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Abstract. Let Modg be the mapping class group of a genus g ≥ 2 surface. The group Modg

has virtual cohomological dimension 4g − 5. In this note we use a theorem of Broaddus and the

combinatorics of chord diagrams to prove that H4g−5(Modg;Q) = 0.

1. Introduction

Let Modg be the mapping class group of a closed, oriented, genus g ≥ 2 surface, and let Mg be

the moduli space of genus g Riemann surfaces. It is well-known that for each i ≥ 0,

H i(Modg;Q) ∼= H i(Mg;Q).

It is a fundamental open problem to determine the maximal i for which these vector spaces are

nonzero. Harer [Ha] proved that the virtual cohomological dimension vcd(Modg) equals 4g − 5.

More precisely, he proved that H4g−5(Modg; Stg ⊗Q) ̸= 0 for a certain Modg-module Stg (see

below for details) and that H i(Modg;V ⊗Q) = 0 for all i > 4g− 5 and all Modg-modules V . Thus

the first step of the problem above is to determine whether H4g−5(Modg;Q) ̸= 0. The purpose of

this note is to answer this question.

Let Modg,∗ (resp. Modg,1) denote the mapping class group of the genus g surface with one marked

point (resp. one boundary component).

Theorem 1. For any g ≥ 2,

H4g−5(Modg;Q) = H4g−5(Mg;Q) = 0.

Further, the rational cohomology of Modg,∗ (resp. the integral cohomology of Modg,1) vanishes in

its virtual cohomological dimension.

This theorem was announced some years ago by Harer, but he has informed us that his proof

will not appear. We recently learned that Morita–Sakasai–Suzuki [MSS] have independently found

a proof of Theorem 1 using a completely different method. They apply a theorem of Kontsevich on

graph homology to their computation of a generating set for a certain symplectic Lie algebra. Our

proof combines some results about the combinatorics of chord diagrams with the work of Broaddus

[Br] on the Steinberg module of Modg. We thank Allen Hatcher and Takuya Sakasai for their

comments on an earlier version of this paper, and John Harer for informing us about the paper

[MSS] and his own work.

Theorem 1 is consistent with the well-studied analogy between mapping class groups and arith-

metic groups. For example, Theorem 1.3 of Lee–Szczarba [LS] states that the rational cohomology

of SL(n,Z) vanishes in its cohomological dimension.
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2. Background

We begin by briefly summarizing previous results that make our computation possible; for details

see Broaddus [Br].

Teichmüller space and its boundary. Let Sg be a connected, closed orientable surface of genus

g ≥ 2. Let Cg be the curve complex of Sg defined by Harvey [Harv], i.e. the flag complex whose

k-simplices are the (k + 1)-tuples of distinct free homotopy classes of simple closed curves in Sg

that can be realized disjointly. Harer [Ha] proved that Cg is homotopy equivalent to a wedge of

spheres
∨∞

i=1 S
2g−2.

There exists a constant δ > 0 such that any two closed geodesics on a hyperbolic surface of length

≤ δ are disjoint (the Margulis constant for hyperbolic surfaces). Let T thick
g be the Teichmüller space

of marked hyperbolic surfaces diffeomorphic to Sg having no closed geodesic of length < δ. It is

known that T thick
g is a (6g−6)-dimensional manifold with corners. Ivanov [Iv] proved that T thick

g is

contractible and that its boundary ∂T thick
g is homotopy equivalent to Cg. Briefly, for each simplex σ

of Cg, let Tσ be the subset of ∂T thick
g consisting of surfaces where each curve in σ has length δ. Each

Tσ is contractible, and Tσ ∩ Tσ′ = ∅ unless σ ∪ σ′ is a simplex of Cg, in which case Tσ ∩ Tσ′ = Tσ∪σ′ .

Duality in the mapping class group. The mapping class group Modg acts properly dis-

continuously on T thick
g with finite stabilizers. Defining Mthick

g = T thick
g /Modg, it follows that

H∗(Modg;Q) ∼= H∗(Mthick
g ;Q). Mumford’s compactness criterion states that Mthick

g is compact.

Combining this with the previous two paragraphs, the work of Bieri–Eckmann [BE, Theorem 6.2]

shows that vcd(Modg) = 4g − 5 and that

(1) H4g−5(Modg;Q) ∼= H0(Modg;H2g−2(Cg;Q)).

In fact, we can say more. Let Stg denote the Steinberg module, i.e. the Modg-moduleH2g−2(Cg;Z).
Then Stg ⊗Q is the rational dualizing module for Modg, meaning that

H4g−5−k(Modg;M ⊗Q) ∼= Hk(Modg;M ⊗ Stg ⊗Q)

for any k and any M . Moreover Stg is also the dualizing module for Modg,∗ and Modg,1, which act

on Stg via the natural surjections Modg,∗ → Modg and Modg,1 → Modg [Ha]. This implies that for

ν = vcd(Modg,∗) = 4g− 3 we have Hν−k(Modg,∗;M ⊗Q) ∼= Hk(Modg,∗;M ⊗ Stg ⊗Q). For Modg,1
we obtain a similar result with ν = cd(Modg,1) = 4g − 2, except that since Modg,1 is torsion-free

the result holds integrally: Hν−k(Modg,1;M) ∼= Hk(Modg,1;M ⊗ Stg).

An alternate model for Stg. Fix a finite-volume hyperbolic metric on Sg − {∗}. Another

model for Stg comes from the arc complex Ag, the flag complex whose k-simplices are the disjoint

(k + 1)-tuples of simple geodesics on Sg − {∗} beginning and ending at the cusp ∗. Let A∞
g be

the subcomplex consisting of collections of geodesics γ1, . . . , γk+1 for which S −
∪

γi has some non-

contractible component. Harer proved that A∞
g is homotopy equivalent to Cg [Ha], and that Ag is

contractible [Ha2] (see also [Hat]). Thus

Stg = H2g−2(Cg) ≃ H2g−2(A∞
g ) ≃ H2g−1(Ag/A∞

g ).

Chord diagrams. By examining how the geodesics are arranged in a neighborhood of ∗, an

(n − 1)-simplex of Ag can be encoded by a n-chord diagram; see [Br, §4.1]. An ordered n-chord

diagram is an ordered sequence U = (u1, . . . , un), where ui is an unordered pair of distinct points

on S1 (a chord) and ui ∩ uj = ∅ if i ̸= j. We will visually depict U by drawing arcs connecting the
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points in each ui (see Figure 1 for examples). Two ordered chord diagrams are identified if they

differ by an orientation-preserving homeomorphism of the circle.

Filling systems. An unlabeled k-filling system of genus g is a (2g+k)-chord diagram satisfying the

conditions described in [Br, §4.1]: no chord should be parallel to another chord or to the boundary

circle, and the chords should determine exactly k + 1 boundary cycles. These conditions, which

guarantee that these chords define a simplex of Ag −A∞
g , have the following simple combinatorial

formulation. Given U = (u1, . . . , un), consider two permutations of the 2n points u1∪· · ·∪un: let ω

be the 2n-cycle which takes each point to the point immediately adjacent in the clockwise direction,

while τ exchanges the two points of each chord ui and thus is a product of n transpositions. Then

a (2g + k)-chord diagram is a k-filling system of genus g if τ ◦ ω has k + 1 orbits, none of which

have length 1 or 2. Finally, let ti be the straight line in D2 connecting the two points of ui. Then

we say that U is disconnected if the set t1 ∪ · · · ∪ tn ⊂ D2 is not connected.

The chord diagram chain complex. Fix a genus g, and set n = 2g + k. Let Uk be the

free abelian group spanned by ordered k-filling systems of genus g modulo the following relation.

For σ ∈ Sn and U = (u1, . . . , un), define σ · U = (uσ(1), . . . , uσ(n)). We impose the relation

σ · U = (−1)σU . The differential ∂ : Uk → Uk−1 is defined as follows. Consider an ordered k-filling

system U = (u1, . . . , un) of genus g. For 1 ≤ i ≤ n, let ∂iU equal (u1, . . . , ûi, . . . , un) if this is an

ordered (k − 1)-filling system of genus g; otherwise, let ∂iU = 0. Then

∂(U) =
n∑

i=1

(−1)i−1∂iU.

Broaddus’s results. We will need the following theorem of Broaddus [Br]. Recall that if Γ

is a group and M is a Γ-module, then the module of coinvariants, denoted MΓ, is the quotient

M/⟨g ·m−m | g ∈ Γ,m ∈ M⟩. Let X be the 0-filling system of genus g depicted in Figure 1a.

Theorem 2 (Broaddus [Br]). For each g ≥ 0, the following hold.

(i) (Stg)Modg
∼= U0/∂(U1).

(ii) The abelian group U0/∂(U1) is spanned by the image [X] ∈ U0/∂(U1) of X ∈ U0.

(iii) If v is a disconnected 0-filling system of genus g, then the image of v in U0/∂(U1) is 0.

For part (i) of Theorem 2, see [Br, Proposition 3.3] together with the remark preceding [Br, Example

4.1]; for part (ii), see [Br, Theorem 4.2]; and for part (iii), see [Br, Proposition 4.5].

3. Proof of Theorem 1

For any group Γ and any Γ-module M , recall that H0(Γ;M) = MΓ. Since the actions of

Modg,∗ and Modg,1 on Stg factor through Modg, to prove Theorem 1 it suffices by (1) to show that

(Stg)Modg = 0. By Theorem 2(i), this is equivalent to showing that U0/∂(U1) = 0.

For v ∈ U0, let [v] denote the associated element of U0/∂(U1). Let X = (x1, . . . , x2g) be the

0-filling system depicted in Figure 1(a). By Theorem 2(ii), it is enough to show that [X] = 0. Let

Y = (x1, . . . , x2g, y) be the 1-filling system depicted in Figure 1(b). Observe that

∂1Y = (x2, . . . , x2g, y) = (x1, . . . , x2g) = X,

where the second equality holds since the indicated chord diagrams differ by an orientation preserv-

ing homeomorphism of S1. Similarly, ∂2g+1Y = X. Also, ∂2Y = 0 (resp. ∂2gY = 0) by definition,
3
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Figure 1. (a) The oriented 0-filling system X = (x1, . . . , x2g). For concreteness, we depict

it for g = 3. In general, X has 2g chords arranged in the same pattern as the chords shown.

(b) The 1-filling system Y = (x1, . . . , x2g, y). The chord y intersects the chord x2g.

(c) The 1-filling system Z = (z, x1, . . . , x2g). The chord z intersects both x1 and x2g.

since the chord x1 (resp. x2g+1) becomes parallel to the boundary. We thus have

∂(Y ) = 2X +

2g−1∑
i=3

(−1)i−1∂iY.

For 3 ≤ i ≤ 2g−1, the 0-filling system ∂iY is disconnected, so Theorem 2(iii) implies that [∂iY ] = 0.

We conclude that 2[X] = 0.

Now consider the 1-filling system Z = (z, x1, . . . , x2g) depicted in Figure 1(c). Removing any

chord from Figure 1(c) yields Figure 1(a) up to rotation, so ∂iZ = ±X for each i. In fact, it is clear

that ∂1Z = X, that ∂2Z = −X, that ∂3Z = X, and so on, with ∂iZ = (−1)i−1X. This shows that

∂(Z) = X +X + · · ·X = (2g + 1)X,

so (2g + 1)[X] = 0.

Summing up, we have shown that 2[X] = (2g+1)[X] = 0. This implies that [X] = 0, as desired.
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