and rkag(vx +qxv) < rkag(v) = R; define f ′(x) = 〈vx +qxv〉.
By Lemma 6.15, the map f ′ extends to a map f ′ : B → link

L ∆k ,W (g)
(φ(∆′)). Additionally, we have

that qx = 0 for all x∈ (∂B)(0) (this is where we use the maximality of m), so f ′|∂B = f |∂B = φ |linkS(∆′).
We conclude that we can perform a link move to φ that replaces φ |starS(∆′) with f ′. Since

rkag( f ′(x)) < R for all x ∈ B, we have removed ∆′ from S without introducing any vertices whose
images have ag-rank greater than or equal to R. Continuing in this manner allows us to simplify φ
until R = 0, and we are done.

Proof of Proposition 6.13, second conclusion. We must show that πn(L ∆k
(g)) = 0 for −1 ≤ n ≤

g−k−2. The proof is nearly identical to the proof of the first conclusion of Proposition 6.13 above.
The only changes needed are the following.

• We use the bg-rank rather than the ag-rank.

• In the case R = 0, we now have φ(S)⊂L ∆k,W (g). We can thus apply the first conclusion of
Proposition 6.13 to obtain the desired conclusion.

6.6 The proof of the third conclusion of Proposition 6.13

Proof of Proposition 6.13, third conclusion. Our goal is to prove that πn(L
∆k,W
δ (g)) = 0 for 0≤ k <

g and 0≤ n≤ g− k−1. The proof will be by induction on n. The base case is n = 0. If k ≤ g−2,
then the first conclusion of Proposition 6.13 says that L ∆k,W (g) is connected, and the desired result
follows. Otherwise, k = g−1 and we must show that L ∆k,W

δ (g) is connected. An arbitrary vertex x
of this complex is of the form 〈c1a1 + · · ·+ cg−1ag−1 +ag〉, where ci ∈ Z for 1≤ i≤ g−1. Observe
that for e =±1 and 1≤ j ≤ g−1 the set

{〈c1a1 + · · ·+ cg−1ag−1 +ag〉,
〈c1a1 + · · ·+ c j−1a j−1 +(c j + e)a j + c j+1a j+1 + · · ·+ cg−1ag−1 +ag〉}

is an edge of type δ2; the key point is that 〈a j〉 ∈ ∆k. Using a sequence of such edges, we can

connected x to the vertex 〈ag〉. We conclude that L ∆k,W
δ (g) is connected, as desired.
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Assume now that 1≤ n≤ g−k−1 and that πn′(L
∆k′ ,W
δ (g)) = 0 for all 0≤ k′ < g and 0≤ n′ ≤

g−k′−1 so that n′ < n. Let S be a combinatorial n-sphere and let φ : S→L ∆k,W
δ (g) be a simplicial

map. By Lemma 6.4, it is enough to show that φ may be homotoped to a point.
Set

R = max{rkag(φ(x)) | x ∈ S(0)}.
If R = 0, then φ(S) ⊂ star

L ∆k ,W
δ (g)

(〈ag〉) (remember, W = 〈a1,b1, . . . ,ag−1,bg−1,ag〉). Since stars

are contractible, the map φ can be homotoped to a constant map. Assume, therefore, that R > 0.
Our goal is to homotope φ so that rkag(φ(x)) < R for all x ∈ S(0). Iterating this process, we will be
able to homotope φ so that rkag(φ(x)) = 0 for all x ∈ S(0), as desired. There are three steps.

Step 1. We isolate vertices whose images have ag-rank R from the simplices whose images are
of type δ . More precisely, we will homotope φ so that if s ∈ S is such that φ(s) is a simplex of
type δ , then for all vertices x of s we have rkag(φ(x)) < R. After this homotopy, we will still have
rkag(φ(x))≤ R for all x ∈ S(0).

We will show how to eliminate simplices that map to simplices of type δ1 containing vertices
whose ag-rank is R; the argument that deals with simplices of type δ2 is similar and left to the

reader. Remember that a simplex of type δ1 in L ∆k,W
δ (g) contains a unique 2-dimensional face of

type δ1. Let s ∈ S(2) be so that φ(s) is a simplex of type δ1. Assume that there is some simplex of S
containing s as a face whose image under φ contains a vertex whose ag-rank is R. Next, let t ∈ S be
a simplex of maximal dimension so that s ⊂ t and so that for all vertices x of t that do not lie in s,
we have rkag(φ(x)) = R. By assumption, t contains some vertex whose image under φ has ag-rank
R, and moreover for all vertices y of linkS(t) we have rkag(φ(y)) < R.

Let m = dim(t), and write φ(t) = {〈v1〉,〈v2〉,〈±v1± v2〉,〈v4〉, . . . ,〈vm′〉}; we may have m′−1 <
m since φ need not be injective. Now, linkS(t) is a combinatorial (n−m−1)-sphere and φ(linkS(t))
is contained in

link
L ∆k ,W

δ (g)
(φ(t)) = L ∆k∪{〈v1〉,〈v2〉,〈v4〉,...,〈vm′ ,W 〉}(g)∼= L ∆k+(m′−1),W (g).

Since m′− 1 ≤ m and n ≤ g− k− 1, we have n−m− 1 ≤ g− (k + m′− 1)− 2. Hence the first
conclusion of Proposition 6.13 together with Lemma 6.4 tells us that there a combinatorial (n−m)-
ball B with ∂B = linkS(t) and a simplicial map f : B→ link

L ∆k ,W
δ (g)

(φ(t)) so that f |∂B = φ |linkS(t) and

so that f (B) contains no simplices of type δ . Moreover, since φ(t) contains some vertex whose ag-
rank is R, an argument like that given in the proof of the first and second conclusions of Proposition
6.13 tells us that we can assume that rkag(φ(y)) < R for all vertices y of B. We can thus perform
a link move to φ on t with f , eliminating t while not introducing any vertices mapping to vertices
whose ag-ranks are greater than or equal to R. Iterating this process, we can achieve the desired
conclusion.

Step 2. We isolate the vertices whose images have ag-rank R from each other. More precisely,
we will homotope φ so that if x ∈ S(0) satisfies rkag(φ(x)) = R and {x,y} ∈ S(1) is any edge, then
rkag(φ(y)) < R. After this homotopy, we will still have rkag(φ(x))≤ R for all x ∈ S(0), and moreover
we will still have that if x ∈ S(0) satisfies rkag(φ(x)) = R then φ(starS(x)) contains no simplices of
type δ .
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x1

x2

x1,2

x3

x4 〈v1〉

〈v2〉
〈v1− v2〉

〈v3〉

〈v4〉 z1

z2

z1,2,3

z3

z4 〈v′z1
〉

〈v′z2
〉

〈v′z1
− v〉

〈v′z1
+ v′z2

− v〉

〈v′z4
〉

a b c d
Figure 13: a. Subdivided simplex t ′ from Step 2, Case 1 b. φ ′(t ′) c. Subdivided simplex r′ from Step 3
d. g′(r′)

Assume that there is some simplex s ∈ S so that dim(s)≥ 1 and rkag(φ(x)) = R for all vertices
x of s. Choose s so that dim(s) is maximal among such simplices. By Step 1, for all simplices t
of starS(s) the simplex φ(t) is a standard simplex. We will homotope φ to a new map φ ′ so as to
remove s without introducing any vertices whose images have ag-rank greater than or equal to R
and so as to not introduce any simplices of type δ . Iterating this will give the desired conclusion.
There are two cases.

Case 1. There are two vertices x1 and x2 of s so that φ(x1) 6= φ(x2).

Let v1,v2 ∈H1(Σg) be so that φ(xi) = 〈vi〉 for 1≤ i≤ 2; choose the vi so that their ag-coordinates
are positive, and hence equal to R. Let S′ be the result of subdividing the edge {x1,x2} of S. Let x1,2

be the new vertex. Define φ ′ : (S′)(0) →L ∆k,W
δ (g) by the formula

φ ′(x) =

{
〈v1− v2〉 if x = x1,2,
φ(x) otherwise.

We claim that φ ′ extends to the higher-dimensional simplices of S′. Indeed, consider t ∈ S′. If x1,2 /∈
t, then the assertion is trivial. Otherwise, there exists a simplex t ′ ∈ S with {x1,x2} ⊂ t ′ so that t is
one of the two simplices that result from subdividing the edge {x1,x2} of t ′ (see Figures 13.a–b). The
simplex t either contains x1 or x2. Assume without loss of generality that it contains x1. Let the vec-
tors v3, . . . ,vl ∈H1(Σg) be so that φ(t ′)∪∆k = {〈v1〉,〈v2〉, . . . ,〈vl〉}; by assumption {v1, . . . ,vl} is the
basis of an isotropic summand of H1(Σg). Observe that φ ′(t)∪∆k = {〈v1〉,〈v1− v2〉,〈v3〉, . . . ,〈vl〉}.
Since {v1,v1− v2,v3, . . . ,vl} is also the basis of an isotropic summand of H1(Σg), it follows that φ ′
extends over t, as desired.

Observe that φ is homotopic to φ ′ using simplices of type δ . Also, x1,2 is the only new vertex
in S′ and rkag(φ ′(x1,2)) = rkag(〈v1− v2〉) = 0; this calculation follows from the fact that v1 and v2
have the same ag-coordinate. The result follows.

Case 2. For all vertices x1 and x2 of s, we have φ(x1) = φ(x2).

Let v∈H1(Σg) be so that φ(x) = 〈v〉 for all vertices x of s. Now, linkS(s) is a combinatorial (n−
dim(s)− 1)-sphere and by Step 1 we have that φ(linkS(s)) is contained in the following subspace
of link

L ∆k ,W
δ (g)

(φ(s)) :

L ∆k∪{〈v〉},W (g)∼= L ∆k+1,W (g).

Since dim(s) ≥ 1 and n ≤ g− k− 1, the dimension of linkS(s) is at most (g− k− 1)− 1− 1 =
g− (k +1)−2. The first conclusion of Proposition 6.13 together with Lemma 6.4 therefore implies
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that there is a combinatorial (n− dim(s))-ball B with ∂B = linkS(s) and a simplicial map g : B →
link

L ∆k ,W
δ (g)

(φ(s)) so that g|∂B = φ |linkS(s) and so that g(B) contains no simplices of type δ . By the

maximality of the dimension of s, we have that rkag(φ(x)) < R for all vertices x of linkS(s), so by
an argument similar to the argument in the proof of the first and second conclusions of Proposition
6.13, we can assume that rkag(g(x)) < R for all vertices x of B. We conclude that we can perform
a link move to φ on s with g, eliminating s without introducing any vertices whose images have
ag-rank greater than or equal to R, as desired.

Step 3. We eliminate all vertices whose images have ag-rank R. More precisely, we will homotope
φ so that for all x ∈ S(0) we have rkag(φ(x)) < R.

Consider x∈ S(0) so that rkag(φ(x)) = R. The complex linkS(x) is a combinatorial (n−1)-sphere
and by Step 2 we have rkag(φ(y)) < R for all vertices y of linkS(x). Also, by Step 2 we have that
φ(linkS(x) is contained in the following subcomplex of link

L ∆k ,W
δ (g)

(φ(x)) :

L
∆k∪{φ(x)},W
δ (g)∼= L ∆k+1,W

δ (g).

By induction and Lemma 6.4, there exists some combinatorial n-ball B with ∂B = linkS({x}) and a

simplicial map g : B→L
∆k∪{φ(x)},W
δ (g) so that g|∂B = φ |linkS({x}). We will prove that we can modify

B and g so that rkag(g(y)) < R for all y ∈ B(0). We will thus be able to perform a link move on φ
to eliminate x without introducing any vertices whose images have ag-rank greater than or equal to
R. Since there are no adjacent vertices in S the ag-rank of whose image is equal to R, we can repeat
this for every vertex of S the ag-rank of whose image is R and achieve the desired result.

For every y ∈ B(0), let vy ∈ H1(Σg) be a vector with a nonnegative ag-coordinate so that g(y) =
〈vy〉. Also, let v ∈ H1(Σg) be a vector with a positive ag-coordinate so that φ(x) = 〈v〉. The ag-
coordinate of v is R, so by the division algorithm there exists for every y ∈ B(0) some unique qy ∈ Z
so that the ag-coordinate of vy +qyv is nonnegative and less than R. Moreover, by assumption qy = 0
for all y ∈ (∂B)(0). For y ∈ B(0), define v′y = vy +qyv and g′(y) = 〈v′y〉.

By Lemma 6.15, the map g′ extends over all simplices of B that are mapped by g to standard
simplices (for later use, observe that if g mapped a simplex of B to a simplex of type σ , then g′

would extend over that simplex as well). It will turn out that g′ also extends over simplices of B that
are mapped by g to simplices of type δ2, but does not necessarily extend over simplices of B that
are mapped by g to simplices of type δ1. In the latter case, however, we will be able to modify B so
as to achieve the desired extension.

We begin with the first claim, that is, that the map g′ extends over simplices t of B so that
g(t) is a simplex of type δ2 in L

∆k∪{φ(x)},W
δ (g). Write t = {y1, . . . ,yl}, so g(t) = {〈vy1〉, . . . ,〈vyl 〉}

(since g is not necessarily injective, this latter list may have repetitions). Since ∆k ∪ {φ(x)} =
{〈a1〉, . . . ,〈ak〉,〈v〉}, after possibly reordering the yi we have the following.

• vy2 = vy1 ±w for some w ∈ {a1, . . . ,ak,v}.

• After eliminating duplicate entries, {vy1 ,vy3 , . . . ,vyl ,a1, . . . ,ak,v} is a basis for an isotropic
summand of H1(Σg).

Now, clearly the set {v′y1
,v′y3

, . . . ,v′yl
,a1, . . . ,ak,v} is also a basis (possibly with duplicate entries) for

an isotropic summand of H1(Σg). If w ∈ {a1, . . . ,ak}, then the vectors vy1 and yy2 = vy1 ±w have the
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same ag-coordinate, so qy1 = qy2 . This implies that v′y2
= v′y1

±w, and hence g′(t) is still a simplex
of type δ2. If instead w = v, then v′y2

= v′y1
, so in this case g′(t) is a standard simplex. In both cases

g′ extends over t, as desired.
We conclude by showing how to modify B and g′ so that g′ extends over simplices mapped by g

to simplices of type δ1. A simplex of type δ1 has as a face a unique 2-dimensional simplex of type
δ1. Let r ∈ B(2) be so that g(r) ∈L

∆k∪{φ(x)},W
δ (g) is a simplex of type δ1. If r = {z1,z2,z3}, then by

definition vz3 =±vz1 ± vz2 . However, since the ag-coordinates of the vzi are nonnegative, we cannot
have vz3 =−vz1 − vz2 . We conclude that after reordering the zi we can assume that vz3 = vz1 + vz2 .

Since the ag-coordinates of v′z1
= vz1 + qz1v and v′z2

= vz2 + qz2v are nonnegative numbers that
are less than R, the ag-coordinate of vz1 + vz2 + (qz1 + qz2)v is a nonnegative number that is less
than 2R. Hence the ag-coordinate of either vz1 + vz2 + (qz1 + qz2)v or vz1 + vz2 + (qz1 + qz2 − 1)v
is a nonnegative number that is less than R. The upshot of all this is that either v′z3

= v′z1
+ v′z2

or
v′z3

= v′z1
+v′z2

−v. If v′z3
= v′z1

+v′z2
and if r′ ∈ B is a simplex that has r as a face, then it is clear that

g′(r′) is a simplex of type δ1. We can assume, therefore, that v′z3
= v′z1

+ v′z2
− v.

Subdivide r with a new vertex zz1,z2,z3 , and define g′(zz1,z2,z3) = 〈v′z1
− v〉. Since the ag-coordinate

of v′1 + v′2 is at least R, the ag-coordinate of v′z1
cannot be 0. Hence the ag-coordinate of v′z1

− v is a
nonpositive integer that is greater than −R, so rkag(g′(zz1,z2,z2)) < R.

Let r′ ∈ B have r as a face. Our subdivision divides r′ into three simplices (see Figure 13.c),
and we must check that g′ extends over all three of these simplices. Write r′ = {z1,z2, . . . ,zh}, so
g(r′) = {〈vz1〉, . . . ,〈vzh〉}. By definition the set {vz1 ,vz2 ,vz4 , . . . ,vzh ,a1, . . . ,ak,v} is a basis for an
isotropic summand of H1(Σg) (possibly with repetitions), so clearly after eliminating repetitions the
set {v′z1

,v′z2
,v′z4

, . . . ,v′zh
,a1, . . . ,ak,v} is also a basis for an isotropic summand of H1(Σg). The images

under g′ of the three simplices that result from subdividing r′ are thus as follows (see Figure 13.d).

• {〈v′z1
〉,〈v′z1

− v〉,〈v′z2
〉,〈v′z4

〉, . . . ,〈v′zh
〉}, a simplex of type δ2.

• {〈v′z1
〉,〈v′z1

− v〉,〈v′z2
+ v′z1

− v〉,〈v′z4
〉, . . . ,〈v′zh

〉}, a simplex of type δ2.

• {〈v′z2
+(v′z1

− v)〉,〈v′z1
− v〉,〈v′z2

〉,〈v′z4
〉, . . . ,〈v′zh

〉}, a simplex of type δ1.

Since g′ extends over all three of these, we are done

Remark. For use later in the proof of the fourth conclusion of Proposition 6.13, observe that the
procedure outlined in the first two steps would remain valid if we redefined W to equal H1(Σg); the
only change needed would be to replace all references to the first conclusion of Proposition 6.13
with references to the second conclusion of Proposition 6.13.

6.7 The proof of the fourth conclusion of Proposition 6.13

We finally come to the proof of the fourth conclusion of Proposition 6.13. This proof follows the
same basic outline as the proof of [29, Lemma 6.3], though the details are more complicated. To
control the homotopies we construct, we will need the following definitions.

Definition 6.16. Let S0 denote the 0-dimensional simplicial complex containing two vertices and
let B1 denote the 1-dimensional simplicial complex containing two vertices and one edge joining
those vertices. For n≥ 1, the n-dimensional cross complex Cn (so-called because it is a subdivision
of the cross polytope; cf. [8]) is the join of n−1 copies of S0 and one copy of B1. See Figure 14.b
for pictures of C2 and C3.
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Definition 6.17. Let 0 ≤ k < g and let ∆k be a standard (k−1)-simplex of L (g) if k > 0 and /0 if
k = 0.

• For 1 ≤ n ≤ g− k, a symplectic cross map is a simplicial map φ : Cn → L ∆k

σ (g) satisfying
the following property. Let v1, . . . ,v2n be the vertices of Cn. Then there is a symplectic
subspace of H1(Σg) with a symplectic basis {a1,b1, . . . ,an,bn} so that {φ(v1), . . . ,φ(v2n)}=
{〈a1〉,〈b1〉, . . . ,〈an〉,〈bn〉}.

• A σ -regular map is a simplicial map ψ : M → L ∆k

σ ,δ (g), where M is a combinatorial n-
manifold and where for all edges e of M so that ψ(e) is a simplex of type σ , the complex
starM(e) is isomorphic to Cn and ψ|starM(e) is a symplectic cross map. Observe that this implies
that e /∈ ∂M.

• If for i = 1,2 we have combinatorial spheres Si and simplicial maps fi : Si → L ∆k

δ (g) ⊂
L ∆k

σ ,δ (g), then we say that f1 and f2 are σ -regularly homotopic if there is a combinatorial
manifold A homeomorphic to |S1| × [0,1] with ∂A = S1 t S2 and a σ -regular map ψ : A →
L ∆k

σ ,δ (g) so that ψ|Si = fi for i = 1,2.

• If S is a combinatorial sphere and f : S →L ∆k

δ (g) is a simplicial map, then we say that f is
σ -regularly nullhomotopic if there is a combinatorial ball B with ∂B = S and a σ -regular map
ψ : B→L ∆k

σ ,δ (g) so that ψ|S = f .

The basic facts about σ -regularity are contained in the following lemma.

Lemma 6.18. Let 0 ≤ k < g and let ∆k be a standard (k− 1)-simplex of L (g) if k > 0 and /0 if
k = 0.

1. If M is a combinatorial manifold and f : M →L ∆k

σ ,δ (g) is a simplicial map so that f (M) ⊂
L ∆k

δ (g), then f is σ -regular.

2. For 1≤ i≤ 3 let Si be a combinatorial sphere and fi : Si →L ∆k

δ (g) be a simplicial map.

(a) If f1 is σ -regularly homotopic to f2 and f2 is σ -regularly homotopic to f3, then f1 is
σ -regularly homotopic to f3.

(b) If f1 is σ -regularly homotopic to f2 and f2 is σ -regularly nullhomotopic, then f1 is
σ -regularly nullhomotopic.

3. Let S be a combinatorial n-sphere and let f : S→L ∆k

δ (g) be a simplicial map. Also, let B be
a combinatorial (n + 1)-ball and let g : B →L ∆k

σ ,δ (g) be a σ -regular map. Assume that ∂B
is decomposed into two combinatorial n-balls D1 and D2 so that D1∩D2 is a combinatorial
(n− 1)-sphere. Also, assume that there is a simplicial embedding i : D1 ↪→ S so that g|D1 =
f ◦ i. Define S′ to be (S \ i(D1 \ ∂D1))∪∂D1 D2 and define f ′ : S′ → L ∆k

δ (g) to equal f on
S\ i(D1 \∂D1) and g on D2. Then f is σ -regularly homotopic to f ′.

Proof. Conclusion 1 is trivial. For conclusion 2.a, for i = 1,2 let Ai be a combinatorial manifold
homeomorphic to |Si| × [0,1] with ∂Ai = Si t Si+1 and let gi : Ai → L ∆k

σ ,δ (g) be a σ -regular map
with gi|Si = fi and gi|Si+1 = fi+1. We cannot simply glue A1 to A2, as the result may not be simplicial
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(see Figure 14.a for an example). Instead, we define A to be S2×B1 with A1 and A2 glued to the
appropriate boundary components. We can then define g : A→L ∆k

σ ,δ (g) to equal g1 on A1, to equal
the composition of the projection S2×B1 → S2 with f2 on S2×B1, and to equal g2 on A2. It is clear
that g is a σ -regular map with the desired properties. Conclusion 2.b is proven in a similar way.

For conclusion 3, define A′ to be S×B1 with B glued to S×{1} along D1. It is not hard to show
that |A′| ∼= |S|× [0,1]. We then define g′ : A′→L ∆k

σ ,δ (g) to equal the composition of the projection
S×B1 → S with f on S×B1 and g on B. It is clear that g′ is the desired σ -regular map.

Proof of Proposition 6.13, fourth conclusion. For 0≤ k < g, our goal is to prove that the inclusion
map L ∆k

δ (g) → L ∆k

σ ,δ (g) induces the zero map on πn for 0 ≤ n ≤ g− k− 1. To facilitate our
induction, we will prove the stronger fact that if S is a combinatorial n-sphere with 0≤ n≤ g−k−1
and φ : S→L ∆k

σ ,δ (g) is a simplicial map with φ(S)⊂L ∆k

δ (g), then φ is σ -regularly nullhomotopic
(the σ -regularity will be used exactly once towards the end of Step 3 of the proof below, but it is
crucial – see the comment at the end of the second paragraph of Step 3 below for a discussion of
this). The proof will be by induction on n. The base case n = 0 and the inductive cases n≥ 1 will be
handled simultaneously. Thus assume that that 0≤ n≤ g− k−1 and that the above assertion holds
for n′-spheres mapped into L ∆k′

σ ,δ (g′) for all 0≤ k′ < g′ and 0≤ n′ ≤ g′− k′−1 so that n′ < n. Let

S be a combinatorial n-sphere and let φ : S→L ∆k

σ ,δ (g) be a simplicial map with φ(S)⊂L ∆k

δ (g).
Set

R = max{rkbg(φ(x)) | x ∈ S(0)}.
If R = 0, then φ(S) ⊂L ∆k,W

δ (g) (remember, W = 〈a1,b1, . . . ,ag−1,bg−1,ag〉), and hence the third
conclusion of Proposition 6.13 combined with Lemma 6.4 implies that there is a combinatorial
(n+1)-ball B with ∂B = S and a simplicial map

f : B→L ∆k,W
δ (g)⊂L ∆k

σ ,δ (g)

with f |S = φ . By conclusion 1 of Lemma 6.18 the map f is σ -regular, so the conclusion follows.
Assume, therefore, that R > 0. Assume first that n = 0, and let x∈ S(0) be so that rkbg(φ(x)) = R.

Pick v∈H1(Σg) so that φ(x) = 〈v〉. By assumption, the set {a1, . . . ,ak,v} is the basis for an isotropic
summand of H1(Σg). Let v′ ∈ H1(Σg) satisfy ialg(v,v′) = 1 and ialg(ai,v′) = 0 for 1 ≤ i ≤ k. Since
the bg-coordinate of v is ±R, we can replace v′ with v′+ cv for some c ∈ Z if necessary and assume
that rkbg(〈v′〉) < R. Using a single simplex of type σ , we can homotope φ so that φ(x) = v′. This
homotopy is trivially σ -regular. Iterating this process allows us to homotope φ until the images of
both vertices of S have bg-rank 0, and we are done.

Assume now that n > 0. Our goal is to σ -regularly homotope φ so that rkbg(φ(x)) < R for
all x ∈ S(0) while retaining the property that φ(S) ⊂L ∆k

δ (g) (during the intermediate steps of this
process we may introduce simplices whose images are of type σ , but in the end we will remove
them). Using conclusion 2.a of Lemma 6.18, we can by iterating this process σ -regularly homotope
φ so that rkbg(φ(x)) = 0 for all x ∈ S(0). An application of conclusion 2.b of Lemma 6.18 then
completes the proof. The proof will follow the same outline as the proof of the third conclusion of
Proposition 6.13; only the final step will require new ideas. Like in that proof, there are three steps.
At the end of each of them, we will still have φ(S)⊂L ∆k

δ (g).

Step 1. We isolate vertices whose images have bg-rank R from the simplices whose images are of
type δ . More precisely, we will σ -regularly homotope φ so that if s∈ S is such that φ(s) is a simplex
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x

linkS(x)

e1 e2

x1 x2

a b c d e
Figure 14: a. Gluing the top to the bottom does not yield a simplicial complex. b. C2 and C3 c.
linkS(x) is a combinatorial (n−1)-sphere d. D′ is a combinatorial n-ball with ∂D′ = linkS(x). The edges
e1, . . . ,em that map to edges of type σ are in bold. e. We cone off starD′(ei) with a new vertex xi for
1≤ i≤ m

of type δ , then for all vertices x of S we have rkbg(φ(x)) < R. After this homotopy, we will still have
rkbg(φ(x))≤ R for all x ∈ S(0).

This is done exactly like in Step 1 of the proof of the third conclusion of Proposition 6.13 (see
the remark following the proof of the third conclusion of Proposition 6.13). Since no simplices of
type σ are used, the first conclusion of Lemma 6.18 implies that the resulting homotopy is σ -regular.

Step 2. We isolate the vertices whose images have bg-rank R from each other. More precisely,
we will homotope φ so that if x ∈ S(0) satisfies rkbg(φ(x)) = R and {x,y} ∈ S(1) is any edge, then
rkbg(φ(y)) < R. After this homotopy, we will still have rkbg(φ(x))≤ R for all x ∈ S(0), and moreover
we will still have that if x ∈ S(0) satisfies rkbg(φ(x)) = R then φ(starS(x)) contains no simplices of
type δ .

Again, this is done exactly like in Step 2 of the proof of the third conclusion of Proposition 6.13,
and again no simplices of type σ are used so the resulting homotopy is σ -regular.

Step 3. We eliminate all vertices whose images have bg-rank R. More precisely, we will homotope
φ so that for all x ∈ S(0) we have rkbg(φ(x)) < R.

This step of the proof is illustrated in the case n = 1 in Figures 14.c–e. Consider x ∈ S(0) so that
rkbg(φ(x)) = R and let v ∈ H1(Σg) be so that φ(x) = 〈v〉. The complex linkS(x) is a combinatorial
(n− 1)-sphere and by Step 2 we have rkbg(φ(y)) < R for all vertices y of linkS(x). Our goal is to
construct a combinatorial (n+1)-ball B so that ∂B = starS(x)∪D with D a combinatorial n-ball and
starS(x)∩D = linkS(x). Moreover, we will also construct a σ -regular map g : B→L ∆k

σ ,δ (g) so that
g|starS(x) = φ |starS(x) and so that for all y ∈ D we have rkbg(g(y)) < R. We can then use conclusion 3

of Lemma 6.18 to σ -regularly homotope φ : S→ link∆k

σ ,δ (g) so as to replace φ |starS(x) with g|D. This
has the effect of eliminating x without introducing any vertices whose bg-ranks are greater than or
equal to R. Iterating this procedure will achieve the desired outcome.

As was already observed, linkS(x) is a combinatorial (n−1)-sphere (see Figure 14.c). Also, by
Step 2 we have that φ(linkS(x)) is contained in the following subcomplex of link

L ∆k
σ ,δ (g)

(φ(x)) :

L ∆k∪{φ(x)}(g)∼= L ∆k+1
(g).

By induction, there exists some combinatorial n-ball D′ with ∂D′ = linkS(x) and a σ -regular map

f ′ : D′ → L
∆k∪{φ(x)}
σ ,δ (g) so that f ′|∂D′ = φ |linkS({x}). See Figure 14.d. Moreover, using the same

argument we used in Step 3 of the proof of the third conclusion of Proposition 6.13 (see the paren-
thetical remark at the end of the first sentence of the third paragraph of that step), we can modify
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D′ and f ′ so that rkbg( f ′(y)) < R for all y ∈ (D′)(0). It is easy to see that these modifications
do not affect the σ -regularity of f ′. Define B′ to be the join of the point x with D′ and define
g′ : B′→L ∆k

σ ,δ (g) to equal φ on x and f ′ on D′. It is clear that B′ is a combinatorial (n + 1)-ball
and that ∂B′ = starS(x)∪D′ with starS(x)∩D′ = linkS(x). However, g′ need not be σ -regular. In
particular, g′ may take simplices of D′ to simplices of type σ , which we wish to avoid. The key
purpose of the σ -regularity of f ′ is to allow us to remove these simplices of type σ .

Let e1, . . . ,em ∈ (D′)(1) be the edges mapping to 1-cells of type σ . Hence for 1 ≤ i ≤ m the
complex Xi := starD′(ei) is isomorphic to Cn and f ′|Xi is a symplectic cross map. Let Vi ⊂H1(Σg) be
the symplectic subspace of H1(Σg) associated to f ′|Xi and let {ai

1,b
i
1, . . . ,a

i
n,b

i
n} be the associated

symplectic basis for Vi. Define Wi to be the orthogonal complement to Vi, so Wi is a symplectic
subspace and we have a symplectic splitting H1(Σg) = Vi⊕Wi. Recalling that ∆k = {〈a1〉, . . . ,〈ak〉}
and φ(x) = 〈v〉, we have that 〈a1, . . . ,ak,v〉 is an isotropic subspace of Wi for each i. Let v′i ∈Wi be
so that ialg(v,v′i) = 1 and ialg(v′i,a j) = 0 for 1 ≤ j ≤ k. Since rkbg(〈v〉) = R, we can replace v′i with
v′i + cv for some c ∈ Z to ensure that rkbg(〈v′i〉) < R. Observe that if we set ai

n+1 = v and bi
n+1 = v′i,

then {ai
1,b

i
1, . . . ,a

i
n+1,b

i
n+1} is a symplectic basis for a new symplectic subspace of H1(Σg).

Define B to be the result of coning off the subcomplex Xi of D′ ⊂ B′ with a new vertex xi for 1≤
i≤ m (see Figure 14.e). It is clear that B is a combinatorial (n+1)-ball and that ∂B = starS(x)∪D,
where D is the result of deleting Xi \∂Xi from D′ and a coning off the resulting spherical boundary
component with xi for 1≤ i≤ m. Define g : B→L ∆k

σ ,δ (g) to equal g′ on B′ and to equal 〈bi
n+1〉 on

xi. By the previous paragraph, g is σ -regular. Moreover, by construction we have rkbg(g(y)) < R
for all vertices y of D, so we are done.
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