The complex of partial bases for F_n and finite generation of the Torelli subgroup of $\operatorname{Aut}(F_n)$

Matthew Day^{*} and Andrew Putman[†]

July 10, 2012

Abstract

We study the complex of partial bases of a free group, which is an analogue for $\operatorname{Aut}(F_n)$ of the curve complex for the mapping class group. We prove that it is connected and simply connected, and we also prove that its quotient by the Torelli subgroup of $\operatorname{Aut}(F_n)$ is highly connected. Using these results, we give a new, topological proof of a theorem of Magnus that asserts that the Torelli subgroup of $\operatorname{Aut}(F_n)$ is finitely generated.

1 Introduction

Let Σ_g be a compact orientable genus g surface and let Mod_g be its mapping class group. One of the most important and ubiquitous objects associated to Mod_g is the curve complex \mathcal{C}_g . By definition, this is the simplicial complex whose simplices are sets of homotopy classes of non-nullhomotopic simple closed curves on Σ_g that can be realized disjointly. It can be viewed as an analogue for Mod_g of the Tits building of an algebraic group. The space \mathcal{C}_g has many remarkable properties; for instance, Harer [12] showed that $\mathcal{C}(\Sigma_g)$ is homotopy equivalent to a bouquet of spheres and Masur-Minsky [23] showed that $\mathcal{C}(\Sigma_g)$ is δ -hyperbolic.

There is a useful analogy between the mapping class group of a surface and the automorphism group of a free group F_n on n letters. Because of this, there have been many proposals for analogues of the curve complex for $\operatorname{Aut}(F_n)$ (for instance, see [3, 13, 14, 15, 18]). The purpose of this paper is to prove some topological results about one of these proposed complexes (the *complex of partial bases* \mathcal{B}_n ; see below). We apply these results to give a quick proof of a classical theorem of Magnus which provides generators for the *Torelli subgroup* IA_n < Aut(F_n), which is the kernel of the natural homomorphism from Aut(F_n) to Aut(F_n^{ab}) \cong Aut(\mathbb{Z}^n) \cong GL_n(\mathbb{Z}).

Our complex is inspired by a subcomplex of C_g , the nonseparating curve complex. This is the subcomplex C_g^{nosep} of C_g consisting of simplices $\{\gamma_1, \ldots, \gamma_k\}$ such that the γ_i can be realized by simple closed curves whose union does not separate Σ_g . The complex C_g^{nosep} was introduced by Harer [12] and plays an important role in both homological stability results for Mod_g and its subgroups (see [12, 30]) and the second author's approach to the Torelli subgroup of Mod_g (see [27, 29, 31, 32]).

To motivate the definition of our complex, we start by giving an algebraic characterization of C_q^{nosep} . There is a bijection between free homotopy classes of oriented closed curves on Σ_g and

^{*}Supported in part by an NSF postdoctoral fellowship

[†]Supported in part by NSF grant DMS-1005318

conjugacy classes in $\pi_1(\Sigma)$. We will call a generating set $\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}$ for $\pi_1(\Sigma_g)$ a standard basis if it satisfies the surface relation $[\alpha_1, \beta_1] \cdots [\alpha_g, \beta_g] = 1$. We then have the following folklore result, whose proof is an exercise in using the fact that Mod_g is the outer automorphism group of $\pi_1(\Sigma_g)$. If G is a group and $g \in G$, then denote by $\llbracket g \rrbracket$ the conjugacy class of g.

Lemma. A set $\{c_1, \ldots, c_n\}$ of conjugacy classes in $\pi_1(\Sigma_g)$ corresponds to a simplex of C_g^{nosep} (with some orientation on each curve in the simplex) if and only if there exists a standard basis $\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}$ for $\pi_1(\Sigma_g)$ such that $c_i = \llbracket \alpha_i \rrbracket$ for $1 \le i \le k$.

This suggests the following definition.

Definition. Fix $n \ge 1$. A partial basis for F_n consists of elements $\{v_1, \ldots, v_k\} \subset F_n$, with $1 \le k \le n$, such that there exists $v_{k+1}, \ldots, v_n \in F_n$ with $\{v_1, \ldots, v_n\}$ a free basis for F_n . The complex of partial bases of F_n , denoted \mathcal{B}_n , is the simplicial complex whose (k-1)-simplices are unordered sets $\{[v_1], \ldots, [v_k]\}$ such that $\{v_1, \ldots, v_k\} \subset F_n$ is a partial basis for F_n .

We consider any complete basis for F_n to be a partial basis, but by convention the empty set is not a partial basis.

Remark. Our theorems are about topological properties of \mathcal{B}_n and algebraic properties of $\operatorname{Aut}(F_n)$. However, the geometry of \mathcal{B}_n and related spaces has recently received much attention in the literature. The primitivity graph of Kapovich–Lustig [18] is the 1-skeleton of \mathcal{B}_n ; that paper discusses the geometric relationships between the primitivity graph (and therefore \mathcal{B}_n) and several other curve-complex analogues. Kapovich–Lustig also prove that \mathcal{B}_n has infinite diameter for $n \geq 2$. Very recently Bestvina–Feighn proved that the free factor complex is δ -hyperbolic. This complex is quasi-isometric to \mathcal{B}_n for $n \geq 3$, so this implies that \mathcal{B}_n is δ -hyperbolic as well. Other recent papers on the geometry of analogues of the curve complex include [11, 34].

Our two main results about \mathcal{B}_n are as follows.

Theorem A. The space \mathcal{B}_n is connected for $n \ge 2$ and 1-connected for $n \ge 3$.

Theorem B. The space $\mathcal{B}_n/\mathrm{IA}_n$ is (n-2)-connected.

The analogues of Theorems A and B for C_g^{nosep} are due to Harer [12] and the second author [29], respectively. In fact, Harer proved C_g^{nosep} is (g-2)-connected, which leads us to make the following conjecture.

Conjecture 1.1. The space \mathcal{B}_n is (n-2)-connected.

Remark. In their papers [14, 15], Hatcher-Vogtmann prove that various simplicial complexes built out of free factors of F_n are highly connected. Their proofs are quite different from our proof of Theorem A and do not seem to apply (at least directly) to \mathcal{B}_n . Also, their complexes are not 1connected for n = 3, which renders them unsuitable for our application below to IA_n (the induction needs the case n = 3 to get started).

Next, we need another definition.

Definition. Let $\{v_1, \ldots, v_n\}$ be a fixed free basis for F_n . Choose $1 \le i \le n$, and let $w \in F_n$ be an element of the subgroup of F_n spanned by $\{v_j \mid j \ne i\}$.

• For $e \in \{1, -1\}$, let $M_{v_i^e, w} \in Aut(F_n)$ denote the automorphism that takes v_i^e to wv_i^e and fixes v_i for $j \neq i$.

• Let $C_{v_i,w} \in Aut(F_n)$ denote the automorphism that takes v_i to wv_iw^{-1} and fixes v_j for $j \neq i$. *Remark.* Observe that $C_{v_i,w} = M_{v_i,w}M_{v_i^{-1},w}$.

Remark. In the literature, it is common to instead work with the elements $M'_{v_i^e,w} \in \operatorname{Aut}(F_n)$ that take v_i^e to $v_i^e w$ and fix v_j for $j \neq i$. If one used this convention, then it would make sense to define $C_{v_i,w}$ to take v_i to $w^{-1}v_iw$; however, this conjugation convention would make conjugation a right action rather than a left action. We prefer to work with left actions.

Using the complex \mathcal{B}_n and Theorems A and B, we give a new proof of the following theorem of Magnus.

Theorem C (Magnus, [22]). Fix a free basis $\{v_1, \ldots, v_n\}$ for F_n . The group IA_n is then generated by the finite set

 $\{M_{v_i, \lceil v_i, v_k \rceil} \mid 1 \le i, j, k \le n, \ i \ne j, \ i \ne k, \ j \ne k\} \cup \{C_{v_i, v_j} \mid 1 \le i, j \le n, \ i \ne j\}.$

Remark. The usual statement of Theorem C contains the elements $M'_{v_i,[v_j,v_k]}$ instead of $M_{v_i,[v_j,v_k]}$. The two generating sets are equivalent due to the formula

$$\mathbf{M}_{v_{i},[v_{j},v_{k}]}' = \mathbf{C}_{v_{i},v_{j}}^{-1} \mathbf{C}_{v_{i},v_{k}}^{-1} \mathbf{C}_{v_{i},v_{k}} \mathbf{C}_{v_{i},v_{k}} \mathbf{M}_{v_{i},[v_{j},v_{k}]}.$$

Remark. It was proven independently by Cohen-Pakianathan [7], Farb [9], and Kawazumi [19] that the size of the generating set in Theorem C is as small as possible.

Magnus's original proof of Theorem C had two steps. The first and most difficult is the following result.

Theorem D (Magnus, [22]). Fix a free basis $\{v_1, \ldots, v_n\}$ for F_n . The group IA_n is then normally generated as a subgroup of Aut (F_n) by the single element C_{v_1,v_2} .

In §3 below, we give a topological proof of Theorem D using the complex of partial bases. Following Magnus, one can then derive Theorem C from Theorem D by showing that the subgroup of $Aut(F_n)$ generated by the generating set in Theorem C is normal. For completeness, we give the details of this argument in Appendix A.

Remark. There is another (quite different) topological proof of Theorem D in a recent paper of Bestvina-Bux-Margalit [2]. That paper also contains in an appendix a sketch of Magnus's derivation of Theorem C from Theorem D.

Remark. An analogue of Theorem D for Mod_g was proven by Powell [26], following work of Birman [6]. Their proof resembled Magnus's proof of Theorem D, though the details were far more complicated. Later, an analogue of Theorem C for Mod_g was proven by Johnson [17], again following Magnus's derivation of Theorem C from Theorem D (though again the details are much more complicated). Recently, the second author [27] gave a topological proof of Birman-Powell's theorem using the curve complex. The machinery of the current paper is set up so that the proof of Theorem D follows the topological argument in [27] closely.

Outline and conventions. One of the key tools in this paper is an analogue of the Birman exact sequence for $Aut(F_n)$ which the authors proved in [8]. This is discussed in §2. Next, Theorem D is proven in §3 (assuming the truth of Theorems A and B). Finally, Theorems A and B are proven in §4 and §5. The last three sections are largely independent of each other and can be read in any order.

Automorphisms act on the left and compose from right to left like functions. Also, if G is a group and $g, h \in G$, then we define $[g, h] = ghg^{-1}h^{-1}$.

2 The Birman exact sequence for $Aut(F_n)$

A key tool in this paper is a type of Birman exact sequence for $\operatorname{Aut}(F_n)$ which the authors developed in [8]. This is an analogue of the classical Birman exact sequence for mapping class group (see [5]). We begin with some notation. For $v_1, \ldots, v_k \in F_n$, let

$$\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) = \{ \phi \in \operatorname{Aut}(F_n) \mid \llbracket \phi(v_i) \rrbracket = \llbracket v_i \rrbracket \text{ for } 1 \le i \le k \}.$$

Also, if G is a group and $S \subset G$, then let $\langle S \rangle \subset G$ denote the subgroup of G generated by S and $\langle \langle S \rangle \rangle \subset G$ denote the normal subgroup of G generated by S.

Let $\{v_1, \ldots, v_n\}$ be a basis for F_n . For some $1 \le k \le n$, let $V = \langle v_1, \ldots, v_k \rangle$. Since the group $\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ preserves V, we get an induced map

$$\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \to \operatorname{Aut}(F_n/V)$$

which is clearly a split surjection. Define $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ to be its kernel, so we have a split short exact sequence

$$1 \longrightarrow \mathcal{K}_n(\llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \longrightarrow \operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \longrightarrow \operatorname{Aut}(F_n/V) \longrightarrow 1.$$
(1)

The paper [8] contains numerous results about $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$; for instance, it is proven that it is finitely generated but not finitely presentable, its abelianization is calculated, and an explicit infinite presentation for it is constructed. We will only need the following result.

Theorem 2.1 ([8]). If $\{v_1, \ldots, v_n\}$ is a basis for F_n and $1 \le k \le n$, then $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ is generated by

$$\{M_{v_i,v_j} \mid k+1 \le i \le n, \ 1 \le j \le k\} \cup \{C_{v_i,v_j} \mid 1 \le i \le k, \ 1 \le j \le n, \ i \ne j\}$$

The exact sequence (1) is related to the following exact sequence for $\operatorname{Aut}(\mathbb{Z}^n)$. Let $\overline{V} \subset \mathbb{Z}^n$ be a direct summand and define

$$\operatorname{Aut}(\mathbb{Z}^n, \overline{V}) = \{ \phi \in \operatorname{Aut}(\mathbb{Z}^n) \mid \phi|_{\overline{V}} = 1 \}.$$

For an appropriate choice of basis, $\operatorname{Aut}(\mathbb{Z}^n, \overline{V})$ consists of matrices in $\operatorname{GL}_n(\mathbb{Z})$ with an identity block in the upper left hand corner and a block of zeros in the lower left hand corner. We then have a split short exact sequence

$$1 \longrightarrow \operatorname{Hom}(\mathbb{Z}^n/\overline{V}, \overline{V}) \longrightarrow \operatorname{Aut}(\mathbb{Z}^n, \overline{V}) \longrightarrow \operatorname{Aut}(\mathbb{Z}^n/\overline{V}) \longrightarrow 1.$$
(2)

Letting $\pi: \mathbb{Z}^n \to \mathbb{Z}^n/V$ be the projection, an element $\varphi \in \text{Hom}(\mathbb{Z}^n/\overline{V}, \overline{V})$ corresponds to the element of $\text{Aut}(\mathbb{Z}^n, \overline{V})$ that takes $x \in \mathbb{Z}^n$ to $x + \varphi(\pi(x))$.

The exact sequences (1) and (2) are related by the following lemma.

Lemma 2.2 (Images of stabilizers). Fix bases $\{v_1, \ldots, v_n\}$ and $\{\overline{v}_1, \ldots, \overline{v}_n\}$ for F_n and \mathbb{Z}^n , respectively, such that $\pi(v_i) = \overline{v}_i$ for $1 \le i \le n$. Choose some $1 \le k \le n$. Set $\overline{V} = \langle \overline{v}_1, \ldots, \overline{v}_k \rangle \subset \mathbb{Z}^n$ and $V = \langle v_1, \ldots, v_k \rangle \subset F_n$. There is then a commutative diagram of split short exact sequences

whose vertical maps are all surjective.

Remark. By a commutative diagram of split short exact sequences, we mean not only that the diagram commutes and that two sequences are split, but also that the splitting is compatible with the commutative diagram in the obvious way.

Proof of Lemma 2.2. The only nonobvious claims are the surjectivity of the vertical maps. The fact that the map $\operatorname{Aut}(F_n/V) \to \operatorname{Aut}(\mathbb{Z}^n/\overline{V})$ is surjective is classical, while the fact that the map $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket) \to \operatorname{Hom}(\mathbb{Z}^n/\overline{V}, \overline{V})$ is surjective follows from the fact that the elements

$$\{\mathbf{M}_{v_i,v_i} \mid k+1 \le i \le n, \ 1 \le j \le k\} \subset \mathcal{K}_n([v_1]], \dots, [v_k])$$

project to a basis for $\operatorname{Hom}(\mathbb{Z}^n/\overline{V},\overline{V})$. The surjectivity of the map $\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket) \rightarrow \operatorname{Aut}(\mathbb{Z}^n, \overline{V})$ now follows from the five lemma.

Theorem 2.1 and Lemma 2.2 have the following corollary.

Corollary 2.3. Let $\{v_1, \ldots, v_n\}$ be a basis for F_n . Then for $1 \le k \le n$, the group $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket) \cap$ IA_n is normally generated as a subgroup of $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ by

$$\{C_{v_i,v_j} \mid 1 \le i \le k, \ 1 \le j \le n, \ i \ne j\}$$

Proof. Let $\pi: F_n \to \mathbb{Z}^n$ be the abelianization map and let $\overline{V} = \langle \pi(v_1), \ldots, \pi(v_k) \rangle$. Using Lemma 2.2, we have that $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket) \cap \mathrm{IA}_n$ is the kernel of a surjective map

$$\Phi: \mathcal{K}_n(\llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \longrightarrow \operatorname{Hom}(\mathbb{Z}^n / \overline{V}, \overline{V}).$$

Let $S_{\mathcal{K}}$ be the generating set for $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ given by Theorem 2.1 and let $S_{\mathcal{K}, \mathrm{IA}} \subset S_{\mathcal{K}}$ be the set we are trying to prove normally generates $\mathcal{K}_n(\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket) \cap \mathrm{IA}_n$. Also, let

$$T = S_{\mathcal{K}} \setminus S_{\mathcal{K}, \text{IA}} = \{ \mathbf{M}_{v_i, v_j} \mid k+1 \le i \le n, \ 1 \le j \le k \}.$$

Observe the following two facts.

- $S_{\mathcal{K},\mathrm{IA}} \subset \ker(\Phi).$
- $\Phi|_T$ is injective and $\Phi(T)$ is a basis for the free abelian group $\operatorname{Hom}(\mathbb{Z}^n/\overline{V},\overline{V})$.

From these two facts, it follows immediately that ker(Φ) is normally generated by the set $S_{\mathcal{K},\mathrm{IA}} \cup \{[t_1,t_2] \mid t_1,t_2 \in T\}$. We must show that the set $\{[t_1,t_2] \mid t_1,t_2 \in T\}$ is in the normal closure of $S_{\mathcal{K},\mathrm{IA}}$.

Consider $M_{v_i,v_j}, M_{v_{i'},v_{j'}} \in T$. We want to express $[M_{v_i,v_j}, M_{v_{i'},v_{j'}}]$ as a product of conjugates of elements of $S_{\mathcal{K},\text{IA}}$. If either $i \neq i'$ or j = j', then $[M_{v_i,v_j}, M_{v_{i'},v_{j'}}] = 1$ and the claim is trivial (this uses the fact that $\{v_i, v_{i'}\} \cap \{v_j, v_{j'}\} = \emptyset$). Assume, therefore, that i = i' and $j \neq j'$. We then have the easily verified identity

$$[\mathbf{M}_{v_i,v_j},\mathbf{M}_{v_{i'},v_{j'}}] = \mathbf{M}_{v_i,[v_{j'}^{-1},v_j^{-1}]} = (\mathbf{M}_{v_i,v_j}\mathbf{C}_{v_i,v_{j'}}\mathbf{M}_{v_i,v_j}^{-1})\mathbf{C}_{v_i,v_{j'}}^{-1}$$

and the corollary follows.

3 Generators for IA_n

We will now assume the truth of Theorems A and B and prove Theorem D, which gives generators for IA_n . The proof will closely follow the proof in [27] of the analogous fact for the mapping class group. We start with a definition.

Definition. A group G acts on a simplicial complex X without rotations if for all simplices s of X, the stabilizer G_s stabilizes s pointwise.

For example, IA_n acts without rotations on \mathcal{B}_n , but Aut(F_n) does not act without rotations on \mathcal{B}_n if $n \ge 2$.

The key to our proof will be the following theorem of Armstrong [1]. Our formulation is a little different from Armstrong's; see [27, Theorem 2.1] for a description of how to extract it from [1].

Theorem 3.1 (Armstrong, [1]). Let G act without rotations on a 1-connected simplicial complex X. Then G is generated by the set

$$\bigcup_{v \in X^{(0)}} G_v$$

if and only if X/G is 1-connected.

We now proceed to the proof.

Proof of Theorem D. Let $\{v_1, \ldots, v_n\}$ be a basis for F_n . Our goal is to show that IA_n is normally generated as a subgroup of Aut (F_n) by C_{v_1,v_2} . We first observe that the conjugacy class of C_{v_1,v_2} is independent of the initial choice of basis. It is thus enough to show that IA_n is generated by the automorphisms that (for some choice of basis) conjugate one basis element by another while fixing the rest of the basis. We will call such an automorphism a *basis-conjugating automorphism*.

The proof will be by induction on n. The case n = 1 is trivial, while the case n = 2 follows from a classical theorem of Nielsen [25] that asserts that $\operatorname{Out}(F_2) \cong \operatorname{GL}_2(\mathbb{Z})$, and thus that IA_2 consists entirely of inner automorphisms (see [20, Proposition 4.5] for a modern account of Nielsen's theorem). Assume, therefore, that $n \geq 3$ and that the result is true for all smaller n. For $v \in F_n$, define

$$\mathrm{IA}_n(\llbracket v \rrbracket) = \{ \phi \in \mathrm{IA}_n \mid \llbracket \phi(v) \rrbracket = \llbracket v \rrbracket \}.$$

Using Theorems A and B, we can apply Theorem 3.1 and deduce that IA_n is generated by the set

$$\bigcup_{\llbracket v \rrbracket \in (\mathcal{B}_n)^{(0)}} \mathrm{IA}_n(\llbracket v \rrbracket)$$

Consider some $\llbracket v \rrbracket \in (\mathcal{B}_n)^{(0)}$. Applying Lemma 2.2, we obtain a split short exact sequence

$$1 \longrightarrow \mathcal{K}_n(\llbracket v \rrbracket) \cap \mathrm{IA}_n \longrightarrow \mathrm{IA}_n(\llbracket v \rrbracket) \longrightarrow \mathrm{IA}_{n-1} \longrightarrow 1.$$

The inductive hypothesis says that IA_{n-1} is generated by basis-conjugating automorphisms, and Corollary 2.3 says that $\mathcal{K}_n(\llbracket v \rrbracket) \cap IA_n$ is generated by basis-conjugating automorphisms. We conclude that $IA_n(\llbracket v \rrbracket)$, and hence IA_n , is generated by basis-conjugating automorphisms, as desired.

4 The connectivity of \mathcal{B}_n

In this section, we prove Theorem A. The proof uses a trick that was introduced by the second author in [28]. We will need two results for the proof. For the first, let $SAut(F_n)$ be the *special* automorphism group of F_n , i.e. the subgroup of $Aut(F_n)$ consisting of automorphisms whose images in $Aut(\mathbb{Z}^n)$ have determinant 1. Also, if S is a fixed basis for F_n and $a, b \in S^{\pm 1}$ satisfy $a \neq b^{-1}$, then denote by $w_{a,b}$ the automorphism of F_n that takes a to b^{-1} , that takes b to a, and fixes all the elements of $S^{\pm 1} \setminus \{a^{\pm 1}, b^{\pm 1}\}$.

Theorem 4.1 (Gersten, [10]). For $n \ge 3$, the group $\text{SAut}(F_n)$ has the following presentation. Let S_F be a fixed basis for F_n .

• The generating set consists of

$$\{M_{a,b} \mid a, b \in S_F^{\pm 1}, a \neq b^{\pm 1}\} \cup \{C_{a,b} \mid a, b \in S_F, a \neq b\} \cup \{w_{a,b} \mid a, b \in S_F^{\pm 1}, a \neq b^{\pm 1}\}.$$

• The relations consist of the following.

- 6. $w_{a,b}^4 = 1$ for $a, b \in S_F^{\pm 1}$ with $a \neq b^{\pm 1}$.
- 7. $C_{a,b} = M_{a,b}M_{a^{-1}b}$ for $a, b \in S_F$ with $a \neq b$.

Remark. The presentation above differs from the presentation in [10] in three ways. First, our convention is to write functions on the left, while in [10] functions are written on the right. Second, our convention is that $M_{a,b}$ multiplies a on the left by b, while in [10] the analogous elements multiply a on the right by b. Third, we have added the additional generators $w_{a,b}$ and $C_{a,b}$ together with relations 5 and 7, which express $w_{a,b}$ and $C_{b,a}$ in terms of the generators $M_{a,b}$ of [10]. This will simplify our proof later on.

The second result we will need is as follows. For a partial basis $\{v_1, \ldots, v_k\}$ of F_n , define

$$\operatorname{SAut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) = \{ \phi \in \operatorname{SAut}(F_n) \mid \llbracket \phi(v_i) \rrbracket = \llbracket v_i \rrbracket \text{ for } 1 \le i \le k \}.$$

Lemma 4.2. Let $S = \{v_1, \ldots, v_n\}$ be a fixed free basis of F_n . Then for $1 \le k \le n$, the group $SAut(F_n, [v_1], \ldots, [v_k])$ is generated by the set

$$\{M_{a,b} \mid a, b \in S^{\pm 1}, a \neq b^{\pm 1}, and a \notin \{v_1^{\pm 1}, \dots, v_k^{\pm 1}\}\} \cup \{C_{a,b} \mid a, b \in S^{\pm 1} and a \neq b^{\pm 1}\}$$

Proof. We will assume that k < n; the case of k = n is similar but easier. Let T be the indicated generating set. Also, let $I_n \in \operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ be the automorphism that takes v_n to v_n^{-1} and fixes v_i for $1 \le i < n$. The short exact sequence

$$1 \longrightarrow \operatorname{SAut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \longrightarrow \operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1$$

splits via a splitting taking the generator of $\mathbb{Z}/2\mathbb{Z}$ to I_n . In other words,

$$\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) = \operatorname{SAut}(F_n, \llbracket v_1 \rrbracket, \dots, \llbracket v_k \rrbracket) \rtimes \langle I_n \rangle$$

Observe that $I_n^{-1} s I_n \in T$ for all $s \in T$. To prove the lemma, it therefore suffices to show that $T \cup \{I_n\}$ generates $\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$

Let $G \subset \operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ be the subgroup consisting of automorphisms ϕ with the following properties.

- $\phi(v_i) = v_i$ for $1 \le i \le k$.
- $\phi(v_i) \in \{v_{k+1}^{\pm 1}, \dots, v_n^{\pm 1}\}$ for $k+1 \le i \le n$.

Making use of a deep theorem of McCool [24], Jensen-Wahl [16] proved that $T \cup G$ generates $\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$. It is an easy exercise to show that $G \cap \operatorname{SAut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$ is contained in the subgroup generated by T. Since G is generated by the union of $\{I_n\}$ and $G \cap \operatorname{SAut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$, we conclude that $T \cup \{I_n\}$ generates $\operatorname{Aut}(F_n, \llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket)$, as desired.

Finally, we recall the following definition.

Definition. Let G be a group with a generating set S. The Cayley graph of G, denoted Cay(G, S), is the graph with vertex set G and with $g \in G$ connected by an edge to $g' \in G$ precisely when g' = gs for some $s \in S^{\pm 1}$.

We can now prove Theorem A.

Proof of Theorem A. Let $S_F = \{v_1, \ldots, v_n\}$ be a free basis for F_n and let S be the corresponding generating set for $\text{SAut}(F_n)$ from Theorem 4.1. Observe that for $s \in S$, either $[\![s(v_1)]\!] = [\![v_1]\!]$ or $\{v_1, s(v_1)\}$ forms a partial basis for F_n . This implies that the map

$$\operatorname{SAut}(F_n) \to \mathcal{B}_n$$

 $f \mapsto \llbracket f(v_1) \rrbracket$

extends to a $\operatorname{SAut}(F_n)$ -equivariant simplicial map $\Phi: \operatorname{Cay}(\operatorname{SAut}(F_n), S) \to \mathcal{B}_n$. When $n \ge 2$, the group $\operatorname{SAut}(F_n)$ acts transitively on the vertices of \mathcal{B}_n , so the image of Φ contains every vertex of \mathcal{B}_n . Since $\operatorname{Cay}(\operatorname{SAut}(F_n), S)$ is connected, this implies that \mathcal{B}_n is connected for $n \ge 2$.

Assume now that $n \ge 3$. Our goal is to prove that \mathcal{B}_n is 1-connected. We will prove below that the induced map

$$\Phi_*: \pi_1(\operatorname{Cay}(\operatorname{SAut}(F_n), S), 1) \longrightarrow \pi_1(\mathcal{B}_n, \llbracket v_1 \rrbracket)$$

is surjective and has image 1. The desired result will then follow.

Throughout the proof, we will use the following notation. A simplicial path in a simplicial complex C is a sequence of vertices x_1, \ldots, x_k in C such that for $1 \le i < k$, the vertex x_i is either equal to x_{i+1} or is joined by an edge to x_{i+1} . We will denote such a path by $x_1 - x_2 - \cdots - x_k$. If $x_k = x_1$, then we will call this a simplicial loop.

Claim 1. The image of the map $\Phi_*: \pi_1(\operatorname{Cay}(\operatorname{SAut}(F_n), S), 1) \longrightarrow \pi_1(\mathcal{B}_n, \llbracket v_1 \rrbracket)$ is 1.

It is well known that one can construct a 1-connected space from the Cayley graph of a finitelypresented group by attaching discs to the orbits of the loops associated to any complete set of relations. Let X be the space obtained from $\text{Cay}(\text{SAut}(F_n), S), 1)$ in this way using the presentation from Theorem 4.1. We will show that the images in \mathcal{B}_n of the loops associated to these relations are contractible. This will imply that we can extend Φ to X. Since X is 1-connected, we will be able to conclude that Φ_* is the zero map, as desired.

Consider one of the relations $s_1 \cdots s_k = 1$ with $s_i \in S^{\pm 1}$ from Theorem 4.1. The associated simplicial loop in $\operatorname{Cay}(\operatorname{SAut}(F_n), S)$ and its image in \mathcal{B}_n are

$$1 - s_1 - s_1 s_2 - \dots - s_1 s_2 \dots s_k = 1$$

and

$$\llbracket v_1 \rrbracket - \llbracket s_1(v_1) \rrbracket - \llbracket s_1 s_2(v_1) \rrbracket - \dots - \llbracket s_1 s_2 \dots s_k(v_1) \rrbracket = \llbracket v_1 \rrbracket,$$
(3)

respectively. Examining the relations in Theorem 4.1, we see that there exists some $x \in S_F$ such that $s_i(x) = x$ for all $1 \le i \le k$ (this uses the fact that $n \ge 3$). Since $[v_1]$ and [x] are either equal or joined by an edge, the vertices $[s_1 \cdots s_i(v_1)]$ and $[s_1 \cdots s_i(x)] = [x]$ are either equal or joined by an edge for all $0 \le i \le k$. We deduce that if we can show that the loops $[x] - [s_1 \cdots s_i(v_1)] - [s_1 \cdots s_{i+1}(v_1)] - [x]$ are contractible for all $0 \le i < k$, then we can contract the loop in (3) to [x].

Using the SAut(F_n)-action, we see that it is enough to show that the loops $\llbracket x \rrbracket - \llbracket v_1 \rrbracket - \llbracket s_i(v_1) \rrbracket - \llbracket x \rrbracket$ are contractible for all $1 \le i \le k$. There are three cases. In the first, $\llbracket v_1 \rrbracket = \llbracket s_i(v_1) \rrbracket$ and the result is trivial. In the second, the set $\{v_1, s_i(v_1), x\}$ is a partial basis for F_n , and again the result is trivial. In the third, the set $\{v_1, s_i(v_1), x\}$ is not a partial basis for F_n . Looking at the generators in S, we see that this can hold only if $s_i = M_{v_1^{e'}, x^e}^{e''}$ for some $e, e', e'' \in \{1, -1\}$. Letting $y \in S_F$ be a generator distinct from x and v_1 , the loop $\llbracket x \rrbracket - \llbracket v_1 \rrbracket - \llbracket s_i(v_1) \rrbracket - \llbracket x \rrbracket$ can be contracted to $\llbracket y \rrbracket$, and we are done.

Claim 2. The map $\Phi_*: \pi_1(\operatorname{Cay}(\operatorname{SAut}(F_n), S), 1) \longrightarrow \pi_1(\mathcal{B}_n, \llbracket v_1 \rrbracket)$ is surjective.

Consider a loop $\llbracket w_0 \rrbracket - \llbracket w_1 \rrbracket - \dots - \llbracket w_k \rrbracket$ in \mathcal{B}_n with $\llbracket w_0 \rrbracket = \llbracket w_k \rrbracket = \llbracket v_1 \rrbracket$. We will show that this loop is in the image of Φ_* . By choosing an appropriate representative w_i for each conjugacy class $\llbracket w_i \rrbracket$, we can assume that $w_0 = v_1$ and that $\{w_i, w_{i+1}\}$ is a partial basis of F_n for $0 \le i < k$. Since $\{v_1, w_1\}$ is a partial basis for F_n and SAut (F_n) acts transitively on two-element partial bases (this uses the fact that $n \ge 3$), there exists some $\phi_1 \in \text{SAut}(F_n, \llbracket v_1 \rrbracket)$ such that $\phi_1(v_2) = w_1$ (in fact, we could assume that ϕ_1 fixes v_1 and not just its conjugacy class, but that is not needed). It follows that $w_1 = \phi_1 w_{v_2,v_1}(v_1)$. Next, since $\{w_1, w_2\}$ is a partial basis, so is

$$\{(\phi_1 w_{v_2,v_1})^{-1}(w_1), (\phi_1 w_{v_2,v_1})^{-1}(w_2)\} = \{v_1, (\phi_1 w_{v_2,v_1})^{-1}(w_2)\}.$$

As before, there exists some $\phi_2 \in \text{SAut}(F_n, \llbracket v_1 \rrbracket)$ such that $\phi_2(v_2) = (\phi_1 w_{v_2,v_1})^{-1}(w_2)$. We conclude that $w_2 = (\phi_1 w_{v_2,v_1})(\phi_2 w_{v_2,v_1})(v_1)$. Repeating this argument, we obtain elements $\phi_1, \ldots, \phi_k \in \text{SAut}(F_n, \llbracket v_1 \rrbracket)$ such that $w_i = (\phi_1 w_{v_2,v_1}) \cdots (\phi_i w_{v_2,v_1})(v_1)$ for all $1 \le i \le k$.

Set $\phi_{k+1} = ((\phi_1 w_{v_2,v_1}) \cdots (\phi_i w_{v_2,v_1}))^{-1}$. Since

$$[[(\phi_1 w_{v_2,v_1})\cdots(\phi_k w_{v_2,v_1})(v_1)]] = [[w_k]] = [[v_1]],$$

we have that $\phi_{k+1} \in \text{SAut}(F_n, \llbracket v_1 \rrbracket)$.

By Lemma 4.2, for $1 \le i \le k+1$ there exists $s_1^i, \ldots, s_{m_i}^i \in S^{\pm 1}$ such that $s_1^i \cdots s_{m_i}^i = \phi_i$ and such that $s_j^i \in \text{SAut}(F_n, \llbracket v_1 \rrbracket)$ for $1 \le j \le m_i$. Observe now that we have a relation

$$(s_1^1 \cdots s_{m_1}^1 w_{v_2, v_1}) \cdots (s_1^k \cdots s_{m_k}^k w_{v_2, v_1}) (s_1^{k+1} \cdots s_{m_{k+1}}^{k+1}) = 1$$

in SAut(F_n). The image under Φ_* of the corresponding loop in Cay(SAut(F_n), S) is

$$\llbracket v_1 \rrbracket - \llbracket s_1^1(v_1) \rrbracket - \llbracket s_1^1 s_2^1(v_1) \rrbracket - \dots - \llbracket s_1^1 s_2^1 \cdots s_{m_1}^1 w_{v_2,v_1}(v_1) \rrbracket - \dots.$$

Since $[s_j^i(v_1)] = [v_1]$ for all $1 \le i \le k+1$ and $1 \le j \le m_i$, after deleting repeated vertices this path equals

$$\llbracket v_1 \rrbracket - \llbracket s_1^1 s_2^1 \cdots s_{m_1}^1 w_{v_2,v_1}(v_1) \rrbracket - \llbracket (s_1^1 s_2^1 \cdots s_{m_1}^1 w_{v_2,v_1}) (s_1^2 s_2^2 \cdots s_{m_2}^2 w_{v_2,v_1}) (v_1) \rrbracket - \\ \cdots - \llbracket (s_1^1 s_2^1 \cdots s_{m_1}^1 w_{v_2,v_1}) \cdots (s_1^k s_2^k \cdots s_{m_k}^k w_{v_2,v_1}) (v_1) \rrbracket.$$

By construction, this equals $\llbracket w_0 \rrbracket - \llbracket w_1 \rrbracket - \dots - \llbracket w_k \rrbracket$, as desired.

5 The connectivity of \mathcal{B}_n/IA_n

The goal of this section is to prove Theorem B. The proof is contained in §5.2, which is prefaced with some background information on simplicial complexes in §5.1.

5.1 Simplicial complexes

Our basic reference for simplicial complexes is [35, Chapter 3]. Let us recall the definition of a simplicial complex given there.

Definition. A simplicial complex X is a set of nonempty finite sets (called simplices) such that if $\Delta \in X$ and $\emptyset \neq \Delta' \subset \Delta$, then $\Delta' \in X$. The dimension of a simplex $\Delta \in X$ is $|\Delta| - 1$ and is denoted dim(Δ). For $k \ge 0$, the subcomplex of X consisting of all simplices of dimension at most k (known as the k-skeleton of X) will be denoted $X^{(k)}$. If X and Y are simplicial complexes, then a simplicial map from X to Y is a function $f: X^{(0)} \to Y^{(0)}$ such that if $\Delta \in X$, then $f(\Delta) \in Y$.

If X is a simplicial complex, then we will define the geometric realization |X| of X in the standard way (see [35, Chapter 3]). When we say that X has some topological property (e.g. simple-connectivity), we will mean that |X| possesses that property.

Next, we will need the following definitions.

Definition. Consider a simplex Δ of a simplicial complex X.

- The star of Δ (denoted star_X(Δ)) is the subcomplex of X consisting of all $\Delta' \in X$ such that there is some $\Delta'' \in X$ with $\Delta, \Delta' \subset \Delta''$. By convention, we will also define star_X(\emptyset) = X.
- The link of Δ (denoted link_X(Δ)) is the subcomplex of star_X(Δ) consisting of all simplices that do not intersect Δ . By convention, we will also define link_X(\emptyset) = X.

For $n \leq -1$, we will say that the empty set is both an *n*-sphere and a closed *n*-ball. Also, if X is a space then we will say that $\pi_{-1}(X) = 0$ if X is nonempty and that $\pi_k(X) = 0$ for all $k \leq -2$. With these conventions, it is true for all $n \in \mathbb{Z}$ that a space X satisfies $\pi_n(X) = 0$ if and only if every map of an *n*-sphere into X can be extended to a map of a closed (n + 1)-ball into X.

Finally, we will need the following definition. A basic reference is [33].

Definition. For $n \ge 0$, a combinatorial n-manifold M is a nonempty simplicial complex that satisfies the following inductive property. If $\Delta \in M$, then dim $(\Delta) \le n$. Additionally, if $n-\dim(\Delta)-1 \ge 0$, then link_M (Δ) is a combinatorial $(n-\dim(\Delta)-1)$ -manifold homeomorphic to either an $(n-\dim(\Delta)-1)$ sphere or a closed $(n - \dim(\Delta) - 1)$ -ball. We will denote by ∂M the subcomplex of M consisting of all simplices Δ such that dim $(\Delta) < n$ and such that link_M (Δ) is homeomorphic to a closed $(n - \dim(\Delta) - 1)$ -ball. If $\partial M = \emptyset$ then M is said to be *closed*. A combinatorial *n*-manifold homeomorphic to an *n*-sphere (resp. a closed *n*-ball) will be called a *combinatorial n-sphere* (resp. a *combinatorial n-ball*).

It is well-known that if $\partial M \neq \emptyset$, then ∂M is a closed combinatorial (n-1)-manifold and that if B is a combinatorial n-ball, then ∂B is a combinatorial (n-1)-sphere.

Warning. There exist simplicial complexes that are homeomorphic to manifolds but are *not* combinatorial manifolds.

The following is an immediate consequence of the Zeeman's extension [36] of the simplicial approximation theorem.

Lemma 5.1. Let X be a simplicial complex and $n \ge 0$. The following hold.

- 1. Every element of $\pi_n(X)$ is represented by a simplicial map $S \to X$, where S is a combinatorial *n*-sphere.
- 2. If S is a combinatorial n-sphere and $f: S \to X$ is a nullhomotopic simplicial map, then there is a combinatorial (n + 1)-ball B with $\partial B = S$ and a simplicial map $g: B \to X$ such that $g|_S = f$.

5.2 The proof of Theorem B

We will need two lemmas. First, some notation. For $\{v_1, \ldots, v_k\} \subset F_n$, define

$$\operatorname{Aut}(F_n, v_1, \dots, v_k) = \{ \phi \in \operatorname{Aut}(F_n) \mid \phi(v_i) = v_i \text{ for } 1 \le i \le k \}.$$

We then have the following lemma, whose proof is identical to the proof of Lemma 2.2.

Lemma 5.2 (Images of stabilizers II). Let $\{v_1, \ldots, v_k\}$ and $\{\overline{v}_1, \ldots, \overline{v}_k\}$ be partial bases for F_n and \mathbb{Z}^n , respectively, such that $\pi(v_i) = \overline{v}_i$ for $1 \le i \le k$. Set $\overline{V} = \langle \overline{v}_1, \ldots, \overline{v}_k \rangle \subset \mathbb{Z}^n$. Then the map $\operatorname{Aut}(F_n, v_1, \ldots, v_k) \to \operatorname{Aut}(\mathbb{Z}^n, \overline{V})$ is surjective.

Next, we prove the following.

Lemma 5.3 (Basis completion lemma). Let $\{\overline{v}_1, \ldots, \overline{v}_n\}$ be a basis for \mathbb{Z}^n and let $\pi: F_n \to \mathbb{Z}^n$ be the abelianization map. For some $0 \le k \le n$, let $\{v_1, \ldots, v_k\} \subset F_n$ be a partial basis for F_n such that $\pi(v_i) = \overline{v}_i$ for $1 \le i \le k$. There then exists $\{v_{k+1}, \ldots, v_n\} \subset F_n$ such that $\{v_1, \ldots, v_n\}$ is a basis for F_n and such that $\pi(v_i) = \overline{v}_i$ for $1 \le i \le n$.

Proof. Complete the partial basis $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, v'_{k+1}, \ldots, v'_n\}$ for F_n and set $\overline{v}'_i = \pi(v'_i)$ for $k+1 \leq i \leq n$. Define $\overline{V} = (\overline{v}_1, \ldots, \overline{v}_k)$. There then exists some $\overline{\phi} \in \operatorname{Aut}(\mathbb{Z}^n, \overline{V})$ such that $\overline{\phi}(\overline{v}'_i) = \overline{v}_i$ for $k+1 \leq i \leq n$. By Lemma 5.2, there exists some $\phi \in \operatorname{Aut}(F_n, v_1, \ldots, v_k)$ that induces ϕ on $H_1(F_n; \mathbb{Z}) = \mathbb{Z}^n$. The desired basis for F_n is then $\{v_1, \ldots, v_k, \phi(v'_{k+1}), \ldots, \phi(v'_n)$. \Box

We now proceed to the proof of Theorem B.

Proof of Theorem B. Recall that this theorem asserts that $\mathcal{B}_n/\mathrm{IA}_n$ is (n-2)-connected. Our proof will have two steps. In the first, we will show that $\mathcal{B}_n/\mathrm{IA}_n$ is isomorphic to a more concrete space $\mathcal{B}_n(\mathbb{Z})$, and in the second, we will prove that $\mathcal{B}_n(\mathbb{Z})$ is (n-2)-connected. We begin by defining $\mathcal{B}_n(\mathbb{Z})$.

Definition. Let $\mathcal{B}_n(\mathbb{Z})$ denote the simplicial complex whose (k-1)-simplices are sets $\{x_1, \ldots, x_k\} \subset \mathbb{Z}^n$ whose span is a k-dimensional direct summand of \mathbb{Z}^n .

Now on to the proof.

Step 1. We have $\mathcal{B}_n/\mathrm{IA}_n \cong \mathcal{B}_n(\mathbb{Z})$.

Let $\pi: F_n \to \mathbb{Z}^n$ be the projection. There is a map $\psi: \mathcal{B}_n \to \mathcal{B}_n(\mathbb{Z})$ that takes a simplex $\{\llbracket w_1 \rrbracket, \ldots, \llbracket w_m \rrbracket\}$ of \mathcal{B}_n to $\{\pi(w_1), \ldots, \pi(w_m)\}$. By Lemma 5.3, the map ψ is surjective. Also, ψ is invariant under the action of IA_n. It is thus enough to prove that the induced map $\mathcal{B}_n/\operatorname{IA}_n \to \mathcal{B}_n(\mathbb{Z})$ is injective. To do this, it is enough to show that if $s = \{\llbracket v_1 \rrbracket, \ldots, \llbracket v_k \rrbracket\}$ and $s' = \{\llbracket v'_1 \rrbracket, \ldots, \llbracket v'_k \rrbracket\}$ are two simplices of \mathcal{B}_n such that $\psi(s) = \psi(s')$, then there exists some $f \in \operatorname{IA}_n$ such that f(s) = s'.

Reordering our simplices if necessary, we can assume that $\pi(v_i) = \pi(v'_i)$ for $1 \le i \le k$. Define $\overline{v}_i = \pi(v_i) \in \mathbb{Z}^n$. We can complete the partial basis $\{\overline{v}_1, \ldots, \overline{v}_k\}$ for \mathbb{Z}^n to a basis $\{\overline{v}_1, \ldots, \overline{v}_n\}$. Applying Lemma 5.3 twice, we obtain bases $\{v_1, \ldots, v_n\}$ and $\{v'_1, \ldots, v'_n\}$ for F_n such that $\pi(v_i) = \pi(v'_i) = \overline{v}_i$ for $1 \le i \le n$. Define $f \in \operatorname{Aut}(F_n)$ by $f(v_i) = v'_i$. Clearly f(s) = s', and by construction $f \in \operatorname{IA}_n$, as desired.

Step 2. The space $\mathcal{B}_n(\mathbb{Z})$ is (n-2)-connected.

This result is contained in the 1979 PhD thesis of Maazen [21]. Since this thesis was never published, we include a proof. Our proof is somewhat different from Maazen's proof and is modeled after proofs of related results due to the second author (see [29, Proposition 6.13] and [30, Proposition 6.8]). Fix a basis $\{e_1, \ldots, e_n\}$ for \mathbb{Z}^n , and for $0 \le k < n$ define $\mathcal{B}_n^k(\mathbb{Z}) = \text{link}_{\mathcal{B}_n(\mathbb{Z})}(\{e_1, \ldots, e_k\})$. We will prove a more general statement, namely, that $\pi_\ell(\mathcal{B}_n^k(\mathbb{Z})) = 0$ for $0 \le k < n$ and $-1 \le \ell \le n-k-2$.

The proof will be by induction on ℓ . The base case $\ell = -1$ is equivalent to the observation that if k < n, then $\mathcal{B}_n^k(\mathbb{Z})$ is nonempty. Assume now that $0 \le \ell \le n - k - 2$ and that $\pi_{\ell'}(\mathcal{B}_{n'}^{k'}(\mathbb{Z})) = 0$ for all $0 \le k' < n'$ and $-1 \le \ell' \le n' - k' - 2$ such that $\ell' < \ell$. Let S be a combinatorial ℓ -sphere and let $\phi: S \to \mathcal{B}_n^k(\mathbb{Z})$ be a simplicial map. By Lemma 5.1, it is enough to show that ϕ may be homotoped to a constant map.

We begin with some notation. Consider $w \in \mathbb{Z}^n$. Write $w = \sum_{i=1}^n c_i e_i$ with $c_i \in \mathbb{Z}$, and define $\operatorname{Rank}(w) = |c_n|$. Now set

$$R = \max\{\operatorname{Rank}(\phi(x)) \mid x \in S^{(0)}\}.$$

If R = 0, then $\phi(S) \subset \operatorname{star}_{\mathcal{B}_n^k(\mathbb{Z})}(\{e_n\})$, and hence the map ϕ can be homotoped to the constant map e_n . Assume, therefore, that R > 0. Let Δ' be a simplex of S such that $\operatorname{Rank}(\phi(x)) = R$ for all vertices x of Δ' . Choose Δ' so that $m \coloneqq \dim(\Delta')$ is maximal, which implies that $\operatorname{Rank}(\phi(x)) < R$ for all vertices x of $\operatorname{link}_S(\Delta')$. Now, $\operatorname{link}_S(\Delta')$ is a combinatorial $(\ell - m - 1)$ -sphere and $\phi(\operatorname{link}_S(\Delta'))$ is contained in

$$\operatorname{link}_{\mathcal{B}_{n}^{k}(\mathbb{Z})}(\phi(\Delta')) \cong \mathcal{B}_{n}^{k+m'}(\mathbb{Z})$$

for some $m' \leq m$ (it may be less than m if $\phi|_{\Delta'}$ is not injective). The inductive hypothesis together with Lemma 5.1 therefore tells us that there a combinatorial $(\ell - m)$ -ball B with $\partial B = \text{link}_S(\Delta')$ and a simplicial map $f: B \to \text{link}_{\mathcal{B}_{\pi}^k(\mathbb{Z})}(\phi(\Delta'))$ such that $f|_{\partial B} = \phi|_{\text{link}_S(\Delta')}$.

$t \in T$	$s \in S \cup S^{-1}$	sts ⁻¹
$\mathbf{M}_{c,[a,b]}$	$M_{x,c}$	$C_{x,c}[C_{x,b}^{-1}, C_{x,a}^{-1}]M_{x,[b,a]}M_{c,[a,b]}C_{x,c}^{-1}$
	$\mathbf{M}_{x,c}^{-1}$	$\mathbf{M}_{x,[a,b]}\mathbf{M}_{c,[a,b]}$
	$M_{a,x}$	$\mathbf{M}_{c,[x,b]}\mathbf{C}_{c,x}^{-1}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,x}$
	$\mathrm{M}_{a,x}^{-1}$	$\mathbf{C}_{a,x}^{-1}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,a}^{-1}\mathbf{C}_{c,x}\mathbf{M}_{c,[b,x]}\mathbf{C}_{c,x}^{-1}\mathbf{C}_{c,a}\mathbf{C}_{a,x}$
	$M_{a^{-1},x}$	$M_{c,[a,b]}C_{c,a}^{-1}C_{c,x}M_{c,[b,x]}C_{c,x}^{-1}C_{c,a}$
	$M_{a^{-1},x}^{-1}$	C^{-1} M ₂ [m k] C^{-1} M ₂ [m k] C_{0} m C_{0} m
	$M_{b,x}$	$\mathrm{C}_{c,x}^{-1}\mathrm{M}_{c,[a,b]}\mathrm{C}_{c,x}\mathrm{M}_{c,[a,x]}$
	$\mathrm{M}_{b,x}^{-1}$	$\mathbf{C}_{b,x}^{-1}\mathbf{C}_{c,b}^{-1}\mathbf{C}_{c,x}\mathbf{M}_{c,[x,a]}\mathbf{C}_{c,x}^{-1}\mathbf{C}_{c,b}\mathbf{M}_{c,[a,b]}\mathbf{C}_{b,x}$
	$M_{b^{-1},x}$	$C_{a,x}^{-1} M_{c,[a,b]} C_{c,x} M_{c,[a,c]} = C_{c,x} A C_{c,[a,b]} C_{c,x} C_{a,x}$ $C_{c,x}^{-1} M_{c,[a,b]} C_{c,x} M_{c,[a,a]}$ $C_{b,x}^{-1} C_{c,b} C_{c,x} M_{c,[x,a]} C_{c,x}^{-1} C_{c,b} M_{c,[a,b]} C_{b,x}$ $C_{c,b}^{-1} C_{c,x} M_{c,[x,a]} C_{c,x}^{-1} C_{c,b} M_{c,[a,b]}$ $C_{b,x}^{-1} C_{c,x}^{-1} M_{c,[a,b]} C_{c,x} M_{c,[a,x]} C_{b,x}$
	$M_{b^{-1},x}^{-1}$	$\mathbf{C}_{b,x}^{-1}\mathbf{C}_{c,x}^{-1}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,x}\mathbf{M}_{c,[a,x]}\mathbf{C}_{b,x}$
	$\mathrm{M}_{c,x}^{\epsilon}$	$\mathbf{C}_{c,x}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,x}$
	$\mathbf{M}_{a,b}^{\epsilon}$	$\mathbf{C}_{c,b}^{-\epsilon}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,b}^{\epsilon}$
	$M_{a,c}$	$C_{c,b}M_{c,[a,b]}C_{c,b}^{-1}C_{a,c}^{-1}C_{a,c}C_{a,b}[C_{c,a}^{-1}, C_{c,b}^{-1}]M_{c,[a,b]}C_{c,b}^{-1}$ $C_{c,b}M_{c,[a,b]}C_{c,a}^{-1}C_{a,c}M_{a,[b,c]}C_{a,b}^{-1}C_{a,c}^{-1}C_{c,a}$ $C_{a,c}C_{c,b}M_{c,[a,b]}C_{c,a}^{-1}C_{a,c}M_{a,[b,c]}C_{a,b}^{-1}C_{a,c}^{-1}C_{c,a}$ $C_{a,c}C_{c,b}M_{c,[a,b]}C_{c,a}^{-1}C_{a,c}C_{a,b}M_{a,[b,c]}C_{c,a}^{-1}C_{c,a}^{-1}C_{a,c}$ $C_{a,b}M_{a,[b,c]}C_{a,c}^{-1}C_{a,c}^{-1}C_{a,b}[C_{c,a}^{-1}, C_{c,b}^{-1}]M_{c,[a,b]}C_{c,b}^{-1}C_{a,c}$ $C_{a,b}M_{a,[b,c]}C_{c,b}^{-1}C_{a,c}^{-1}C_{a,b}[C_{c,a}^{-1}, C_{c,b}^{-1}]M_{c,[a,b]}C_{c,b}^{-1}C_{a,c}$
	$\mathbf{M}_{a,c}^{-1}$	$\mathbf{C}_{c,b}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,a}\mathbf{C}_{a,c}\mathbf{M}_{a,[b,c]}\mathbf{C}_{a,b}\mathbf{C}_{a,c}\mathbf{C}_{c,a}$
	$M_{a^{-1},c}$	$C_{a,c}C_{c,b}M_{c,[a,b]}C_{c,a}C_{a,c}M_{a,[b,c]}C_{a,b}C_{a,c}C_{c,a}C_{a,c}$
	$\mathrm{M}_{a^{-1},c}^{-1}$	$C_{a,b}M_{a,[b,c]}C_{a,b}C_{a,c}C_{a,b}[C_{c,a},C_{c,b}]M_{c,[a,b]}C_{c,b}C_{a,c}$
	$\mathrm{M}_{b,a}^{\epsilon}$	$C_{c,a}^{-\epsilon}M_{c,[a,b]}C_{c,a}^{\epsilon}$
	$M_{b,c}$ M^{-1}	$C_{c,a}M_{c,[a,b]}[C_{c,a}^{-1}, C_{c,b}^{-1}]C_{b,a}^{-1}C_{b,c}C_{b,a}M_{b,[c,a]}C_{b,a}^{-1}C_{b,c}^{-1}$
	$\mathrm{M}_{b,c}^{-1}$	$C_{c,b}^{-1}C_{b,c}C_{b,a}M_{b,[c,a]}C_{b,c}^{-1}C_{c,b}M_{c,[a,b]}C_{c,a}^{-1}$
	$\begin{array}{c} \mathbf{M}_{b^{-1},c} \\ \mathbf{M}_{b^{-1},c}^{-1} \end{array}$	$\begin{array}{c} \mathbf{C}_{b,c}\mathbf{C}_{c,b}^{-1}\mathbf{C}_{b,c}\mathbf{C}_{b,a}\mathbf{M}_{b,[c,a]}\mathbf{C}_{b,c}^{-1}\mathbf{C}_{c,b}\mathbf{M}_{c,[a,b]}\mathbf{C}_{c,a}^{-1}\mathbf{C}_{b,c}^{-1}\\ \mathbf{C}_{b,c}^{-1}\mathbf{C}_{c,a}\mathbf{M}_{c,[a,b]}[\mathbf{C}_{c,a}^{-1},\mathbf{C}_{c,b}^{-1}]\mathbf{C}_{b,a}^{-1}\mathbf{C}_{b,c}\mathbf{C}_{b,a}\mathbf{M}_{b,[c,a]}\mathbf{C}_{b,a}^{-1}\end{array}$
	$\mathbf{M}_{c,a}^{b^{-1},c}$	$C_{b,c} \cup_{c,a} \operatorname{WI}_{c,[a,b]} [\cup_{c,a}, \cup_{c,b}] \cup_{b,a} \cup_{b,c} \cup_{b,a} \operatorname{WI}_{b,[c,a]} \cup_{b,a} O_{b,c} \cup$
	$\mathbf{M}_{c,a}^{\epsilon}$ $\mathbf{M}_{c,b}^{\epsilon}$	$\begin{array}{c} \mathbf{C}_{c,a}^{\epsilon} \mathbf{M}_{c,[a,b]} \mathbf{C}_{c,a}^{-\epsilon} \\ \mathbf{C}_{c,b}^{\epsilon} \mathbf{M}_{c,[a,b]} \mathbf{C}_{c,b}^{-\epsilon} \end{array}$
	,	
$\mathrm{C}_{c,a}$	$M_{x,c}$	$\mathbf{C}_{c,a}\mathbf{C}_{x,c}\mathbf{C}_{x,a}\mathbf{M}_{x,[c,a]}\mathbf{C}_{x,a}^{-1}\mathbf{C}_{x,c}^{-1}$
	$\mathbf{M}_{x,c}^{-1}$	$\mathbf{C}_{c,a}\mathbf{C}_{x,a}\mathbf{M}_{x,[a,c]}\mathbf{C}_{x,a}^{-1}$
	$M_{x^{-1},c}$	$C_{x,c}C_{c,a}C_{x,a}M_{x,[a,c]}C_{x,a}^{-1}C_{x,c}^{-1}$
	$\mathbf{M}_{x^{-1},c}^{-1}$	$\mathbf{C}_{x,c}^{-1}\mathbf{C}_{c,a}\mathbf{C}_{x,c}\mathbf{C}_{x,a}\mathbf{M}_{x,[c,a]}\mathbf{C}_{x,a}^{-1}$
	$\mathrm{M}_{a^\epsilon,x}^\delta$	$(\mathbf{C}_{c,a}^{\epsilon}\mathbf{C}_{c,x}^{\delta})^{\epsilon}$
	$\mathbf{M}_{c,x}$	$\mathbf{C}_{c,a}\mathbf{C}_{c,x}\mathbf{M}_{c,[a,x]}\mathbf{C}_{c,x}^{-1}$
	$\mathrm{M}_{c,x}^{-1}$	$\mathbf{C}_{c,a}\mathbf{M}_{c,[x,a]}$
	$\mathbf{M}_{c^{-1},x}$	$\mathbf{C}_{c,x}\mathbf{C}_{c,a}\mathbf{M}_{c,[x,a]}\mathbf{C}_{c,x}^{-1}$
	$\mathbf{M}_{c^{-1},x}^{-1}$	$\mathbf{C}_{c,x}^{-1}\mathbf{C}_{c,a}\mathbf{C}_{c,x}\mathbf{M}_{c,[a,x]}$
	$\mathrm{M}_{a^{\epsilon},c}^{\delta}$	$(\mathrm{C}^{\delta}_{a,c}\mathrm{C}^{\epsilon}_{c,a})^{\epsilon}$

Table 1: Conjugating T by $S \cup S^{-1}$. Here a, b, c and x are distinct elements of the generating set for F_n and $\epsilon, \delta = \pm 1$. If a particular choice of s does not appear in the table, then $sts^{-1} = s^{-1}ts = t$.

Our goal now is to adjust f so that $\operatorname{Rank}(\phi(x)) < R$ for all $x \in B^{(0)}$. Let $v \in \mathbb{Z}^n$ be a vector corresponding to a vertex of $\phi(\Delta')$. Observe that the e_n -coordinate of v is $\pm R$. We define a map $f': B \to \operatorname{link}_{\mathcal{B}_n^k}(\mathbb{Z})(\phi(\Delta'))$ in the following way. Consider $x \in B^{(0)}$, and let $v_x = f(x) \in \mathbb{Z}^n$. By the division algorithm, there exists some $q_x \in \mathbb{Z}$ such that $\operatorname{Rank}(v_x + q_x v) < R$. Moreover, by the

maximality of m we can choose q_x such that $q_x = 0$ if $x \in (\partial B)^{(0)}$. Define $f'(x) = v_x + q_x v$. It is clear that the map f' extends to a map $f': B \to \lim_{B_n^k(\mathbb{Z})} (\phi(\Delta'))$. Additionally, $f'|_{\partial B} = f|_{\partial B} = \phi|_{\lim_{K \to S} (\Delta')}$. We conclude that we can homotope ϕ so as to replace $\phi|_{\operatorname{star}_S(\Delta')}$ with f'. Since $\operatorname{Rank}(f'(x)) < R$ for all $x \in B$, we have removed Δ' from S without introducing any vertices whose images have rank greater than or equal to R. Continuing in this manner allows us to simplify ϕ until R = 0, and we are done.

A Appendix : Derivation of Theorem C from Theorem D

Fixing a basis $\{v_1, \ldots, v_n\}$ for F_n , let T be the purported generating set for IA_n from Theorem C and let $\Gamma < \operatorname{Aut}(F_n)$ be the subgroup generated by T. Fix some $f \in \operatorname{Aut}(F_n)$. By Theorem D, to show that $\Gamma = \operatorname{Aut}(F_n)$, it is enough to show that $fC_{v_1,v_2}f^{-1} \in \Gamma$. Recall that $\operatorname{SAut}(F_n)$ consists of all elements of $\operatorname{Aut}(F_n)$ whose images in $\operatorname{Aut}(\mathbb{Z}^n)$ have determinant 1. Letting $I_1 \in \operatorname{Aut}(F_n)$ be the automorphism that takes v_1 to v_1^{-1} and fixes v_i for i > 1, we can write $f = g \cdot I_1^k$ for some $g \in \operatorname{SAut}(F_n)$ and some $k \in \mathbb{Z}$. We then have

$$f\mathbf{C}_{v_1,v_2}f^{-1} = g \cdot I_1^k \mathbf{C}_{v_1,v_2}I_1^{-k} \cdot g^{-1} = g\mathbf{C}_{v_1,v_2}g^{-1}.$$

Since $C_{v_1,v_2} \in \Gamma$, to prove that $gC_{v_1,v_2}g^{-1} \in \Gamma$ it is enough to prove that Γ is a normal subgroup of $SAut(F_n)$. Define

$$S = \{ \mathbf{M}_{v_i, v_j} \mid 1 \le i, j \le n, i \ne j \}.$$

The group $\operatorname{SAut}(F_n)$ is generated by S (see Theorem 4.1), so it is enough to show that for $s \in S \cup S^{-1}$ and $t \in T$, the automorphism sts^{-1} can be written as a word in $T \cup T^{-1}$. The various cases of this are contained in Table 1.

References

- M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61 (1965), 639–646.
- [2] M. Bestvina, K.-U. Bux and D. Margalit, Dimension of the Torelli group for $Out(F_n)$, Invent. Math. **170** (2007), no. 1, 1–32.
- [3] M. Bestvina and M. Feighn, A hyperbolic $Out(F_n)$ -complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58.
- [4] M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Arxiv preprint, http://arxiv. org/abs/1107.3308, 2011.
- [5] J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213–238.
- [6] J. S. Birman, On Siegel's modular group, Math. Ann. 191 (1971), 59-68.
- [7] F. Cohen and J. Pakianathan, On automorphism groups of free groups and their nilpotent quotients, in preparation.
- [8] M. Day and A. Putman, A Birman exact sequence for $Aut(F_n)$, preprint 2010, to appear in Advances in Mathematics.
- [9] B. Farb, Automorphisms of F_n which act trivially on homology, in preparation.

- [10] S. M. Gersten, A presentation for the special automorphism group of a free group, J. Pure Appl. Algebra 33 (1984), no. 3, 269–279.
- [11] M. Handel and L. Mosher, The free splitting complex of a free group I: Hyperbolicity, Arxiv preprint, http://arxiv.org/abs/1111.1994, 2011.
- [12] J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math.
 (2) 121 (1985), no. 2, 215–249.
- [13] A. Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62.
- [14] A. Hatcher and K. Vogtmann, The complex of free factors of a free group, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 196, 459–468.
- [15] A. Hatcher and K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (1998), no. 3, 633–655.
- [16] C. A. Jensen and N. Wahl, Automorphisms of free groups with boundaries, Algebr. Geom. Topol. 4 (2004), 543–569.
- [17] D. Johnson, The structure of the Torelli group. I. A finite set of generators for \mathcal{I} , Ann. of Math. (2) **118** (1983), no. 3, 423–442.
- [18] I. Kapovich and M. Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009), no. 3, 1805–1833.
- [19] N. Kawazumi, Cohomological aspects of Magnus expansions, preprint 2005.
- [20] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer, Berlin, 1977.
- [21] H. Maazen, Homology Stability for the General Linear Group, thesis, University of Utrecht, 1979.
- [22] W. Magnus, Über *n*-dimensionale Gittertransformationen, Acta Math. **64** (1935), no. 1, 353–367.
- [23] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149.
- [24] J. McCool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975), 205–213.
- [25] J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169–209.
- [26] J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347–350.
- [27] A. Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007), 829-865.
- [28] A. Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math.
 (2) 54 (2008), no. 3-4, 287–301.
- [29] A. Putman, An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009), no. 2, 591–643.
- [30] A. Putman, The second rational homology group of the moduli space of curves with level structures, preprint 2009.
- [31] A. Putman, The Johnson homomorphism and its kernel, preprint 2009.
- [32] A. Putman, The abelianization of the Torelli group, in preparation.
- [33] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Reprint, Springer, Berlin, 1982.

[34] L. Sabalka and D. Savchuk, On the geometry of a proposed curve complex analogue for Out(F_n), Arxiv preprint, http://arxiv.org/abs/1007.1998, 2010.

[35] E. H. Spanier, Algebraic topology, Corrected reprint, Springer, New York, 1981.

[36] E. C. Zeeman, Relative simplicial approximation, Proc. Cambridge Philos. Soc. 60 (1964), 39-43.

Matthew Day Department of Mathematics 253-37 California Institute of Technology Pasadena, CA 91125 E-mail: mattday@caltech.edu Andrew Putman Department of Mathematics Rice University, MS 136 6100 Main St. Houston, TX 77005 E-mail: andyp@rice.edu