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Abstract

Proving a conjecture of Dennis Johnson, we show that the Torelli sub-
group Ig of the genus g mapping class group has a finite generating set
whose size grows cubically with respect to g. Our main tool is a new space
called the handle graph on which Ig acts cocompactly.

1 Introduction

Let Σg,n be a compact connected oriented genus g surface with n boundary
components. The mapping class group of Σg,n, denoted Modg,n, is the group of
orientation-preserving homeomorphisms of Σg,n that fix the boundary pointwise
modulo isotopies that fix the boundary pointwise. We will often omit the n if it
vanishes. For n ≤ 1, the Torelli group, denoted Ig,n, is the kernel of the action of
Modg,n on H1(Σg,n;Z). The Torelli group has been the object of intensive study
ever since the seminal work of Dennis Johnson in the early ’80’s. See [10] for a
survey of Johnson’s work.

Finite generation of Torelli. One of Johnson’s most celebrated theorems
says that Ig,n is finitely generated for g ≥ 3 and n ≤ 1 (see [11]). This is a
surprising result – though Modg,n is finitely presentable, Ig,n is an infinite-index
normal subgroup of Modg,n, so there is no reason to hope that Ig,n has any
finiteness properties. Moreover, McCullough and Miller [13] proved that I2,n is
not finitely generated for n ≤ 1, and later Mess [14] proved that I2 is an infinite
rank free group.

Johnson’s generating set. Johnson’s generating set for Ig,n when g ≥ 3 and
n ≤ 1 is enormous. Indeed, for Ig (resp. Ig,1), it contains 9 · 22g−3 − 4g2 +
2g− 6 (resp. 9 · 22g−3 − 4g2 + 4g− 5) elements. In [12], Johnson proved that the
abelianization of Ig (resp. Ig,1) has rank 1

3(4g
3+5g+3) (resp. 1

3(4g
3−g)). These

give large lower bounds on the size of generating sets for Ig,n; however, there is
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Figure 1: a. The subsurfaces R′

i
∼= Σ1,1. To avoid cluttering the picture, the portion of

the boundaries of the R′
i which lie on the back side the figure are not drawn. b. A

subsurface isotopic to R136.

a huge gap between this cubic lower bound and Johnson’s exponentially growing
generating set. At the end of [11] and in [10, p. 168], Johnson conjectures that
there should be a generating set for Ig,n whose size grows cubically with respect
to the genus. Later, in [4, Problem 5.7] Farb asked whether there at least exists
a generating set whose size grows polynomially.

Main theorem. In this paper, we prove Johnson’s conjecture. Our main the-
orem is as follows.

Theorem A. For g ≥ 3, the group Ig has a generating set of size at most 57
(
g
3

)
and the group Ig,1 has a generating set of size at most 57

(
g
3

)
+ 2g + 1.

The generating set we construct was conjectured to generate Ig,n by Brendle and
Farb [2]. To describe it, we must introduce some notation. As in Figure 1.a,
let R′

1, . . . , R
′
g be g subsurfaces of Σg each homeomorphic to Σ1,1 such that the

following hold. Interpret all indices modulo g.

• If 1 ≤ i < j ≤ g satisfy i /∈ {j − 1, j + 1}, then R′
i ∩R′

j = ∅.

• For all 1 ≤ i ≤ g, the intersection R′
i∩R′

i+1 is homeomorphic to an interval.

For 1 ≤ i < j < k ≤ g, define a subsurface Rijk of Σg by Rijk = Σg \
∪

l ̸=i,j,k R
′
l.

Thus Rijk is a genus 3 surface with at most 3 boundary components such that
R′

i, R
′
j , R

′
k ⊂ Ri,j,k (see Figure 1.b).

If S is a subsurface of Σg, define Mod(Σg, S) to be the subgroup of Modg
consisting of mapping classes that can be realized by homeomorphisms supported
on S and I(Σg, S) to equal Ig ∩ Mod(Σg, S). The key result for the proof of
Theorem A is the following theorem.

Theorem B. For g ≥ 3, the group Ig is generated by
∪

1≤i<j<k≤g I(Σg, Rijk).
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Using Johnson’s work, it is easy to see that I(Σg, Rijk) is finitely generated by
a generating set with at most 57 generators (see Lemma 2.2). Also, standard
techniques (see Lemma 2.1) show that if Ig has a generating set with k elements,
then Ig,1 has a generating set with k + 2g + 1 elements. Since there are

(
g
3

)
subsurfaces Rijk, Theorem A follows from Theorem B.

Remark. To illustrate the relative sizes of our generating sets, Johnson’s gener-
ating set for I20 contains more than one trillion elements while our generating
set for I20 has 64980 elements.

New proof of Johnson’s theorem. Our deduction of Theorem A from Theo-
rem B depends on Johnson’s theorem that I3 is finitely generated. However, Hain
[6] has recently announced a direct conceptual proof that I3 is finitely generated.
Hain’s proof uses special properties of the moduli space of genus 3 Riemann sur-
faces and cannot be easily generalized to g > 3. Combining this with our paper,
we obtain a new proof that Ig,n is finitely generated for g ≥ 3 and n ≤ 1.

Our new proof is more conceptual than Johnson’s original one. To illustrate
this, we will sketch Johnson’s proof. He starts by writing down an enormous
finite subset S ⊂ Ig,n which is known (from work of Powell [15]) to normally
generate Ig,n as a subgroup of Modg,n. Letting T be a standard generating set
for Modg,n, Johnson then proves via a laborious computation that for t ∈ T and
s ∈ S, the element tst−1 ∈ Ig,n can be written as a word in S. This implies that
the subgroup Γ of Ig,n generated by S is a normal subgroup of Modg,n, and thus
that Γ = Ig,n.
Remark. Our proof of Theorem B appeals to a theorem of [17] whose proof
depends on Johnson’s theorem. However, Hatcher and Margalit [7] have recently
given a new proof of this result that is independent of Johnson’s work.

Nature of generators. Some basic elements of Ig,n are as follows (see, e.g.,
[16]). If x is a simple closed curve on Σg,n, then denote by Tx ∈ Modg,n the Dehn
twist about x. If x is a separating simple closed curve, then Tx ∈ Ig,n; these are
called separating twists. If x and y are disjoint homologous nonseparating simple
closed curves, then TxT

−1
y ∈ Ig,n; these are called bounding pair maps. Following

work of Birman [1], Powell [15] proved that Ig,n is generated by bounding pair
maps and separating twists for g ≥ 1 and n ≤ 1 (see [16] and [7] for alternate
proofs). Johnson’s finite generating set for Ig,n for g ≥ 3 and n ≤ 1 consists
entirely of bounding pair maps. It follows easily from our proofs of Lemma 2.1
and 2.2 that our generating set consists of bounding pair maps and separating
twists; see the remark after Lemma 2.2.

The handle graph. Our proof of Theorem B is topological. To prove that a
group G is finitely generated, it is enough to find a connected simplicial complex
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upon which G acts cocompactly with finitely generated stabilizers. We use a
variant on the curve complex. If γ is an oriented simple closed curve on Σg,
then denote by [γ] ∈ H1(Σg;Z) its homology class. Also, if γ1 and γ2 are isotopy
classes of simple closed curves on Σg, then denote by ig(γ1, γ2) their geometric
intersection number, i.e. the minimal possible number of intersections between
two curves in the isotopy classes of γ1 and γ2. Finally, denote by ia(·, ·) the
algebraic intersection pairing on H1(Σg;Z).

Definition. Let a, b ∈ H1(Σg;Z) satisfy ia(a, b) = 1. The handle graph asso-
ciated to a and b, denoted Ha,b, is the graph whose vertices are isotopy classes
of oriented simple closed curves on Σg that are homologous to either a or b and
where two vertices γ1 and γ2 are joined by an edge exactly when ig(γ1, γ2) = 1.

We will show that Ha,b/Ig consists of a single edge (see Lemma 5.2) and that
Ha,b is connected for g ≥ 3 (see Lemma 3.1).

A complication. It would appear that we have all the ingredients in place to
use the space Ha,b to prove that Ig is finitely generated. However, there is one
remaining complication. Namely, we do not know the answer to the following
question.

Question 1.1. For some g ≥ 4, let γ be the isotopy class of a nonseparating
simple closed curve on Σg. Is the stabilizer subgroup (Ig)γ of γ finitely generated?

In other words, we do not know if the vertex stabilizer subgroups of the action
of Ig on Ha,b are finitely generated. Nonetheless, in §4 we will prove a weaker
statement that suffices to prove Theorem B. The proof of Theorem B is in §5.

Smaller generating sets. A positive answer to Question 1.1 would likely lead
to a smaller generating set for Ig, though of course this depends on the nature
of the finite generating sets for the stabilizer subgroups. Let us describe one way
this could work. For g ≥ 3, let σg be the smallest cardinality of a generating set
for Ig. Consider g ≥ 4, and fix an edge {α, β} of Ha,b. The proof of Theorem B
shows that Ig is generated by (Ig)α ∪ (Ig)β. Let S be a subsurface of Σg such
that S ∼= Σg−1,1 and α ∪ β ⊂ Σg \ S. We have I(Σg, S) ∼= Ig−1,1 (see §2) and
I(Σg, S) ⊂ (Ig)α and I(Σg, S) ⊂ (Ig)β. Assume that there exists a finite set
Vα (resp. Vβ) such that (Ig)α (resp. (Ig)β) is generated by I(Σg, S) ∪ Vα (resp.
I(Σg, S) ∪ Vβ). The group Ig is then generated by I(Σg, S) ∪ Vα ∪ Vβ. Lemma
2.1 says that I(Σg, S) ∼= Ig−1,1 can be generated by σg−1 + 2g + 1 elements.
Moreover, it seems likely that there exists some relatively small K such that
|Vα|, |Vβ| ≤ Kg2. This would imply that

σg ≤ σg−1 + 2g + 1 + 2Kg2.
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Iterating this, we would get that

σg ≤ σ3 +

g∑
i=4

(2i+ 1 + 2Ki2)

for g ≥ 4. This bound is cubic in g (as it needs to be), but as long as K is not
too large it is much smaller than 57

(
g
3

)
.

Finite presentability. Perhaps the most important open question about the
combinatorial group theory of Ig is whether or not it is finitely presentable for
g ≥ 3. One way of proving that a group G is finitely presentable is to construct
a simply-connected simplicial complex X upon which G acts cocompactly with
finitely presentable stabilizer subgroups (see, e.g., [3]). For example, Hatcher
and Thurston use this technique in [8] to prove that the mapping class group is
finitely presentable.

The handle graph Ha,b appears to be the first example of a useful space upon
which Ig acts cocompactly (of course, there are trivial non-useful examples of such
spaces; for example, the Cayley graph of Ig or a 1-point space). Unfortunately,
while Ha,b is connected for g ≥ 3, it is not simply connected. Indeed, it does
not even have any 2-cells (and is not a tree). However, one could probably
attach 2-cells to Ha,b to obtain a simply connected complex upon which Ig acts
cocompactly. This would not be enough, however – one would also have to prove
that the simplex stabilizer subgroups were finitely presentable. In other words,
this complex would provide the inductive step in a proof that Ig was finitely
presentable, but one would still need a base case.

A complex that does not work. We close this introduction by discussing an
approach to Theorem B that does not work. One might think of trying to prove
Theorem B using the following complex. Let a ∈ H1(Σg;Z) be a primitive vector.
Define Ca to be the graph whose vertices are isotopy classes of oriented simple
closed curves γ on Σg such that [γ] = a and where two vertices γ and γ′ are joined
by an edge if ig(γ, γ

′) = 0. It is known ([17, Theorem 1.9]; see [7] for an alternate
proof) that Ca is connected for g ≥ 3. Moreover, Ig acts transitively on the
vertices of Ca. However, it does not act cocompactly; indeed, there are infinitely
many edge orbits. To see this, consider edges e1 = {γ1, γ′1} and e2 = {γ2, γ′2}
of Ca. Assume that there exists some f ∈ Ig such that f(e1) = e2. Since γ1 is
homologous to γ′1, the multicurve γ1 ∪ γ′1 divides Σg into two subsurfaces S1 and
S′
1. Similarly, γ2 ∪ γ′2 divides Σg into two subsurfaces S2 and S′

2. Relabeling if
necessary, we have f(S1) isotopic to S2 and f(S′

1) isotopic to S
′
2. Since f ∈ Ig, the

images of H1(S1;Z) and H1(S2;Z) in H1(Σg;Z) must be the same, and similarly
for H1(S

′
1;Z) and H1(S

′
2;Z). It is easy to see that infinitely many such images
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occur for different edges of Ca, so there must be infinitely many edges orbits. We
remark that Johnson proved in [9, Corollary to Lemma 9 on p. 250] that the
images of H1(S1;Z) and H1(S

′
1;Z) in H1(Σg;Z) are a complete invariant for the

edge orbits.

Acknowledgments. I wish to thank Tara Brendle, Benson Farb, and Dan
Margalit for their help. I also wish to thank an anonymous referee for a very
helpful referee report.

2 The Torelli group on subsurfaces

We will need to understand how the Torelli group restricts to subsurfaces. For a
general discussion of this, see [16]. In this section, we will extract from [16] results
on two kinds of subsurfaces. In §2.1, we will show how to analyze subsurfaces
like the subsurfaces Rijk from §1. In §2.2, we will show how to analyze stabilizers
of nonseparating simple closed curves (which are supported on the subsurface
obtained by taking the complement of a regular neighborhood of the curve).

2.1 Analyzing the subsurfaces Rijk

We begin by defining groups Ig,n for n ≥ 2. There is a map Modg,n → Modg
induced by gluing discs to the boundary components of Σg,n and extending home-
omorphisms by the identity. Define Ig,n to be the kernel of the resulting action
of Modg,n on H1(Σg;Z). For the case n = 1, the map H1(Σg,1;Z) → H1(Σg;Z) is
an isomorphism, so this agrees with our previous definition of Ig,1.
Remark. In [16], the different definitions of the Torelli group on a surface with
boundary are parametrized by partitions of the boundary components. The
above definition of Ig,n corresponds to the discrete partition {{β1}, . . . , {βn}} of
the set {β1, . . . , βn} of boundary components of Σg,n.

In [16, Theorem 1.2], a version of the Birman exact sequence is proven for
the Torelli group. For Ig,n with g ≥ 2, it takes the form

1 −→ π1(UΣg,n) −→ Ig,n+1 −→ Ig,n −→ 1. (1)

Here UΣg,n is the unit tangent bundle of Σg,n. The subgroup π1(UΣg,n) of Ig,n+1

is often called the “disc-pushing subgroup” – the mapping class associated to
γ ∈ π1(UΣg,n) “pushes” a fixed boundary component around γ while allowing it
to rotate. The following is an immediate consequence of (1) and the fact that
π1(UΣg) can be generated by 2g + 1 elements.

Lemma 2.1. Ig,1 can be generated by k+2g+1 elements if Ig can be generated
by k elements.
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Now assume that S ∼= Σh,n is an embedded subsurface of Σg and that all the
boundary components of S are non-nullhomotopic separating curves in Σg. For
example, S could be one of the surfaces Rijk from §1. Letting Mod(S) be the
mapping class group of S, the induced map Mod(S) → Modg is an injection. This
gives a natural identification of Mod(S) with Mod(Σg, S). The group I(Σg, S)
is thus naturally a subgroup of Mod(S) ∼= Modh,n, and in [16, Theorem 1.1] it is
proven that I(Σg, S) = Ih,n. Johnson [11] proved that I3 can be generated by
35 elements. Applying (1) repeatedly, we see that I3,1 can be generated by 42
elements, I3,2 by 49 elements, and I3,3 by 57 elements. Since Rijk

∼= Σ3,k with
k ≤ 3, we obtain the following.

Lemma 2.2. For all 1 ≤ i < j < k ≤ g, the group I(Σg, Rijk) can be generated
by 57 elements.

Remark. It is well-known (see, e.g., [16, §2.1]) that the mapping classes corre-
sponding to the generators of π1(UΣg,n) used to prove Lemmas 2.1 and 2.2 can be
chosen to be bounding pair maps and separating twists. Additionally, Johnson’s
minimal-size generating set for I3 consists entirely of bounding pair maps, so the
generating set for I(Σg, Rijk) in Lemma 2.2 can be taken to consist of bounding
pair maps and separating twists.

2.2 Stabilizers of nonseparating simple closed curves

Let γ be a nonseparating simple closed curve on Σg. Define Σg,γ to be the result
of cutting Σg along γ, so Σg,γ

∼= Σg−1,2. Letting Modg,γ be the mapping class
group of Σg,γ , the natural map Σg,γ → Σg induces a map i : Modg,γ → Modg.
Define Ig,γ = i−1(Ig). The map i restricts to a surjection Ig,γ → (Ig)γ , where
(Ig)γ is the stabilizer subgroup of γ.

Remark. In the notation of [16], the group Ig,γ corresponds to the Torelli group
of Σg−1,2 with respect to the “indiscrete partition” {{β, β′}} of the boundary
components β and β′ of Σg,γ . Also, the kernel of the map Ig,γ → (Ig)γ is
isomorphic to Z and is generated by TβT

−1
β′ , where Tβ and Tβ′ are the Dehn

twists about β and β′, respectively.

In [16, Theorem 1.2], it is proven that for g ≥ 2 there is a short exact sequence

1 −→ Kg,γ −→ Ig,γ −→ Ig−1,1 −→ 1. (2)

Here Kg,γ
∼= [π1(Σg−1,1), π1(Σg−1,1)]. This exact sequence splits via the inclusion

Ig−1,1 ↪→ Ig,γ induced by the inclusion Σg−1,1 ↪→ Σg,γ indicated in Figure 2.a.
In other words, the following holds.

Lemma 2.3. Ig,γ = Kg,γ ⋉Ig−1,1 for g ≥ 3 and γ a simple closed nonseparating
curve on Σg.
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a b c
Figure 2: a. The surface Σg,γ and and the subsurface Σg−1,1 of Σg,γ such that the
induced map Ig−1,1 → Ig,γ splits the exact sequence (2). b. The basepoint for
π1(Σg−1,1) is obtained from Σg,γ by collapsing the boundary component β to a point.
c. The surface in b deformation retracts to Σg−1,1 such that the basepoint ends up on
the boundary component.

The group Ig−1,1 acts on Kg,γ < π1(Σg−1,1) as follows. As is clear from [16,
Theorem 1.2], the basepoint for π1(Σg−1,1) is as indicated in Figure 2.b. As shown
in Figure 2.c, the surface Σg−1,1 deformation retracts onto the surface Σg−1,1 on
which Ig−1,1 is supported. After this deformation retract, the basepoint ends
up on ∂Σg−1,1. Summing up, Ig−1,1 acts on Kg,γ < π1(Σg−1,1) via the action of
Modg−1,1 on π1(Σg−1,1), where the basepoint for π1(Σg−1,1) is on ∂Σg−1,1.

3 The handle graph is connected

In this section, we prove the following.

Lemma 3.1. Fix g ≥ 3. Let a, b ∈ H1(Σg;Z) satisfy ia(a, b) = 1. Then Ha,b is
connected.

We will need two lemmas. In the first, if ϵ is an oriented arc in a surface, then
ϵ−1 denotes the arc obtained by reversing the orientation of ϵ.

Lemma 3.2. Let the boundary components of Σg,2 be δ0 and δ1. Choose points
vi ∈ δi for i = 0, 1 and let ϵ be an oriented properly embedded arc in Σg,2 whose
initial point is v0 and whose terminal point is v1. Then for any h ∈ H1(Σg,2;Z),
there exists an oriented properly embedded arc ϵ′ in Σg,2 whose initial point is v0
and whose terminal point is v1 such that the homology class of the loop ϵ′ · ϵ−1 is
h.

Proof. Gluing (δ0, v0) to (δ1, v1), we obtain a surface S ∼= Σg+1. Let α and ∗ be
the images of δ0 and v0 in S, respectively. The image of ϵ in S is an oriented simple
closed curve β with ig(α, β) = 1. There is a natural isomorphism H1(Σg,2;Z) ∼=
[α]⊥, where the orthogonal complement is taken with respect to ia(·, ·). Under
this identification, we can apply [16, Lemma A.3] to find an oriented simple closed
curve β′ on S such that [β′] = [β] + h and such that α ∩ β′ = {∗}. Cutting S
open along α, the curve β′ becomes the desired arc ϵ′.
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Lemma 3.3. Let a, b ∈ H1(Σg;Z) satisfy ia(a, b) = 1. Let α1 and α2 be disjoint
oriented simple closed curves on Σg such that [αi] = a for i = 1, 2. There
then exists some oriented simple closed curve β on Σg such that [β] = b and
ig(αi, β) = 1 for i = 1, 2.

Proof. Let β′ be any simple closed curve on Σg such that i(αi, β
′) = 1 for i = 1, 2.

Orient β′ so that its intersections with α1 and α2 are positive. Let X1 and X2 be
the two subsurfaces of Σg that result from cutting Σg along α1∪α2. For i = 1, 2,
the surfaceXi has 2 boundary components and the intersection of β′ withXi is an
oriented properly embedded arc ϵi running between these boundary components.
Also, the induced map H1(Xi;Z) → H1(Σg;Z) is an injection, and we will identify
H1(Xi;Z) with its image in H1(Σg;Z). The orthogonal complement to a with
respect to the algebraic intersection pairing is spanned by H1(X1;Z)∪H1(X2;Z).
Since ia(a, b) = ia(a, [β

′]), the homology class b − [β′] is orthogonal to a. There
thus exist hi ∈ H1(Xi;Z) for i = 1, 2 such that b = [β′] + h1 + h2. Lemma 3.2
says that for i = 1, 2 there exists an oriented properly embedded arc ϵ′i in Xi

with the same endpoints as ϵi such that the homology class of the loop ϵ′i · ϵ
−1
i

equals hi. Letting β be the loop ϵ′1 · ϵ′2, it follows that [β] = [β′] + h1 + h2 = b, as
desired.

Proof of Lemma 3.1. Let δ and δ′ be vertices of Ha,b. We will construct a path
in Ha,b from δ to δ′. Without loss of generality, [δ] = [δ′] = a. By [17, Theorem
1.9] (see [7] for an alternate proof), we can find a sequence

δ = α1, α2, . . . , αn = δ′

of isotopy classes of oriented simple closed curves on Σg such that [αi] = a for
1 ≤ i ≤ n and ig(αi, αi+1) = 0 for 1 ≤ i < n (this is where we use the condition
g ≥ 3). Lemma 3.3 implies that there exist isotopy classes β1, . . . , βn−1 of oriented
simple closed curves on Σg such that [βi] = b and ig(αi, βi) = ig(αi+1, βi) = 1
for 1 ≤ i < n. Since βi is adjacent to both αi and αi+1 in Ha,b, the desired path
from δ to δ′ is thus

δ = α1, β1, α2, β2, . . . , βn−1, αn = δ′.

4 Generating the stabilizer of a nonseparating simple
closed curve

Let the subsurfaces R′
i of Σg be as in the introduction. Define Si = Σg \R′

i. The
goal of this section is to prove the following lemma.

Lemma 4.1. Assume that g ≥ 4. Let γ be the isotopy class of a simple closed
nonseparating curve on Σg that is contained in R′

1. Then the subgroup (Ig)γ of
Ig stabilizing γ is contained in the subgroup of Ig generated by ∪g

i=1I(Σg, Si).
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Before proving this, we need a technical lemma. Set π = π1(Σg,1, ∗), where
∗ ∈ ∂Σg,1. Let T

′
1, . . . , T

′
g be disjoint subsurfaces of Σg,1 such that T ′

i
∼= Σ1,1 and

T ′
i ∩ ∂Σg,1 = ∅ for 1 ≤ i ≤ g (see Figure 3.a). Define Ti = Σg,1 \ T ′

i . We have
Ti

∼= Σg−1,2 and ∗ ∈ Ti for 1 ≤ i ≤ g. The maps π1(Ti, ∗) → π1(Σg,1, ∗) and
H1(T

′
i ;Z) → H1(Σg,1;Z) are injective; we will identify π1(Ti, ∗) and H1(T

′
i ;Z)

with their images in π1(Σg,1, ∗) and H1(Σg;Z), respectively. Define Ki = [π, π]∩
π1(Ti, ∗). We then have the following.

Lemma 4.2. For g ≥ 3, the group [π, π] is generated by the Ig,1-orbits of the set
∪g
i=1Ki.

The proof of this will have two ingredients. The first is the following theorem
of Tomaszewski. As notation, if G is a group and a, b ∈ G, then [a, b] := a−1b−1ab
and ab := b−1ab.

Theorem 4.3 (Tomaszewski, [19]). Let Fn be the free group on {x1, . . . , xn}.
Then the set

{[xi, xj ]x
ki
i x

ki+1
i+1 ···xkn

n | 1 ≤ i < j ≤ n and km ∈ Z for all i ≤ m ≤ n}

is a free basis for [Fn, Fn].

The second is the following lemma about the action of Ig,1 on π. Choose a stan-
dard basis {α1, β1, . . . , αg, βg} for π (as in Figure 3.b) such that αi and βi are
freely homotopic into T ′

i for 1 ≤ i ≤ g. Our proof of Lemma 4.2 would be much
simpler if the image of Modg,1 in Aut(π) contained the inner automorphisms –
since inner automorphisms act trivially on homology, this would imply that the
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Ig-orbits of {[x, y] | x, y ∈ {α1, β1, . . . , αg, βg}} generate [π, π]. However, the im-
age of Modg,1 in Aut(π) does not contain the inner automorphisms since Modg,1
fixes the loop δ = [α1, β1] · · · [αg, βg] depicted in Figure 3.b. The following lemma
is a weak replacement for this.

Lemma 4.4. Let i be either 1 or g. Consider h ∈ H1(T
′
i ;Z). There then exists

some w ∈ ⟨αi, βi, δ⟩ and f ∈ Ig,1 such that [w] = h and such that f(aj) = awj
and f(bj) = bwj for 1 ≤ j ≤ g with j ̸= i.

Proof. Let X be a regular neighborhood of the curves αi ∪βi ∪ ∂Σg,1 depicted in
Figure 3.b. Thus X ∼= Σ1,2, the surface T ′

i is homotopic into X, and the image

of π1(X, ∗) in π is ⟨αi, βi, δ⟩. Let Y = Σg,1 \X, so Y ∼= Σg−1,1 and X ∩ Y ∼= S1.
The key property of X is as follows (this is where we use the assumption that i
is either 1 or g). There exists some ∗′ ∈ X ∩ Y , a properly embedded arc η in X
from ∗ to ∗′, and elements

{α′
j , β

′
j | 1 ≤ j ≤ g, j ̸= i} ⊂ π1(Y, ∗′)

such that αj = η · α′
j · η−1 and βj = η · β′

j · η−1 for 1 ≤ j ≤ g with j ̸= i. See
Figure 3.c for the case i = 1 and Figure 3.d for the case i = g.

By Lemma 3.2, there exists an oriented properly embedded arc η′ in X whose
endpoints are the same as those of η such that the homology class of w :=
η · (η′)−1 ∈ π in H1(Σg;Z) is h. Observe that w ∈ ⟨αi, βi, δ⟩. Also,

η′ · α′
j · (η′)−1 = w−1 · η · α′

j · η−1 · w = αw
j

for j ̸= i, and similarly for βj . It is thus enough find some f ∈ I(Σg, X) such
that f(η) = η′.

The “change of coordinates principle” from [5, §1.3] implies that there exists
some f ′ ∈ Mod(Σg, X) such that f ′(η) = η′. Briefly, an Euler characteristic
calculation shows that cutting X open along either η or η′ results in a surface
homeomorphic to Σ1,1. Choosing an orientation-preserving homeomorphism be-
tween these two cut-open surfaces and gluing the boundary components back
together in an appropriate way, we obtain some f ′ ∈ Mod(Σg, X) such that
f ′(η) = η′. See [5, §1.3] for more details and many other examples of arguments
of this form.

The mapping class f ′ need not lie in Torelli; however, it satisfies f ′([αj ]) =
[αj ] and f ′([βj ]) = [βj ] for j ̸= i and f ′(H1(T

′
i ;Z)) = H1(T

′
i ;Z). Since the

image of Mod(T ′
i ) in Aut(H1(T

′
i ;Z)) = Aut(Z2) is SL2(Z), we can choose some

f ′′ ∈ Mod(Σg, T
′
i ) such that f ′([αi]) = f ′′([αi]) and f ′([βi]) = f ′′([βi]). It follows

that f := f ′ · (f ′′)−1 lies in I(Σg, X) and satisfies f(η) = η′, as desired.

Proof of Lemma 4.2. The generating set for [Fn, Fn] in Theorem 4.3 depends on
an ordering of the generators for Fn. It seems hard to prove the lemma using the
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generating set corresponding to the standard ordering

(x1, x2, . . . , x2g) = (α1, β1, . . . , αg, βg)

of the generators for π ∼= F2g. However, consider the following nonstandard
ordering on the generators for π:

(x1, x2, . . . , x2g) = (α2, β2, α1, β1, α3, β3, α4, β4, . . . , αg, βg).

Let S be the generating set for [π, π] given by Theorem 4.3 using this ordering
of the generators. All the elements of S lie in K2 except for

[α2, ζ]
α
n2
2 β

m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g and [β2, ζ
′]β

m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g ; (3)

here ζ ∈ {β2, α1, β1, α3, . . . , βg} and ζ ′ ∈ {α1, β1, α3, . . . , βg} and ni,mi ∈ Z.
Letting T ⊂ S be the elements in (3), we must show that every t ∈ T can be
expressed as a product of elements in the Ig,1-orbit of the set ∪g

i=1Ki. Consider

t ∈ T , so either t = [α2, ζ]
α
n2
2 β

m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g or t = [β2, ζ]
β
m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g .
There are two cases.

Case 1. ζ /∈ {α1, β1}.

We will do the case where t = [α2, ζ]
α
n2
2 β

m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g ; the other case

is treated in a similar way. Set t′ = [α2, ζ]
α
n2
2 β

m2
2 α

n3
3 ···βmg

g , so t′ ∈ K1. By
Lemma 4.4, there exists some w ∈ {α1, β1, δ} and f ∈ Ig,1 such that [w] =
[αn1

1 βm1
1 ] and such that f(aj) = awj and f(bj) = bwj for j > 1. This implies

that f(t′) = [α2, ζ]
α
n2
2 β

m2
2 α

n3
3 ···βmg

g w. Now, αn3
3 · · ·βmg

g w and αn1
1 βm1

1 αn3
3 · · ·βmg

g

are homologous, so there exists some θ ∈ [π, π] such that αn3
3 · · ·βmg

g wθ =
αn1
1 βm1

1 αn3
3 · · ·βmg

g . Moreover, since w ∈ ⟨a1, b1, δ⟩ we have θ ∈ K2. Observe
now that

θ−1 · f(t′) · θ = [α2, ζ]
α
n2
2 β

m2
2 α

n3
3 ···βmg

g wθ = [α2, ζ]
α
n2
2 β

m2
2 α

n1
1 β

m1
1 α

n3
3 ···βmg

g = t.

We have thus found the desired expression for t.

Case 2. ζ ′ ∈ {α1, β1}.

This case is similar to Case 1. The only difference is that the α
ng
g β

mg
g term

of t is deleted to form t′ instead of the αn1
1 βm1

1 term.

Proof of Lemma 4.1. Let I be the subgroup of Ig generated by ∪g
i=1I(Σg, Si).

Using the notation of §2, there is a surjection ρ : Ig,γ → (Ig)γ induced by a
continuous map ϕ : Σg,γ → Σg. Define X = ϕ−1(S1), so X ∼= Σg−1,1. Letting
I(X) be the Torelli group of X, Lemma 2.3 gives a decomposition Ig,γ = Kg,γ ⋉
I(X). Clearly ρ(I(X)) = I(Σg, S1) ⊂ I. Also, Lemma 4.2 implies that Kg,γ is
generated by the I(X)-conjugates of a set S ⊂ Kg,γ such that ρ(S) ⊂ I. We
conclude that ρ(Ig,γ) ⊂ I, as desired.
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5 Proof of main theorem

We finally prove our main theorem. The key is the following standard lemma,
whose proof is similar to that given in [20, (1) of Appendix to §3] and is thus
omitted.

Lemma 5.1. Consider a group G acting without inversions on a connected graph
X. Assume that X/G consists of a single edge e. Let e be a lift of e to X and
let v and v′ be the endpoints of e. Then G is generated by Gv ∪Gv′ .

To apply this, we will need the following lemma.

Lemma 5.2. Let a, b ∈ H1(Σg;Z) satisfy ia(a, b) = 1. Then Ha,b/Ig is isomor-
phic to a graph with a single edge.

The proof is similar to the proofs of [16, Lemma 6.2] and [18, Lemma 6.9], and
is thus omitted.

Proof of Theorem B. Let R′
1, . . . , R

′
g and Rijk be the subsurfaces of Σg from the

introduction. Let Γ be the subgroup of Ig generated by
∪

1≤i<j<k≤g I(Σg, Rijk).
Our goal is to prove that Γ = Ig.

The proof will be by induction on g. The base case g = 3 is trivial, so assume
that g ≥ 4 and that the theorem is true for all smaller g such that g ≥ 3. Choose
simple closed curves α and β in R′

1 such that ig(α, β) = 1. Observe that R′
1 is a

closed regular neighborhood of α∪β. Set a = [α] and b = [β]. Clearly Ig acts on
Ha,b without inversions. Lemmas 3.1 and 5.2 show that the action of Ig on Ha,b

satisfies the other conditions of Lemma 5.1. We deduce that Ig is generated by
the union (Ig)α ∪ (Ig)β of the stabilizer subgroups of α and β.

Recall that Si = Σg \R′
i for 1 ≤ i ≤ g. By Lemma 4.1, both (Ig)α and (Ig)β

are contained in the subgroup generated by ∪g
i=1I(Σg, Si). We must prove that

I(Σg, Si) ⊂ Γ for 1 ≤ i ≤ g. We will do the case i = g; the other cases are
similar. We have a Birman exact sequence

1 −→ π1(UΣg−1) −→ I(Σg, Sg) −→ Ig−1 −→ 1.

By induction, the subset
∪

1≤i<j<k≤g−1 I(Σg, Rijk) of I(Σg, Sg) projects to a gen-
erating set for Ig−1. Also, it is clear that the disc-pushing subgroup π1(UΣg−1) of
I(Σg, Sg) is generated by elements that lie in

∪
1≤i<j<g I(Σg, Rijg). We conclude

that I(Σg, Sg) ⊂ Γ, as desired.
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