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Abstract

In this paper we conjecture the stability and vanishing of a large piece of the unstable rational
cohomology of SLn Z, of mapping class groups, and of Aut(Fn).

1 Introduction

For each of the sequences of groups in the title, the i-th rational cohomology is known to be
independent of n in a linear range n ≥ Ci. Furthermore, this “stable cohomology” has been
explicitly computed in each case. In contrast, very little is known about the unstable cohomology.
In this paper we conjecture a new kind of stability in the cohomology of these groups. These
conjectures concern the unstable cohomology, in a range near the “top dimension”, and in the first
two cases imply vanishing of the unstable cohomology in this range.

2 Stability in the unstable cohomology of SLn Z

The rational cohomology of the arithmetic group SLn Z coincides with that of the associated locally
symmetric space Xn := SLn Z\SLnR/SO(n):

H i(SLn Z;Q) ≈ H i(Xn;Q). (1)

Borel [Bo] proved that for each i ≥ 0 the group H i(SLn Z;Q) does not depend on n for n À i; it
is believed that the optimal stable range should be n > i + 1, though this has not been proved.
Borel–Serre proved [BS] that the virtual cohomological dimension of SLn Z is

vcd(SLn Z) =
(
n

2

)
.

This implies that Hk(SLn Z;Q) = 0 for all k >
(
n
2

)
.

∗The authors gratefully acknowledge support from the National Science Foundation.
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n vcd H1(SLn Z;Q) H2(SLn Z;Q) · · · Hvcd(SLn Z;Q)

2 1 0
3 3 0 0 0
4 6 0 0 Q 0 0 0
5 10 0 0 0 0 Q 0 0 0 0 0
6 15 0 0 0 0 Q2 0 0 Q Q Q 0 0 0 0 0
7 21 0 0 0 0 Q 0 0 0 Q 0 0 0 0 Q Q 0 0 0 0 0 0

Table 1: The rational cohomology of SLn Z for 2 ≤ n ≤ 7. For n = 2 this is classical; for n = 3
this was calculated by Soulé [So]; for n = 4, by Lee–Szczarba [LS2]; and for 5 ≤ n ≤ 7, by
Elbaz-Vincent–Gangl–Soulé [EVGS]. The classes in H3(SL4 Z;Q), H8(SL6 Z;Q), H10(SL6 Z;Q),
and H15(SL7 Z;Q), as well as one dimension in H5(SL6 Z;Q), are unstable.

Conjecture 1 (Stable instability). For each i ≥ 0 the group H(n
2)−i(SLn Z;Q) does not depend

on n for n > i+ 1.

The form of Conjecture 1 may appear surprising to readers familiar with the known examples
of homological stability, so we now explain some of the intuition behind the conjecture. The locally
symmetric space Xn is an orbifold of dimension

(
n+1

2

) − 1. Thus if Xn were compact, Poincaré
duality combined with (1) and Borel’s stability theorem would imply that H(n+1

2 )−1−i(SLn Z;Q)
was independent of n for nÀ i. However Xn is not compact and does not satisfy Poincaré duality.
The more general notion of Bieri–Eckmann duality allows us to repair this gap, and also lets us
give in (5) one concrete approach to proving Conjecture 1.

However, this approach to Conjecture 1 has the peculiar consequence that if it holds, then in
fact the unstable cohomology vanishes in the range of stability, as we will explain in detail below.

Conjecture 2 (Vanishing Conjecture). H(n
2)−i(SLn Z;Q) = 0 for all i < n− 1.

For i = 0, Conjecture 2 is a theorem of Lee–Szczarba [LS], who proved that H(n
2)(SLn Z;Q) = 0

for all n ≥ 2. We prove Conjecture 2 for i = 1 in [CFP2]; this case can also be deduced from
Bykovskii [By, Theorem 2]. We will revisit the connection between Conjecture 1 and Conjecture 2
after describing the maps realizing the stability proposed in Conjecture 1.

Computational evidence. The rational cohomology groups of SLn Z have been completely com-
puted for 2 ≤ n ≤ 7. These calculations are summarized in Table 1. The data in this table is in
agreement with Conjecture 2.

Possible approaches. An important feature of Conjecture 1 is that there are natural candidates
for “stabilization maps” between H(n

2)−i(SLn Z;Q) and H(n+1
2 )−i(SLn+1 Z;Q) which could realize

the isomorphisms conjectured in Conjecture 1.
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Parabolic stabilization. We first give a topological construction of a stabilization map

H(n+1
2 )−i(SLn+1 Z;Q) → H(n

2)−i(SLn Z;Q)

as follows. The stabilizer in SLn+1 Z of the subspace Qn < Qn+1 is isomorphic to the semi-direct
product ZnoSLn Z, where the normal subgroup Zn consists of those automorphisms that restrict to
the identity on Qn. Note that the action of SLn Z on Zn in this semi-direct product is the standard
one; in particular SLn Z acts trivially on Hn(Zn;Z). The extension

1 → Zn → Zn o SLn Z→ SLn Z→ 1

therefore yields a Gysin map Hk(Zn o SLn Z;Z) → Hk−n(SLn Z;Z). Taking k =
(
n+1

2

) − i and
passing to rational cohomology yields the composition

H(n+1
2 )−i(SLn+1 Z;Q) → H(n+1

2 )−i(Zn o SLn+1 Z;Q) → H(n
2)−i(SLn Z;Q) (2)

where the first map is restriction. We conjecture that (2) is an isomorphism for n > i+ 1, making
explicit the stabilization in Conjecture 1.

Remark. Iterating this process starting with SL1 Z yields the group of strictly upper-triangular
matrices Nn. This is the fundamental group of an

(
n
2

)
-dimensional nil-manifold, and thus provides

an explicit witness for the lower bound vcd(SLn Z) ≥ (
n
2

)
, as follows. An elementary argument

(sometimes called Shapiro’s Lemma) shows that

H∗(SLn Z;M) ≈ H∗(Nn;Q)

when M := HomQNn(QSLn Z,Q). We thus have H(n
2)(SLn Z;M) ≈ H(n

2)(Nn;Q) ≈ Q, demon-
strating that vcd(SLn Z) ≥ (

n
2

)
. Despite this, it follows from [LS] that the fundamental class

[Nn] ∈ H(n
2)

(SLn Z;Q) of this
(
n
2

)
-manifold is trivial in the rational homology of SLn Z.

Duality groups. Our second approach to Conjecture 1 would give a map in the other direction,
namely a map

H(n
2)−i(SLn Z;Q) → H(n+1

2 )−i(SLn+1 Z;Q).

Recall that a group Γ is a duality group if there is an integer ν and a ZΓ-module D, called the
dualizing module for Γ, with the property that there are isomorphisms

Hν−i(Γ;M) ≈ Hi(Γ;M ⊗Z D)

for any ZΓ-module M . No group which contains torsion can be a duality group. To remedy this,
we say that a group Γ is a virtual duality group if it has some finite index subgroup which is a
duality group. This implies that there exists a rational dualizing QΓ-module D so that

Hν−i(Γ;M) ≈ Hi(Γ;M ⊗Q D)
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for any QΓ-module M . The integer ν equals the virtual cohomological dimension vcd(Γ). See [BE]
or [Bro, VIII.10] for details.

Duality for SLn Z. The spherical Tits building B(Qn) is the complex of flags of nontrivial proper
subspaces of Qn. By the Solomon–Tits Theorem, B(Qn) is homotopy equivalent to an infinite
wedge of (n− 2)-dimensional spheres. The Steinberg module of SLn Z is defined to be

St(SLn Z) := Hn−2(B(Qn);Q).

Since SLn Z acts on B(Qn) by simplicial automorphisms, St(SLn Z) is a QSLn Z-module. Borel–
Serre [BS, Theorem 11.4.2] proved that SLn Z is a virtual duality group with dualizing module
St(SLn Z) and ν = vcd(SLn Z) =

(
n
2

)
, so we have natural isomorphisms

H(n
2)−i(SLn Z;Q) ∼= Hi(SLn Z; St(SLn Z)).

Given this, Conjecture 1 has the following equivalent restatement.

Conjecture 1, restated. For each i ≥ 0, the group Hi(SLn Z; St(SLn Z)) does not depend on n

for n > i+ 1.

In this form the conjecture looks like a standard formulation of homological stability. However,
the devil is in the details of the coefficient module St(SLn Z), which itself is changing with n.

Remark. Dwyer [D] (see also van der Kallen [vdK]) proved that the homology of SLn Z stabilizes
with respect to families of twisted coefficient systems satisfying certain growth conditions. However,
the coefficient systems St(SLn Z) do not satisfy Dwyer’s condition.

Steinberg stabilization. We now construct an explicit candidate for a stabilization map

Hi(SLn Z; St(SLn Z)) → Hi(SLn+1 Z; St(SLn+1 Z)).

Choose any line L in Qn+1 such that LZ := L ∩ Zn+1 defines a splitting Zn+1 = Zn ⊕ LZ. This
splitting determines an inclusion SLn Z ↪→ SLn+1 Z as the subgroup stabilizing Qn and acting

trivially on L; in appropriate coordinates this inclusion has the form A 7→
(
A 0
0 1

)
. To define the

desired map on homology we need to construct an SLn Z-equivariant map

ϕ : St(SLn Z) → St(SLn+1 Z). (3)

We can construct the map ϕ by hand. We will use the line L to define a embedding F of the
suspension S(B(Qn)) into B(Qn+1). We describe F as a map

F : [0, 1]× B(Qn) → B(Qn+1)

with the property that {0} × B(Qn) maps to the vertex Qn (which is indeed a proper subspace of
Qn+1) and {1} × B(Qn) maps to the vertex L.
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On {1
2} × B(Qn), we define the map F to be the natural inclusion of B(Qn) into B(Qn+1)

determined by considering subspaces of Qn as subspaces of Qn+1. We can extend F across [0, 1
2 ]×

B(Qn) by linear interpolation, since the image of {1
2} × B(Qn) lies inside the star of the vertex

Qn (indeed, it is precisely the star of Qn). Explicitly, every d-simplex determined by a chain
0 � V0 � V1 � · · · � Vd � Qn+1 satisfying Vd � Qn sits inside the d+ 1-simplex determined by the
chain 0 � V0 � V1 � · · · � Vd � Qn ≤ Qn+1.

Finally, on {3
4} × B(Qn), we define the map F to take the d-simplex determined by a chain

0 � V0 � V1 � · · · � Vd � Qn to the d-simplex determined by the chain

0 � V0 + L � V1 + L � · · · � Vd + L � Qn+1. (4)

We can canonically extend F across [12 ,
3
4 ] × B(Qn), since the convex hull of the 2d + 2 vertices

{V0, . . . , Vd, V0 +L, . . . , Vd +L} is isomorphic to the standard simplicial triangulation of the prism
∆1×∆d ' [12 ,

3
4 ]×∆d. On the remaining portion [34 , 1]×B(Qn) we define F by linear interpolation,

since the image of {3
4} × B(Qn) lies in the star of the vertex L (again, it is precisely the star of L).

Explicitly, the d-simplex (4) lies inside the (d+ 1)-simplex determined by

0 � L � V0 + L � V1 + L � · · · � Vd + L � Qn+1.

The map F : S(B(Qn)) → B(Qn+1) we have described is SLn Z-equivariant by construction. We
define ϕ to be the induced map

ϕ : St(SLn Z) = Hn−2(B(Qn);Q) ≈ Hn−1(S(B(Qn));Q) F∗−→ Hn−1(B(Qn+1);Q) = St(SLn+1 Z),

and we conjecture that the map

ϕ∗ : Hi(SLn Z; St(SLn Z)) → Hi(SLn+1 Z; St(SLn+1 Z)). (5)

induced by ϕ is an isomorphism for n > i+1. Note that since all lines L satisfying Zn+1 = Zn⊕LZ
are equivalent under the action of SLn+1 Z, the map ϕ∗ is independent of our choice of L.

Remark 3. Assuming that Conjecture 1 holds, the “parabolic stabilization” map (2) and the
“Steinberg stabilization” map (5) should be inverse to each other, and indeed one approach to
Conjecture 1 would be to prove this relation.

Vanishing of unstable cohomology for SLn Z. Surprisingly, the conjectured stability of (5)
already implies that H(n

2)−i(SLn Z;Q) vanishes for n > i+ 1. More specifically, iterating the map
(5) twice yields the zero map, as we now explain. We will need the following resolution of St(SLn Z),
which was first written down (in slightly different form) by Ash in [A], following Lee–Szczarba [LS].
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Definition 4 (Resolution of St(SLn Z)). Let Ck = Cn
k be the free Q-vector space on (n + k)-

tuples [L1, . . . , Ln+k] of lines in Qn, subject to the following two relations:

• [L1, . . . , Ln+k] = 0 if span(L1, . . . , Ln+k) 6= Qn.

• [Lσ·1, . . . , Lσ·(n+k)] = (−1)|σ|[L1, . . . , Ln+k] for σ ∈ Sn+k.

Let C• = Cn• be the complex obtained by taking the standard differential ∂ : Ck → Ck−1:

∂[L1, . . . , Ln+k] =
n+k∑

i=1

(−1)i−1[L1, . . . , L̂i, . . . , Ln+k]

Proposition 5 (Ash [A]). H0(Cn• ) ≈ St(SLn Z) and Hi(Cn• ) = 0 for i > 0.

Since Cn
k is a virtually free QSLn Z-module, Proposition 5 states that the complex Cn• is a

virtually free resolution of St(SLn Z). Thus the coinvariant complex Cn• ⊗QSLn Z Q computes the
homology of SLn Z with coefficients in St(SLn Z):

Hi

(
Cn
• ⊗QSLn Z Q

) ≈ Hi(SLn Z; St(SLn Z))

If we choose as before a line L in Qn+1 inducing a splitting Zn+1 = Zn ⊕LZ, we obtain a chain
map ψL : Cn• → Cn+1• defined by

ψL : [L1, . . . , Ln+k] 7→ [L1, . . . , Ln+k, L]

Since
span(L1, . . . , Ln+k) = Qn ⇐⇒ span(L1, . . . , Ln+k, L) = Qn+1,

ψL preserves the first relation above. That it preserves the second is obvious, so ψL defines a map
Cn

k → Cn+1
k . To see that ψL commutes with ∂, we need only observe that [L1, . . . , Ln+k, L̂] = 0,

which follows from the first relation since span(L1, . . . , Ln+k) ⊆ Qn ( Qn+1.
On homology, it follows from [A] that the map H0(Cn• ) → H0(Cn+1• ) induced by ψL coincides

with the map ϕ : St(SLn Z) → St(SLn+1 Z) defined above. Thus the induced map on coinvariants

(ψL)∗ : Hi

(
Cn
• ⊗QSLn Z Q

) → Hi

(
Cn+1
• ⊗QSLn+1 Z Q

)

coincides with the map on homology ϕ∗ from (5) induced by ϕ. We will use this connection to
show that iterating ϕ∗ twice yields the zero map.

Choose a line L′ in Qn+2 so that Zn+2 = Zn ⊕LZ ⊕L′Z, and consider the composition ψL′ ◦ ψL

defined by
ψL′ ◦ ψL : [L1, . . . , Ln+k] 7→ [L1, . . . , Ln+k, L, L

′].

Let τ ∈ SLn+2 Z be the unique element acting by the identity on Qn and satisfying τ(L) = L′ and
τ(L′) = L (this element is necessarily of order 4). We have

τ ◦ ψL′ ◦ ψL : [L1, . . . , Ln+k] 7→ [L1, . . . , Ln+k, L
′, L].
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But by the second relation in Definition 4 we have [L1, . . . , Ln+k, L
′, L] = −[L1, . . . , Ln+k, L, L

′],
and so we conclude that

τ ◦ ψL′ ◦ ψL = −(ψL′ ◦ ψL).

Since τ ∈ SLn+2 Z, this identity tells us that the map on coinvariants

(ϕL′ ◦ ϕL)∗ : Cn
• ⊗QSLn Z Q→ Cn+2

• ⊗QSLn+2 Z Q (6)

is equal to its negation, and thus is the zero map. Certainly this implies that the induced map on
homology

ϕ∗ ◦ ϕ∗ : Hi(SLn Z; St(SLn Z)) → Hi(SLn+1 Z; St(SLn+1 Z)) → Hi(SLn+2 Z; St(SLn+2 Z))

vanishes. This shows that if ϕ∗ is an isomorphism for n > i+1, as conjectured in Conjecture 1, then
Hi(SLn Z; St(SLn Z)) ≈ H(n

2)−i(SLn Z;Q) must vanish for n > i+1, as conjectured in Conjecture 2.

Congruence subgroups. The reader might wonder why we have presented Conjecture 1 as a
stability conjecture, if it necessarily implies the vanishing of Conjecture 2. One key reason is that
this vanishing relies on torsion elements in SLn Z—for example, our argument above depends on
the fact that the order-4 element τ lies in SLn+2 Z. We would not expect the same vanishing if we
restrict our attention to some torsion-free, finite-index subgroup of SLn Z. However, we do expect
that the stability conjectured in Conjecture 1 should persist in some form.

The strongest evidence in this direction is provided by a theorem of Ash on the level-N principal
congruence subgroups Γn(N), meaning the subgroup of matrices in SLn Z reducing to the identity
in SLn(Z/NZ). By [BE, Theorem 3.2], the dualizing module St(Γn(N)) for the duality group Γn(N)
is just St(SLn Z) again. Thus we may restrict the “Steinberg stabilization” map ϕ∗ from (5) to the
finite index subgroup Γn(N). In this context, the main theorem of [A] has the following form.

Theorem 6 (Ash [A]). For any N > 1, the restriction of the “Steinberg stabilization” map ϕ∗ to
the level-N principal congruence subgroup Γn(N) yields for any n an injection

ϕ∗ : H(n
2)−i(Γn(N);Q) ↪→ H(n+1

2 )−i(Γn+1(N);Q).

Cocompact lattices. The lattice SLn Z is not cocompact in SLnR. However, there are natural
families of cocompact lattices in SLnR. Another reason to think of Conjecture 1 as a stability
conjecture is that the conjectured stability does hold for these families of cocompact lattices, as we
will prove below.

Since examples of such families are not so well known, we begin by giving an explicit construction
of a family of cocompact lattices Γn in SLnR with Γn ⊂ Γn+1. Let 4

√
2 denote the positive real

fourth root of 2. Given x ∈ Z[ 4
√

2], define ||x||2 ∈ Z[
√

2] by writing x = a+b 4
√

2 for some a, b ∈ Z[
√

2]
and defining

||x||2 = (a+ b
4
√

2)(a− b
4
√

2) = a2 −
√

2b2.
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Define Γn to be the group of matrices with entries in Z[ 4
√

2] that preserve the corresponding Her-
mitian form; that is, let

Γn := SUn

(||x1||2 + · · ·+ ||xn||2;Z[ 4
√

2]
)
.

Then Γn is a cocompact lattice in SLn(R), as we now explain. The group Γn is the Z[
√

2]-integer
points of the simple algebraic group G defined over Q(

√
2) given by

G := SUn

(||x1||2 + · · ·+ ||xn||2;Q( 4
√

2)
)
.

The group G is only algebraic over Q(
√

2), not over Q( 4
√

2), for the same reason that SU(n) is
only a real Lie group, not a complex Lie group. A well-known theorem of Borel and Harish-
Chandra (see [PR, Theorem 4.14]) states that the Z-points of a semisimple algebraic group G over
Q form a lattice in the real points G(R). In our situation, the corresponding theorem states that
Γn = G(Z[

√
2]) is a lattice in the product G(R) × Gσ(R), where G(R) and Gσ(R) are obtained

from G by the two embeddings of Q(
√

2) into R (see [PR, §2.1.2]). For a basic example of this
phenomenon, note that although Z[

√
2] is not a discrete subset of R, when it is embedded in R×R

by a+ b
√

2 7→ (a+ b
√

2, a− b
√

2) its image is discrete and indeed a lattice.
By [PR, Proposition 2.15(3)], G(R) ≈ SLnR. Since the other embedding σ sends

√
2 7→ −√2,

we have
Gσ = SUn(||x1||2σ + · · ·+ ||xn||2σ;Q(

√
−√2)),

where ||x||2σ is defined by writing x ∈ Q(
√
−√2) as x = a+ b

√
−√2 for a, b ∈ Q(

√
2) and defining

||x||2σ = (a+ b
√
−√2)(a− b

√
−√2) = a2 +

√
2b2.

It is clear from this description that when we pass from Q(
√

2) to R, we obtain

Gσ(R) = SUn(||x1||2σ + · · ·+ ||xn||2σ;C) = SU(n).

We conclude that Γn embeds as a lattice in SLnR × SU(n). Since σ(Γn) is a subgroup of the
compact group SU(n), it contains no unipotent elements, and so neither does Γn. This implies that
Γn acts cocompactly on SLnR × SU(n) (see [PR, §2.1.4 and Theorem 4.17(3)]). But since SU(n)
is compact, the projection of Γn to the first factor SLnR remains discrete and cocompact. We
conclude that Γn = G(Z[

√
2]) is a cocompact lattice in G(R) = SLnR. Note that there are natural

inclusions Γn ⊂ Γn+1 for each n ≥ 1.

Stability for cocompact lattices. In the following, Γn can be any family of cocompact lattices
in SLnR, not just the explicit family described above. Since Γn is a cocompact lattice in SLnR, it
acts properly discontinuously and cocompactly on the contractible symmetric space SLnR/SO(n).
By Selberg’s Lemma, Γn has a finite index torsion-free subgroup, which acts freely on SLnR/SO(n).
Thus

vcd(Γn) = dimSLnR− dimSO(n) = (n2 − 1)−
(
n

2

)
=

(
n+ 1

2

)
− 1.

The analogue of Conjecture 1 for such a family of cocompact lattices Γn is the following theorem.
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Theorem 7. For each i ≥ 0 the group H(n+1
2 )−1−i(Γn;Q) does not depend on n for nÀ i.

Proof. For any lattice Γn in SLnR, let Xn be the locally symmetric space

Xn := Γn\SLnR/SO(n).

Since Γn acts on the contractible space SLnR/ SO(n) with finite stabilizers we have H∗(Xn;Q) ≈
H∗(Γn;Q). Since Γn is cocompact, the above remarks imply that Xn is a finite quotient of a closed
aspherical manifold. Thus its rational cohomology satisfies Poincaré duality, which gives:

H(n+1
2 )−1−i(Γn;Q) ≈ H i(Γn;Q) for each i ≥ 0 (7)

The real cohomology of the compact symmetric space SU(n)/SO(n) is isomorphic to the space
of SLnR-invariant forms on SLnR/SO(n). These forms are closed and indeed harmonic. Being
SLnR-invariant, these forms are a fortiori Γn-invariant, and so they descend to harmonic forms on
Xn. Thus for any lattice Γn we obtain a map

ι : H∗(SU(n)/SO(n);R) → H∗(Xn;R) ≈ H∗(Γn;R)

If Γn is cocompact, applying Hodge theory to Xn implies that ι is injective in all dimensions.
Moreover a theorem of Matsushima [Ma] implies in this case that ι is in fact surjective in a linear
range of dimensions. Thus for nÀ i we have for any cocompact Γn (see, e.g., [Bo, §11.4]):

H i(Γn;R) ≈ H i(SU(n)/SO(n);R) ≈ H i(SU /SO;R) ≈ gri∧∗〈e5, e9, e13, e17, . . .〉

In particular H i(Γn;R) is independent of n for nÀ i. Applying (7) completes the proof.

We remark that Borel’s proof of homological stability for H i(SLn Z;R) mentioned earlier was
accomplished by showing that ι is an isomorphism for non-cocompact lattices as well, albeit in a
smaller range of dimensions.

Automorphic forms. We close this section by briefly mentioning a connection to automorphic
forms. We recommend [Bo2], [Sch], and [St, Appendix A] for general surveys of the connection
between automorphic forms and the cohomology of arithmetic groups. Generalizing a classical result
of Eichler–Shimura, Franke [Fr] proved that the groups H∗(SLn Z;C) are isomorphic to spaces of
certain automorphic forms on SLnR (those of “cohomological type”). This had previously been a
conjecture of Borel. This space of automorphic forms is the direct sum of two pieces, the cuspidal
cohomology and the Eisenstein cohomology. However, it was observed by Borel, Wallach, and
Zuckermann that the cuspidal cohomology is all concentrated around the middle range of the
cohomology (see [Sch2, Proposition 3.5] for a precise statement). This implies that in the range
described by Conjecture 1, the cohomology consists entirely of Eisenstein cohomology. From this
perspective our conjecture is related to assertions regarding which Eisenstein series contribute to
cohomology and how Eisenstein series for different n are related by induction.
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g vcd H1(Modg;Q) H2(Modg;Q) · · · Hvcd(Modg;Q)

1 1 0
2 3 0 0 0
3 7 0 Q 0 0 0 Q 0
4 11 0 Q 0 Q Q 0 0 0 0 0 0

Table 2: The rational cohomology of Modg for 1 ≤ g ≤ 4. For g = 1 this is classical; for g = 2
this was calculated by Igusa [I]; for g = 3, by Looijenga [Lo]; and for g = 4, by Tommasi [T]. The
classes in H6(Mod3;Q) and H5(Mod4;Q) are unstable.

3 Stability in the unstable cohomology of mapping class groups

Let Modg be the mapping class group of a closed, oriented, genus g ≥ 2 surface, and let Mg be the
moduli space of genus g Riemann surfaces. It is well-known (see, e.g., [FM, Theorem 12.13]) that

H∗(Modg;Q) ≈ H∗(Mg;Q). (8)

There has been a long-standing and fruitful analogy between mapping class groups and arithmetic
groups such as SLn Z. This analogy is particularly strong with respect to cohomological properties,
and many of the results we have described for SLn Z have since been proved for Modg. Harer [Ha1]
proved that H i(Modg;Z) does not depend on g for g À i. He also proved [Ha2] that Modg is a
virtual duality group with ν = vcd(Modg) = 4g − 5. Motivated by Conjecture 1, we make the
following conjecture on the unstable cohomology of Modg.

Conjecture 8 (Stable instability). For each i ≥ 0 the group H4g−5−i(Modg;Q) does not depend
on g for g À i.

We describe in (11) below a stabilization map analogous to (2) that should realize the iso-
morphisms conjectured in Conjecture 8. This philosophy was recently applied in [CFP] to prove
Conjecture 8 for i = 0 (this was also proved independently by Morita–Sakasai–Suzuki [MSS1] using
different methods, and had been announced some years ago by Harer). However, as before, this
approach has the consequence that if our conjectured stabilization map is an isomorphism for g À i,
then the “stable unstable cohomology” of Modg must vanish.

Conjecture 9 (Vanishing Conjecture). For each i ≥ 0 we have H4g−5−i(Modg;Q) = 0 for
g À i.

Morita–Sakasai–Suzuki have pointed out in [MSS2, Remark 7.5] that Kontsevich has formulated
a conjecture in [K] that would imply Conjecture 9.

Computational evidence. Complete calculations of H∗(Modg;Q) are only known for 1 ≤ g ≤ 4.
These calculations are summarized in Table 2.

10



Mess stabilization. There is a natural analogue for Modg of our first stabilization map (2) for
SLn Z. The following topological construction provides a candidate for a stabilization map

H4(g+1)−5−i(Modg+1;Q) → H4g−5−i(Modg;Q)

which could realize the isomorphisms conjectured in Conjecture 8. Let S1
g be a compact oriented

genus g surface with one boundary component and let Mod1
g be its mapping class group. Johnson

proved that there is a short exact sequence

1 → π1(T 1Sg) → Mod1
g → Modg → 1 (9)

where T 1Sg is the unit tangent bundle of the closed surface Sg. Since T 1Sg is a 3–manifold and
Modg acts trivially on H3(T 1Sg;Z), we obtain a Gysin map Hk(Mod1

g;Z) → Hk−3(Modg;Z).
Similarly, there is a Gysin map Hk(Mod1

g ×Z;Z) → Hk−1(Mod1
g;Z) coming from the trivial

extension
1 → Z→ Mod1

g ×Z→ Mod1
g → 1.

Finally, the injection Mod1
g ×Z ↪→ Modg+1 given by sending the generator of Z to the Dehn twist

Tδ around a nonseparating curve δ supported in Sg+1\S1
g induces the restriction Hk(Modg+1;Q) →

Hk(Mod1
g ×Z;Q). Consider the composition:

Hk(Modg+1;Q) → Hk(Mod1
g ×Z;Q) → Hk−1(Mod1

g;Q) → Hk−4(Modg;Q) (10)

Taking k = 4(g + 1)− 5− i, (10) yields a map

H4(g+1)−5−i(Modg+1;Q) → H4g−5−i(Modg;Q) (11)

which we conjecture is an isomorphism for g À i.

Remark. We refer to the map (11) as Mess stabilization because this construction was first used by
Mess in [Me] to construct a subgroup K < Modg isomorphic to the fundamental group of a closed
aspherical (4g−5)-manifold. This gives an explicit witness for the lower bound vcd(Modg) ≥ 4g−5,
although it follows from [CFP] that the fundamental class [K] ∈ H4g−5(Modg;Q) itself vanishes
rationally.

Vanishing of the unstable cohomology of Modg. We saw in §2 that our stability conjecture
for SLn Z necessarily implies vanishing of the cohomology in the stable range. Similarly, it turns
out that if (11) is an isomorphism then we must have H4g−5−i(Modg;Q) = 0 for g À i.

The reason is that the injection Mod1
g ×Z ↪→ Modg+1 used in the construction of (11) factors

through the inclusion Mod1
g ×ZMod1

1 ↪→ Modg+1. This subgroup is the stabilizer of a curve γ
separating Sg+1 into two components (homeomorphic to S1

g and S1
1), and the two resulting factors

Mod1
g and Mod1

1 are amalgamated over the cyclic subgroup 〈Tγ〉 ≈ Z generated by a Dehn twist
about the separating curve γ itself. We can write the first two maps in (10) as

Hk(Modg+1;Q) → Hk(Mod1
g ×Z;Q) ³ Hk−1(Mod1

g;Q)⊗H1(Z;Q) ≈−→ Hk−1(Mod1
g;Q).
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We can factor this instead through Mod1
g ×ZMod1

1. But the quotient Mod1
1 /〈Tγ〉 of Mod1

1 by its
center is isomorphic to SL2 Z [FM, §2.2.4], and so we rewrite the above as

Hk(Modg+1;Q) → Hk(Mod1
g ×ZMod1

1;Q) → Hk−1(Mod1
g;Q)⊗H1(SL2 Z;Q) → Hk−1(Mod1

g;Q).

Since H1(SL2 Z;Q) = 0, we conclude that (10) is the zero map on rational cohomology.
As before, this vanishing depends on torsion phenomena (although this does not lift to torsion in

Mod1
1 itself), and we expect that no such vanishing would be present if we restricted to a congruence

subgroup of Modg. The vanishing of (6) for SLn Z can be thought of as coming from the vanishing
of H1(SL2 Z;Q), especially in light of [A, Main Theorem], and it is curious that the vanishing of
our stabilization maps for mapping class groups hinges on the same fact. Of course, if we restricted
to a congruence subgroup of Modg, the group SL2 Z in the calculation above would be replaced by
the principal congruence subgroup Γ2(N), and H1(Γ2(N);Q) 6= 0 for any N > 1.

Duality for Modg. If we could construct an analogue of the “Steinberg stabilization” map (5), it
would give a map in the other direction:

H4g−5−i(Modg;Q) → H4(g+1)−5−i(Modg+1;Q) (12)

Let Cg be the curve complex, which is the simplicial complex whose k-simplices consist of (k+1)-
tuples of isotopy classes of mutually disjoint simple closed curves on Sg. Harer [Ha2, Theorem 3.5]
proved that Cg has the homotopy type of an infinite wedge of (2g − 2)-dimensional spheres, and
the rational dualizing module for Modg is the Steinberg module St(Modg) := H2g−2(Cg;Q). By
definition, St(Modg) satisfies

H4g−5−i(Modg;Q) ≈ Hi(Modg; St(Modg))

for all i ≥ 0. This gives the following equivalent formulation of Conjecture 8.

Conjecture 8, restated. For each i ≥ 0 the group Hi(Modg; St(Modg)) does not depend on g for
g À i.

Proving the restated conjecture. There are two obstructions to constructing a homomorphism

Hi(Modg; St(Modg)) → Hi(Modg+1; St(Modg+1))

that could realize the conjectured isomorphisms. The first technical issue is that there is no natural
map Modg → Modg+1 (or vice versa). This issue already arises in proving ordinary homological
stability for Modg. The solution there is to consider surfaces with boundary, since there is a map
Mod1

g ↪→ Mod1
g+1 induced by embedding S1

g into S1
g+1. There is also a natural surjection Mod1

g ³
Modg induced by gluing a disc to the boundary component of S1

g . Harer proved homological
stability for Modg by showing that both the induced mapsHi(Mod1

g) → Hi(Modg) andHi(Mod1
g) →

Hi(Mod1
g+1) are isomorphisms for g À i.

The same tactic could be applied to our conjecture. Applying [BE, Theorem 3.5] to (9) shows
that Mod1

g is a duality group with ν = 4g − 2 and the same dualizing module St(Modg), on
which Mod1

g acts via the projection Mod1
g ³ Modg. Thus a first step towards the reformulation of

Conjecture 8 would be to prove the following.
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Conjecture 10. For each i ≥ 0, the natural map Hi(Mod1
g; St(Modg)) −→ Hi(Modg; St(Modg))

is an isomorphism for g À i.

Since the coefficient modules are the same in this case, this seems fairly tractable. For example,
for formal reasons this coincidence of coefficient modules automatically implies Conjecture 10 for
i = 0 (even without the vanishing result proved in [CFP] that implies that both sides are zero).

Thus if we can construct a Mod1
g–equivariant map St(Modg) → St(Modg+1) analogous to (5)

for SLn Z above, we would obtain a homomorphism

Hi(Mod1
g; St(Modg)) → Hi(Mod1

g+1; St(Modg+1))

which combined with Conjecture 10 would yield the desired stabilization map of (12). The most
natural approach to describing such a map would be to use Broaddus’ resolution of St(Modg) in
terms of certain pictorial chord diagrams [Br, Prop. 3.3], which is closely analogous to Ash’s
resolution of St(SLn Z) from Definition 4. However, the natural first guess for the stabilization map
for St(Modg) turns out to be the zero map (see [Br, Proposition 4.5]) —not just on homology as
occurred for SLn Z in (6), but actually the zero map St(Modg) → 0 → St(Modg+1). A new idea is
necessary, and so we pose the following open problem.

Problem 11. Construct a natural nonzero Mod1
g-equivariant map St(Modg) → St(Modg+1)

analogous to the stabilization map (3) for St(SLn Z).

4 Stability in the unstable cohomology of Aut(Fn)

The analogy between Modg and SLn Z is well-known to extend to the automorphism group Aut(Fn)
of the free group Fn of rank n ≥ 2. Hatcher–Vogtmann (and later with Wahl, see [HW]) proved that
H i(Aut(Fn);Z) is independent of n for nÀ i. Culler–Vogtmann [CuV] proved that vcd(Aut(Fn)) =
2n− 2.

Conjecture 12. For each i ≥ 0 the group H2n−2−i(Aut(Fn);Q) only depends on the parity of n
for nÀ i.

This conjecture is perhaps more speculative than Conjectures 1 and 8, and it remains an open
question even for i = 0. However, known conjectures on sources of unstable cohomology are consis-
tent with Conjecture 12 for i = 1 and i = 2, as we explain below. The closely related group Out(Fn)
has virtual cohomological dimension 2n− 3, and we similarly conjecture that H2n−3−i(Out(Fn);Q)
only depends on the parity of n for nÀ i.

Computational evidence. The rational cohomology groups of Aut(Fn) have been computed for
2 ≤ n ≤ 5, and the rational cohomology groups of Out(Fn) have been computed for 2 ≤ n ≤ 6.
These calculations are summarized in Table 3.
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n vcd H i(Aut(Fn);Q) vcd H i(Out(Fn);Q)

2 2 0 0 1 0
3 4 0 0 0 0 3 0 0 0
4 6 0 0 0 Q 0 0 5 0 0 0 Q 0
5 8 0 0 0 0 0 0 Q 0 7 0 0 0 0 0 0 0
6 9 0 0 0 0 0 0 0 Q 0

Table 3: The rational cohomology of Aut(Fn) for 2 ≤ n ≤ 5 and of Out(Fn) for 2 ≤ n ≤ 6.
These were computed for 1 ≤ i ≤ 6 in both cases by Hatcher–Vogtmann [HV]; H7(Aut(F5);Q) and
H8(Aut(F5);Q) were computed by Gerlits (see [CKV]); and H7(Out(F5);Q) and H∗(Out(F6);Q)
were computed by Ohashi [O]. All rational cohomology classes are unstable.

Unstable classes and graph homology. When n is even, Morita [Mo, §6.5] constructed cycles
in H2n−4(Out(Fn);Q) = Hν−1(Out(Fn);Q), and Conant–Vogtmann [CoV] showed that these cycles
can be lifted to H2n−4(Aut(Fn);Q) = Hν−2(Aut(Fn);Q). These classes are known to be nonzero
in H4(Out(F4);Q) and H4(Aut(F4);Q) [Mo], in H8(Out(F6);Q) and H8(Aut(F6);Q) [CoV], and in
H12(Out(F8);Q) and H12(Aut(F8);Q) [Gr]. They are conjectured to be nonzero for all even n.

Galatius [G] proved that for n À i we have H i(Aut(Fn);Q) = 0 and H i(Out(Fn);Q) = 0, so
all the rational cohomology of Aut(Fn) and Out(Fn) is unstable. The Morita cycles are known
to be immediately unstable: Conant–Vogtmann [CoV3] proved that the Morita cycles vanish after
stabilizing once fromH2n−4(Aut(Fn);Q) toH2n−4(Aut(Fn+1);Q). However, Conjecture 12 provides
a sense in which these classes might be stable after all.

Similarly, when n is odd, Conant–Kassabov–Vogtmann [CKV] have recently constructed classes
in H2n−3(Aut(Fn);Q) = Hν−1(Aut(Fn);Q), which are known to be nonzero in H7(Aut(F5);Q)
and H11(Aut(F7);Q) and conjectured to be nonzero for all odd n. All known nonzero rational
homology classes for Aut(Fn) and Out(Fn) fit into one of these families. Finally, the Morita cycles
were generalized by Morita and by Conant–Vogtmann [CoV, §6.1] to produce, for every graph of
rank r with k vertices all of odd valence, a cycle in Hν−(k−1)(Out(Fr+k);Q). The Morita cycles in
Hν−1(Out(Fn);Q) correspond to the graph with 2 vertices connected by n− 1 parallel edges. Can
all odd-valence graphs be naturally grouped into families which contribute to Hν−i(Out(Fn);Q) for
some fixed i?

Stabilization and duality. Bestvina–Feighn [BF] proved that Out(Fn) is a virtual duality group,
so by [BE, Theorem 3.5] Aut(Fn) is a virtual duality group as well. The rational dualizing module
St(Aut(Fn)) can be understood in terms of the topology at infinity of Culler–Vogtmann’s Outer
space (see [BF, §5] for details), but it has not been described explicitly.

Problem 13. Construct a resolution for St(Aut(Fn)) analogous to Ash’s resolution of St(SLn Z)
from Definition 4, and analogous to Broaddus’s resolution of St(Modg)) in terms of chord diagrams.
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We do not know an analogue for Aut(Fn) of the stabilization map (5) that we constructed for
SLn Z.

Problem 14. Define a nontrivial, natural Aut(Fn)-equivariant map St(Aut(Fn)) → St(Aut(Fn+1)).

Conant–Vogtmann used Bestvina–Feighn’s bordification of Outer space to construct a complex
of filtered graphs that computes the homology of Aut(Fn) [CoV2, §7.3]. This should yield a resolu-
tion of St(Aut(Fn)). However, from this perspective it is not clear to us how to define a stabilization
map St(Aut(Fn)) → St(Aut(Fn+1)).

Abelian cycles. Consider the subgroup K < Aut(Fn) generated by xi 7→ xix1 and by xi 7→ x1xi

for 1 < i ≤ n. This subgroup is isomorphic to Z2n−2 and thus provides an explicit witness for the
lower bound vcd(Aut(Fn)) ≥ 2n− 2.

Question 15. Under the inclusion i : Z2n−2 ≈ K ↪→ Aut(Fn) of the subgroup K, is the image of
the fundamental class nonzero for some n ≥ 5? That is, is it ever true that

i∗[Z2n−2] 6= 0 ∈ H2n−2(Aut(Fn);Q)?
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