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A morphism from Cm to Cn is an isomorphism 
lass of a Riemann surfa
e Σwith boundary ∂Σ together with an orientation-preserving di�eomorphism ∂Σ→
Cn ∐−Cm. The 
omposition is by sewing surfa
es together.Given a di�erentiable subsurfa
e F ⊆ [a0, a1]×Rn+1 with ∂F = F ∩ {a0, a1}×Rn+1, ea
h tangent spa
e TpF inherits an inner produ
t from the surroundingeu
lidean spa
e and hen
e a 
onformal stru
ture. If F is oriented, this indu
esa 
omplex stru
ture on F . The 
ategory C2 of embedded surfa
es 
an thus beviewed as a substitute for the 
onformal surfa
e 
ategory. It is a 
onsequen
e ofTei
hmüller theory that their 
lassifying spa
es are rationally homotopy equiva-lent.The embedded surfa
e 
ategory has an obvious generalization to higher dimen-sions. For any d ≥ 0, we have a 
ategory Cd whose morphisms are d-dimensionalsubmanifolds W ⊆ [a0, a1] × Rn+d−1 that interse
t the walls {a0, a1} × Rn+d−1transversely in ∂W . The 
odimension n is arbitrarily large, and not part ofthe stru
ture. Viewing W as a morphism from the in
oming boundary ∂inW =
{a0} ×Rn+d−1 ∩W to the outgoing boundary ∂outW = {a1} ×Rn+d−1 ∩W , andusing union as 
omposition, we get the embedded 
obordism 
ategory Cd.It is a topologi
al 
ategory in the sense that the total set of obje
ts and thetotal set of morphisms have topologies su
h that the stru
ture maps (sour
e,target, identity and 
omposition) are 
ontinuous. In fa
t, there are homotopyequivalen
es

obCd ≃
∐

M

BDiff(M), mor Cd ≃
∐

W

BDiff(W ; {∂in}, {∂out})whereM varies over 
losed (d−1)-dimensional manifolds andW over d-dimensional
obordisms, one in ea
h di�eomorphism 
lass. Here Diff(M) denotes the topolog-i
al group of di�eomorphisms of M and Diff(W, {∂in}, {∂out}) denotes the groupof di�eomorphisms of W that restri
t to di�eomorphisms of the in
oming andoutgoing boundaries. Sour
e and target maps are indu
ed by restri
tion.In order to des
ribe our main result about the homotopy type of the 
lassifyingspa
e BCd, we need some notation. Let G(d, n) denote the Grassmannian of d-dimensional linear subspa
es of Rn+d. There are two standard ve
tor bundles,
Ud,n and U⊥

d,n, over G(d, n). We are interested in the n-dimensional one with totalspa
e
U⊥

d,n = {(V, v) ∈ G(d, n)×Rd+n | v ⊥ V }.The Thom spa
es (one-point 
ompa
ti�
ations)Th(U⊥
d,n) de�ne a spe
trum MTO(d)as n varies∗. The (n + d)th spa
e in the spe
trum MTO(d) is Th(U⊥

d,n). We are
∗This 
onvenient and �exible notation was suggested by Mike Hopkins. O(d) is the stru
turegroup for Tangent bundles of manifolds, as opposed to the standard notation MO(d) for theThom spa
e of Ud,∞ → G(d,∞), where O(d) is the stru
ture group for normal bundles ofmanifolds. 2



primarily interested in the dire
t limit
Ω∞−1

MTO(d) = colim
n→∞

Ωn+d−1 Th(U⊥
d,n).

MTO(d) and Ω∞−1
MTO(d) are des
ribed in more detail in se
tion 3.1.Given a morphism W ⊆ [a0, a1] × Rn+d−1, the Pontrjagin-Thom 
ollapse maponto a tubular neighborhood gives a map

[a0, a1]+ ∧ S
n+d−1 → Th(U⊥

d,n),whose adjoint determines a path in Ω∞−1
MTO(d) as n → ∞. With more 
are,one gets a fun
tor from Cd to the 
ategory Path(Ω∞−1

MTO(d)), whose obje
tsare points in Ω∞−1
MTO(d) and whose morphisms are 
ontinuous paths.The 
lassifying spa
e of a path 
ategory is always homotopy equivalent to theunderlying spa
e. We therefore get a map

α : BCd → Ω∞−1
MTO(d) (1.1)(
f. [MT01℄ for d = 2).Main Theorem. The map α : BCd → Ω∞−1
MTO(d) is a weak homotopy equiv-alen
e.For any 
ategory C, the set of 
omponents π0BC 
an be des
ribed as the quo-tient of the set π0 ob(C) by the equivalen
e relation generated by the morphisms.For the 
ategory Cd, this gives that π0BCd is the group ΩO

d−1 of 
obordism 
lassesof 
losed unoriented manifolds. As explained in se
tion 3.1 below, the group of
omponents π0Ω
∞−1

MTO(d) is isomorphi
 to the homotopy group πd−1MO ofthe Thom spe
trum MO. Thus the main theorem 
an be seen as generalizationof Thom's theorem: ΩO
d−1
∼= πd−1MO.More generally we also 
onsider the 
obordism 
ategory Cθ of manifolds withtangential stru
ture, given by a lifting of the 
lassifying map for the tangentbundle over a �bration θ : B → G(d,∞). In this 
ase, the right hand side of (1.1)gets repla
ed by a spe
trum MT (θ) whose (n+d)th spa
e is Th(θ∗U⊥

d,n). Chapter5 de�nes Cθ and MT (θ) in more detail, and proves the following version of themain theorem.Main Theorem (with tangential stru
tures). There is a weak homotopyequivalen
e αθ : BCθ → Ω∞−1
MT (θ).The simplest example of a tangential stru
ture is that of an ordinary orienta-tion, leading to the 
ategory C+

d of oriented embedded 
obordisms. In this 
ase,the target of α be
omes the oriented version Ω∞−1
MTSO(d), whi
h di�ers from

Ω∞−1
MTO(d) only in that we start with the Grassmannian G+(d, n) of oriented

d-planes in Rn+d. Another interesting spe
ial 
ase leads to the 
ategory C+
d (X) oforiented manifolds with a 
ontinuous map to a ba
kground spa
e X. In this 
aseour result is a weak equivalen
e

BC+
d (X) ≃ Ω∞−1(MTSO(d) ∧X+).3



In parti
ular, the homotopy groups π∗BC+
d (X) be
omes a generalized homologytheory as a fun
tor of the ba
kground spa
eX, with 
oe�
ients π∗Ω∞−1

MTSO(d).The same works in the non-oriented situation.We shall write MT (d) = MTO(d) and MT (d)+ = MTSO(d) for brevity, sin
ewe are mostly 
on
erned with these two 
ases.For any topologi
al 
ategory C and obje
ts x, y ∈ ob C, there is a 
ontinuousmap
C(x, y)→ Ωx,yBC,from the spa
e of morphisms in C from x to y to the spa
e Ωx,yBC of paths in

BC from x to y. In the 
ase of the oriented 
obordism 
ategory we get for everyoriented d-manifold W a map
σ : BDiff+(W ; ∂W )→ ΩBC+

dinto the loop spa
e of BC+
d . For d = 2 and W = Wg,n an oriented surfa
e of genus

g,
BDiff+(W, ∂W ) ≃ BΓg,n,where Γg,n = π0 Diff+(W, ∂W ) is the mapping 
lass group of W . In this 
ase, the
omposition

BΓ∞,n → Ω0BC+
2

≃
−→ Ω∞

0 MT (2)+indu
es an isomorphism in integral homology. This is the generalized Mumford
onje
ture, proved in [MW02℄. We give a new proof of this below, based on theabove Main Theorem.2. The 
obordism 
ategory and its sheaves2.1. The 
obordism 
ategory. We �x the integer d ≥ 0. The obje
ts of the
d-dimensional 
obordism 
ategory Cd are 
losed (d−1)-dimensional submanifoldsof high-dimensional eu
lidean spa
e; the morphisms are d-dimensional embedded
obordisms with a 
ollared boundary.More pre
isely, an obje
t of Cd is a pair (M, a) with a ∈ R, and su
h that M isa 
losed (d− 1)-dimensional submanifold

M ⊆ Rd−1+∞ , Rd−1+∞ = colim
n→∞

Rd−1+nA non-identity morphism from (M0, a0) to (M1, a1) is a triple (W, a0, a1) 
onsistingof the numbers a0, a1, whi
h must satisfy a0 < a1, and a d-dimensional 
ompa
tsubmanifold
W ⊆ [a0, a1]×Rd−1+∞,su
h that for some ε > 0 we have(i) W ∩ ([a0, a0 + ε)×Rd−1+∞) = [a0, a0 + ε)×M0,(ii) W ∩ ((a1 − ε, a1]×Rd−1+∞) = (a1 − ε, a1]×M1,(iii) ∂W = W ∩ ({a0, a1} ×Rd−1+∞). 4



Composition is union of subsets (of R×Rd−1+∞):
(W1, a0, a1) ◦ (W2, a1, a2) = (W1 ∪W2, a0, a2).This de�nes Cd as a 
ategory of sets. We des
ribe its topology.Given a 
losed smooth (d − 1)-manifold M , let Emb(M,Rd−1+n) denote thespa
e of smooth embeddings, and write
Emb(M,Rd−1+∞) = colim

n→∞
Emb(M,Rd−1+n).Composing an embedding with a di�eomorphism of M gives a free a
tion of

Diff(M) on the embedding spa
e, and the orbit map
Emb(M,Rd−1+∞)→ Emb(M,Rd−1+∞)/Diff(M)is a prin
ipal Diff(M) bundle in the sense of [Ste51℄, if Emb(M,Rd−1+∞) and

Diff(M) are given Whitney C∞ topology.Let E∞(M) = Emb(M,Rd−1+∞)×Diff(M) M and let B∞(M) be the orbit spa
e
Emb(M,Rd−1+∞)/Diff(M). The asso
iated �ber bundle

E∞(M)→ B∞(M) (2.1)has �ber M and stru
ture group Diff(M). By Whitney's embedding theorem
Emb(M,Rd−1+∞) is 
ontra
tible, so B∞(M) ≃ BDiff(M). In [KM97℄ a 
onve-nient 
ategory of in�nite dimensional manifolds is des
ribed in whi
h Diff(M) isa Lie group and (2.1) is a smooth �ber bundle. The �ber bundle (2.1) 
omeswith a natural embedding E∞(M) ⊂ B∞(M) ×Rd−1+∞. With this stru
ture, itis universal. More pre
isely, if f : X → B∞(M) is a smooth map from a smoothmanifold Xd, then the pullba
k

f ∗(E∞(M)) = {(x, v) ∈ X ×Rd−1+∞ | (f(x), v) ∈ E∞(M)}is a smooth (k + d)-dimensional submanifold E ⊆ X × Rd−1+∞ su
h that theproje
tion E → X is a smooth �ber bundle with �ber M . Any su
h E ⊆ X ×Rd−1+∞ is indu
ed by a unique smooth map f : X → B∞(M).Now the set of obje
ts of Cd is
obCd

∼= R×∐

M

B∞(M), (2.2)where M varies over 
losed (d − 1)-manifolds, one in ea
h di�eomorphism 
lass.We use this identi�
ation to topologize obCd.The set of morphisms in Cd is topologized in a similar fashion. Let (W,h0, h1)be an abstra
t 
obordism from M0 to M1, i.e. a triple 
onsisting of a smooth
ompa
t d-manifold W and embeddings (�
ollars�)
h0 : [0, 1)×M0 →W

h1 : (0, 1]×M1 →W
(2.3)5



su
h that ∂W is the disjoint union of the two spa
es hν({ν} ×Mν), ν = 0, 1. For
0 < ε < 1

2
, let Embε(W, [0, 1]×Rd−1+n) be the spa
e of embeddings

j : W → [0, 1]×Rd−1+nfor whi
h there exists embeddings jν : Mν → Rd−1+n, ν = 0, 1, su
h that
j ◦ h0(t0, x0) = (t0, j0(x0)) and j ◦ h1(t1, x1) = (t1, j1(x1))for all t0 ∈ [0, ε), t1 ∈ (1− ε, 1], and xν ∈Mν . Let
Emb(W, [0, 1]×Rd−1+∞) = colim

n→∞
ε→0

Embε(W, [0, 1]×Rd−1+n).Let Diffε(W ) denote the group of di�eomorphisms of W that restri
t to produ
tdi�eomorphisms on the ε-
ollars, and let Diff(W ) = colimε Diffε(W ).As before, we get a prin
ipal Diff(W )-bundle
Emb(W,Rd−1+∞)→ Emb(W, [0, 1]×Rd−1+∞)/Diff(W ),and an asso
iated �ber bundle
E∞(W )→ B∞(W ) = Emb(W, [0, 1]×Rd−1+∞)/Diff(W )with �ber W and stru
ture group Diff(W ), satisfying a universal property similarto the one for E∞(M)→ B∞(M) des
ribed above.Topologize mor Cd by

mor Cd
∼= obCd ∐

∐

W

R2
+ × B∞(W ), (2.4)where R2

+ is the open half plane a0 < a1, and W varies over 
obordisms W =
(W,h0, h1), one in ea
h di�eomorphism 
lass.For (a0, a1) ∈ R2

+, let l : [0, 1] → [a0, a1] be the a�ne map with l(ν) = aν ,
ν = 0, 1. For an element j ∈ Embε(W, [0, 1] × Rd−1+∞) we identify the element
((a0, a1), [j]) ∈ R2

+ × B∞(W ) with the element (a0, a1, E) ∈ morCd, where E isthe image
E = (l ◦ j)(W ) ⊆ [a0, a1]×Rd−1+∞.Let us point out a slight abuse of notation: Stri
tly speaking, we should in
ludethe 
ollars h0 and h1 in the notation for the Emb and Diff spa
es. Up to homotopy,

Diff(W )
≃
−→ Diff(W, {∂inW}, {∂outW}) (2.5)is the group of di�eomorphisms of W that restri
t to di�eomorphisms of thein
oming and of the outgoing boundary of the 
obordism W .Again, Whitney's embedding theorem implies that B∞(W ) ≃ BDiff(W ). Withrespe
t to this homotopy equivalen
e, 
omposition in Cd is indu
ed by the mor-phism of topologi
al groups

Diff(W1)×Diff(M1) Diff(W2)→ Diff(W ),where ∂outW1 = M1 = ∂inW2, and W = W1 ∪M1
W2.6



Remark 2.1. (i) There is a redu
ed version C̃d where obje
ts are embedded in
{0}×Rd−1+∞ and morphisms in [0, a1]×Rd−1+∞. The fun
tor Cd → C̃d that mapsa 
obordismW d ⊆ [a0, a1]×Rd−1+∞ intoW d−a0 ∈ [0, a1−a0]×Rd−1+∞ indu
esa homotopy equivalen
e on 
lassifying spa
es. Indeed, the nerves are related by apullba
k diagram

NkCd
//

��

NkC̃d

��

Nk(R,≤) // Nk(R+,+)

(2.6)where (R,≤) denotes R as an ordered set and (R+,+) denotes R+ = {0}∐(0,∞)as a monoid under addition. The two verti
al maps are �brations, and the bottomhorizontal map is a weak equivalen
e. Therefore the fun
tor Cd → C̃d indu
es alevelwise homotopy equivalen
e on nerves.(ii) In the previous remark it is 
ru
ial that R be given its usual topology. Morepre
isely, let Rδ denote R with the dis
rete topology, and de�ne Cδ
d and C̃δ

d usingRδ instead of R in the homeomorphisms (2.2) and (2.4). Then the right handverti
al map in (2.6) de�nes a map BC̃δ
d → B(Rδ

+,+) whi
h is a split surje
tion.By the group-
ompletion theorem [MS76℄, π1B(Rδ
+,+) ∼= R, and this is a dire
tsummand of π1BC̃δ

d, so the main theorem fails for C̃δ
d. We shall see later that

BCδ
d → BCd is a homotopy equivalen
e (
f. Remark 4.5).(iii) There is a version C+

d of Cd where one adds an orientation to the obje
tsand morphisms in the usual way. For d = 2, the redu
ed version C̃+
d is the surfa
e
ategory Y of [MT01, �2℄.2.2. Re
olle
tion from [MW02℄ on sheaves. Let X denote the 
ategory ofsmooth manifolds without boundary and smooth maps. We shall 
onsider sheaveson X, that is, 
ontravariant fun
tors F on X that satisfy the sheaf 
ondition: forany open 
overing U = {Uj | j ∈ J} of an obje
t X in X and elements sj ∈ F(Uj)with sj|Ui ∩ Uj = si|Ui ∩ Uj there is a unique s ∈ F(X) that restri
ts to sj for all

j. We have the Yoneda embedding of X into the 
ategory Sh(X) of sheaves on Xthat to X ∈ X asso
iates the representable sheaf X̃ = C∞(−, X) ∈ Sh(X).For the fun
tors F we shall 
onsider, F(X) 
onsists of spa
es over X with extraproperties. In general the set of spa
es E over X is not a fun
tor under pull-ba
k((g ◦ f)∗(E) 6= f ∗(g∗(E))). But if E → X 
omes from subsets E ⊆ X × U where
U is some �universe� then pull-ba
ks with respe
t to f : X ′ → X in X, de�ned as

f ∗(E) = {(x′, u) | (f(x′), u) ∈ E} ⊆ X ′ × U,is a fun
torial 
onstru
tion.A set-valued sheaf F on X gives rise to a representing spa
e |F|, 
onstru
ted asthe topologi
al realization of the following simpli
ial set. The hyperplane (open7



or extended simplex)
∆ℓ

e = {(t0, . . . , tℓ) ∈ Rℓ+1 |
∑
ti = 1}is an obje
t of X, and

[ℓ] 7−→ F(∆ℓ
e)is a simpli
ial set. The spa
e |F| is its standard topologi
al realization. This is arepresenting spa
e in the following sense.De�nition 2.2. Two elements s0, s1 ∈ F(X) are 
on
ordant if there exists an

s ∈ F(X ×R) whi
h agrees with pr∗(s0) near X × (−∞, 0] and with pr∗(s1) near
X × [1,+∞) where pr : X ×R→ X is the proje
tion.The set of 
on
ordan
e 
lasses will be denoted by F[X]. The spa
e |F| aboveis a representing spa
e in the sense that F[X] is in bije
tive 
orresponden
e withthe set of homotopy 
lasses of 
ontinuous maps from X into |F|:

F[X] ∼= [X, |F|] (2.7)by Proposition A.1.1 of [MW02℄. We des
ribe the map. For X̃ = C∞(−, X),
[l] 7→ X̃(∆l

e) is the (extended, smooth) total simpli
ial set of X, and satis�es thatthe 
anoni
al map |X̃| → X is a homotopy equivalen
e ([Mil57℄). An element
s ∈ F(X) has an adjoint s̃ : X̃ → F, indu
ing |s̃| : |X̃| → |F|, and thus a wellde�ned homotopy 
lass of maps X → |F| whi
h is easily seen to depend only onthe 
on
ordan
e 
lass of s.De�nition 2.3. A map τ : F1 → F2 is 
alled a weak equivalen
e if the indu
edmap from |F1| to |F2| indu
es an isomorphism on all homotopy groups.There is a 
onvenient 
riteria for de
iding if a map of sheaves is a weak equiv-alen
e. This requires a relative version of De�nition 2.2. Let A ⊆ X be a 
losedsubset of X, and let s ∈ colimU F(U) where U runs over open neighborhoods of
A. Let F(X,A; s) ⊆ F(X) be the subset of elements that agree with s near A.De�nition 2.4. Two elements t0, t1 ∈ F(X,A; s) are 
on
ordant rel.A if they are
on
ordant by a 
on
ordan
e whose germ near A is the 
onstant 
on
ordan
e of
s. Let F1[X,A; s] denote the set of 
on
ordan
e 
lasses.Criteria 2.5. A map τ : F1 → F2 is a weak equivalen
e provided it indu
es asurje
tive map

F1[X,A; s]→ F2[X,A; τ(s)]for all (X,A, s) as above.Let x0 ∈ X and s0 ∈ F({x0}). This gives a germ s0 ∈ colimU F(U) with Uranging over the open neighborhoods of x0. There is the following relative versionof (2.7), also proved in Appendix A of [MW02℄: for every (X,A, s0),
F[X,A; s0] ∼= [(X,A), (|F|, s0)]8



In parti
ular the homotopy groups πn(|F|, s0) are equal to the relative 
on
ordan
e
lasses F[Sn, x0; s0]. By Whitehead's theorem τ : F1 → F2 is a weak equivalen
eif and only if
F1[S

n, x0; s0]
∼=
−−→ F2[S

n, x0; τ(s0)]is an equivalen
e for all basepoints x0 and all s0 ∈ F1(x0). This is sometimes amore 
onvenient formulation than Criteria 2.5 above.A
tually, for the 
on
rete sheaves we 
onsider in this paper the representingspa
es are �simple� in the sense of homotopy theory, and in this situation the basepoint s0 ∈ F(∗) is irrelevant: a map τ : F1 → F2 is a weak equivalen
e if and onlyif it indu
es a bije
tion F1[X]→ F2[X] for all X ∈ X. In fa
t, it su�
es to 
he
kthis when X is a sphere.2.3. A sheaf model for the 
obordism 
ategory. We apply the above to givea sheaf model of the 
obordism 
ategory Cd. First some notation. For fun
tions
a0, a1 : X → R with a0(x) ≤ a1(x) at all x ∈ X, we write

X × (a0, a1) = {(x, u) ∈ X ×R | a0(x) < u < a1(x)}

X × [a0, a1] = {(x, u) ∈ X ×R | a0(x) ≤ u ≤ a1(x)}.Given a submersion π : W → X of smooth manifolds (without boundary) andsmooth maps
f : W → R, a : X → R,we say that f is �berwise transverse to a if the restri
tion fx of f to Wx = π−1(x)is transversal to a(x) for every x ∈ X, or equivalently if the graph X×{a} 
onsistsof regular values for (π, f) : E → X ×R. In this 
ase

M = (f − aπ)−1(0) = {z ∈W | f(z) = a(π(z))}is a 
odimension one submanifold of W , and the restri
tion π : M → X is still asubmersion.For X ∈ X and smooth real fun
tions
a0 ≤ a1 : X → R, ε : X → (0,∞)we shall 
onsider submanifolds
W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞.The three proje
tions will be denoted

π : W → X, f : W → R, j : W → Rd−1+∞unless otherwise spe
i�ed.De�nition 2.6. For X ∈ X and smooth real fun
tions a0 ≤ a1 and ε as above,the set C⋔
d (X; a0, a1, ε) 
onsists of all submanifolds

W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞whi
h satis�es the following 
onditions: 9



(i) π : W → X is a submersion with d-dimensional �bers,(ii) (π, f) : W → X × (a0 − ε, a1 + ε) is proper,(iii) The restri
tion of (π, f) to (π, f)−1(X × (aν − ε, aν + ε)) is a submersion for
ν = 0, 1.The three 
onditions imply that π : W → X is a smooth �ber bundle ratherthan just a submersion. Indeed for ea
h ν = 0, 1, restri
ting (π, f) gives a map

(π, f)−1(X × (aν − ε, aν + ε))→ X × (aν − ε, aν + ε)whi
h is a proper submersion, and hen
e a smooth �ber bundle by Ehresmann's�bration lemma, 
f. [BJ82, p. 84℄. Similarly the restri
tion of π to
W [a0, a1] = W ∩X × [a0, a1]×Rd−1+∞is a smooth �ber bundle with boundary. The result for π : W → X follows bygluing the 
ollars.We remove the dependen
e on ε and de�ne
C⋔

d (X; a0, a1) = colim
ε→0

C⋔

d (X; a0, a1, ε).De�nition 2.7. For X ∈ X,
C⋔

d (X) =
∐

C⋔

d (X; a0, a1).The disjoint union varies over all pairs of smooth fun
tions with a0 ≤ a1 and su
hthat {x | a0(x) = a1(x)} is open (hen
e a union of 
onne
ted 
omponents of X).This de�nes a sheaf C⋔
d .Taking union of embedded manifolds gives a partially de�ned map

C⋔

d (X; a0, a1)× C
⋔

d (X; a1, a2)→ C⋔

d (X; a0, a2)and de�nes a 
ategory stru
ture on C⋔
d (X) with the obje
ts (or identity mor-phisms) 
orresponding to a0 = a1.A smooth map ϕ : Y → X indu
es a map of 
ategories ϕ∗ : C⋔

d (X) → C⋔
d (Y )by the pull-ba
k 
onstru
tion of � 2.2: For

W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞,

ϕ∗W = {(y, u, r) | (ϕ(y), u, r) ∈ W} is an element of C⋔
d (Y ; a0ϕ, a1ϕ, εϕ). Thisgives a CAT-valued sheaf

C⋔

d : X→ CAT,where CAT is the 
ategory of small 
ategories.An obje
t of C⋔
d (pt) is represented by a d-manifoldW ⊆ (a−ε, a+ε)×Rd−1+∞su
h that f : W → (a − ε, a + ε) is a proper submersion. Thus M = f−1(0) ⊆Rd−1+∞ is a 
losed (d− 1)-manifold. Only the germ of W near M is well-de�ned.As an abstra
t manifold, W is di�eomorphi
 to M × (a − ε, a + ε), but theembedding into (a − ε, a + ε) × Rd−1+∞ need not be the produ
t embedding.Hen
e the germ of W near M 
arries slightly more information than just thesubmanifold M ⊆ {a} ×Rd−1+∞. This motivates10



De�nition 2.8. Let Cd(X; a0, a1, ε) ⊆ C⋔
d (X; a0, a1, ε) be the subset satisfyingthe further 
ondition(iv) For x ∈ X and ν = 0, 1, let Jν be the interval ((aν − ε)(x), (aν + ε)(x)) ⊆ R,and let Vν = (π, f)−1({x} × Jν) ⊆ {x} × Jν ×Rd−1+∞. Then

Vν = {x} × Jν ×Mfor some (d− 1)-dimensional submanifold M ⊆ Rd−1+∞.De�ne Cd(X; a0, a1) ⊆ C⋔
d (X; a0, a1) and Cd(X) ⊆ C⋔

d (X) similarly.It is easy to see that Cd(X) is a full sub
ategory of C⋔
d (X) and that

Cd : X→ CATis a sheaf of 
ategories, isomorphi
 to the sheaf C∞(−,Cd), where Cd is equippedwith the (in�nite dimensional) smooth stru
ture des
ribed in se
tion 2.1. Inparti
ular we get a 
ontinuous fun
tor
η : |Cd| → Cd.Proposition 2.9. Bη : B|Cd| → BCd is a weak homotopy equivalen
e.Proof. The spa
e Nk|Cd| is the realization of the simpli
ial set

[l] 7→ NkCd(∆
l
e) = C∞(∆l

e, NkC).A theorem from [Mil57℄ asserts that the realization of the singular simpli
ial setof any spa
e Y is weakly homotopy equivalent to Y itself. This is also the 
ase ifone uses the extended simpli
es ∆k
e to de�ne the singular simpli
ial set, and formanifolds it is also true if we use smooth maps. This proves that the map

Nkη : Nk|Cd| → NkCdis a weak homotopy equivalen
e for all k, and hen
e that Bη is a weak homotopyequivalen
e. �2.4. Co
y
le sheaves. We review the 
onstru
tion from [MW02, �4.1℄ of a modelfor the 
lassifying spa
e 
onstru
tion at the sheaf level.Let F be any CAT-valued sheaf on X. There is an asso
iated set valued sheaf
βF. Choose, on
e and for all, an un
ountable set J . An element of βF(X) is apair (U,Φ) where U = {Uj | j ∈ J} is a lo
ally �nite open 
over of X, indexed by
J , and Φ a 
ertain 
olle
tion of morphisms. In detail: given a non-empty �nitesubset R ⊆ J , let UR be the interse
tion of the Uj's for j ∈ R. Then Φ is a
olle
tion ϕRS ∈ N1F(US) indexed by pairs R ⊆ S of non-empty �nite subsets of
J , subje
t to the 
onditions(i) ϕRR = idcR

for an obje
t cR ∈ N0F(UR),(ii) For ea
h non-empty �nite R ⊆ S, ϕRS is a morphism from cS to cR|US,(iii) For all triples R ⊆ S ⊆ T of �nite non-empty subsets of J , we have
ϕRT = (ϕRS|UT ) ◦ ϕST . (2.8)11



Theorem 4.1.2 of [MW02℄ asserts a weak homotopy equivalen
e
|βF| ≃ B|F|. (2.9)Remark 2.10. In the 
ase F(X) = Map(X,C) for some topologi
al 
ategory Cthe 
onstru
tion βF takes the following form. Let XU be the topologi
al 
ategoryfrom [Seg68℄:

obXU =
∐

R

UR morXU =
∐

R⊆S

US,i.e. XU is the topologi
al poset of pairs (R, x), where R ⊆ J is a �nite non-emptysubset and x ∈ UR. If R ⊆ S and x = y, then there is pre
isely one morphism
(S, x)→ (R, y), otherwise there is none.Then (2.8) amounts to a 
ontinuous fun
tor Φ: XU → C. In general, (2.8)amounts to a fun
tor X̃U → F, where X̃U = C∞(−, XU) is the (representable)sheaf of posets asso
iated to XU.A partition of unity {λj | j ∈ J} subordinate to U de�nes a map from X to
BXU and Φ a map from BXU to BC. This indu
es a map

βF[X]→ [X,BC]and (2.9) asserts that this is a bije
tion for all X.3. The Thom spe
tra and their sheaves3.1. The spe
trum MT (d) and its in�nite loop spa
e. We write G(d, n) forthe Grassmann manifold of d-dimensional linear subspa
es of Rd+n and G+(d, n)for the double 
over of G(d, n) where the subspa
e is equipped with an orientation.There are two distinguished ve
tor bundles over G(d, n), the tautologi
al d-dimensional ve
tor bundle Ud,n 
onsisting of pairs of a d-plane and a ve
tor inthat plane, and its orthogonal 
omplement, the n-dimensional ve
tor bundle U⊥
d,n.The dire
t sum Ud,n ⊕ U

⊥
d,n is the produ
t bundle G(d, n)×Rd+n.The Thom spa
es (one point 
ompa
ti�
ations) Th(U⊥

d,n) form the spe
trum
MT (d) as n varies. Indeed, sin
e U⊥

d,n+1 restri
ts over G(d, n) to the dire
t sumof U⊥
d,n and a trivial line, there is an indu
ed map

S1 ∧ Th(U⊥
d,n)→ Th(U⊥

d,n+1). (3.1)The (n + d)th spa
e of the spe
trum MT (d) is Th(U⊥
d,n), and (3.1) provides thestru
ture maps. The asso
iated in�nite loop spa
e is therefore

Ω∞
MT (d) = colim

n→∞
Ωn+d Th(U⊥

d,n),where the maps in the 
olimit
Ωn+d Th(U⊥

d,n)→ Ωn+d+1 Th(U⊥
d,n+1)are the (n + d)-fold loops of the adjoints of (3.1).12



There is a 
orresponding oriented version MT (d)+ where one uses the Thomspa
es of pull-ba
ks θ∗U⊥
d,n, θ : G+(d, n)→ G(d, n). The spe
trum MT (d)+ mapsto MT (d) and indu
es

Ω∞
MT (d)+ → Ω∞

MT (d).Proposition 3.1. There are homotopy �bration sequen
es
Ω∞

MT (d) −→ Ω∞Σ∞(BO(d)+)
∂
−−→ Ω∞

MT (d− 1),

Ω∞
MT (d)+ −→ Ω∞Σ∞(BSO(d)+)

∂
−−→ Ω∞

MT (d− 1)+.Proof. For any two ve
tor bundles E and F over the same base B there is a 
o�bersequen
e
Th(p∗E)→ Th(E)→ Th(E ⊕ F ) (3.2)where p : S(F )→ X is the bundle proje
tion of the sphere bundles.Apply this to X = G(d, n), E = U⊥

d,n, F = Ud,n. The sphere bundle is
S(Ud,n) = O(n+ d)/O(n)×O(d− 1).Sin
e G(d−1, n) = O(n+d−1)/O(n)×O(d−1), the natural map G(d−1, n)→

S(Ud,n) is (n+d−2)-
onne
ted. The bundle p∗U⊥
d,n over S(Ud,n) restri
ts to U⊥

d−1,nover G(d− 1, n), so
Th(U⊥

d−1,n)→ Th(p∗U⊥
d,n)is (2n + d − 2)-
onne
ted. The right-hand term in (3.2) is G(d, n)+ ∧ S

n+d, andthe map G(d, n)→ BO(d) is (n− 1)-
onne
ted (BO(d) = G(d,∞)).The 
o�ber sequen
e (3.2) gives a 
o�ber sequen
e of spe
tra
Σ−1

MT (d− 1)→ MT (d)→ Σ∞(BO(d)+)→ MT (d− 1) (3.3)and an asso
iated homotopy �bration sequen
e
Ω∞

MT (d)→ Ω∞Σ∞(BO(d)+)→ Ω∞
MT (d− 1)of in�nite loop spa
es. The oriented 
ase is 
ompletely similar. �Remark 3.2. For d = 1, the sequen
es in Proposition 3.1 are

Ω∞
MT (1) −→ Ω∞Σ∞(RP∞

+ )
∂
−−→ Ω∞Σ∞

Ω∞
MT (1)+ −→ Ω∞Σ∞ ∂

−−→ Ω∞Σ∞ × Ω∞Σ∞.In the �rst sequen
e, ∂ is the stable transfer asso
iated with the universal double
overing spa
e. In the oriented 
ase, ∂ is the diagonal. Thus
Ω∞

MT (1) = Ω∞RP∞
−1, Ω∞

MT (1)+ = Ω(Ω∞Σ∞).The oriented Grassmannian G+(2,∞) is homotopy equivalent to CP∞, and thespa
e Ω∞
MT (2)+ is homotopy equivalent to the spa
e Ω∞CP∞

−1, in the notationfrom [MW02℄. 13



The 
o�ber sequen
e (3.3) de�nes a dire
t system of spe
tra
MT (0)→ ΣMT (1)→ · · · → Σd−1

MT (d− 1)→ Σd
MT (d)→ · · · (3.4)whose dire
t limit is the universal Thom spe
trum usually denoted MO. Thehomotopy groups of MO form the unoriented bordism ring

πd−1MO = MOd−1(pt) = ΩO
d−1.The dire
t system (3.4) 
an be thought of as a �ltration of MO, with �ltrationquotients ΣdBO(d)+. In parti
ular, the maps in the dire
t system indu
e anisomorphism

π−1MT (d) = πd−1Σ
d
MT (d)

∼=
−→ πd−1MO = ΩO

d−1,and an exa
t sequen
e
π0MT (d+ 1)

χ
−→ Z Sd

−→ π0MT (d)→ ΩO
d → 0. (3.5)The map χ : π0MT (d + 1) → Z 
orresponds under the homotopy equivalen
eof our main theorem to the map that to a 
losed (d + 1)-manifold W , thoughtof as an endomorphism in Cd+1 of the empty d-manifold, asso
iates the Euler
hara
teristi
 χ(W ) ∈ Z. The map Sd : Z → π0MT (d) 
orresponds to the d-sphere Sd, thought of as an endomorphism in Cd of the empty (d − 1)-manifold.For odd d, χ is surje
tive (χ(RP d+1) = 1), so the sequen
e (3.5) de�nes anisomorphism π0MT (d) ∼= ΩO

d . On the other hand χ = 0 for even d by Poin
aréduality, so the sequen
e (3.5) works out to be
0→ Z Sd

−→ π0MT (d)→ ΩO
d → 0.3.2. Using Phillips' submersion theorem. We give a sheaf model for thespa
e Ω∞−1

MT (d).De�nition 3.3. For a natural number n > 0 and X ∈ X, an element of Dd(X;n)is a submanifold
W ⊆ X ×R×Rd−1+n,with proje
tions π, f , and j, respe
tively, su
h that(i) π : W → X is a submersion with d-dimensional �bers.(ii) (π, f) : W → X ×R is proper.This de�nes a set valued sheaf Dd(−;n) ∈ Sh(X). Let Dd be the 
olimit (in

Sh(X)) of Dd(−;n) as n → ∞. Expli
itly, Dd(X) is the set of submanifolds
W ⊆ X × R × Rd−1+∞ satisfying (i) and (ii) above, and su
h that for ea
h
ompa
t K ⊆ X there exists an n with π−1(K) ⊆ K ×R×Rd−1+n.We will prove the following theorem by 
onstru
ting a natural bije
tion [X,Ω∞−1

MT (d)] ∼=
Dd[X].Theorem 3.4. There is a weak homotopy equivalen
e

|Dd|
≃
−−→ Ω∞−1

MT (d).14



Given W ⊆ X×R×Rd−1+n with n-dimensional normal bundle N →W , thereis a ve
tor bundle map
N

γ̂
//

��

U⊥
d,n

��

W γ
// G(d, n).

(3.6)WriteWx for the interse
tionWx = W∩{x}×R×Rd−1+n. Then γ(z) = Tz(Wπ(z)),
onsidered as a subspa
e of Rd+n. The normal �ber Nz of W in X ×R×Rd−1+nis the normal �ber of Wx in Rd+n, so is equal to γ(z)⊥; this de�nes γ̂ in (3.6).Next we pi
k a regular value for f : W → R, say 0 ∈ R, and let M = f−1(0).Then the normal bundle N ofW ⊆ X×R×Rd−1+n restri
ts to the normal bundleof M ⊂ X ×Rd−1+n. Choose a tubular neighborhood of M in X ×Rd−1+n, andlet
e : N |M → X ×Rd−1+nbe the asso
iated embedding ([BJ82, �12℄). The indu
ed map of one-point 
om-pa
ti�
ations, 
omposed with (3.6), gives a map

g : X+ ∧ S
d−1+n → Th(U⊥

d,n) (3.7)whose homotopy 
lass is independent of the 
hoi
es made (when n ≫ d). Itsadjoint is a well-de�ned homotopy 
lass of maps from X to Ω∞−1
MT (d). Thisde�nes

ρ : Dd[X]→ [X,Ω∞−1
MT (d)].We now 
onstru
t an inverse to ρ using transversality and Phillips' submersiontheorem. We give the argument only in the 
ase where X is 
ompa
t. Anymap (3.7) is homotopi
 to a map that is transversal to the zero se
tion, and

M = g−1(G(d, n)) ⊆ X ×Rd−1+nis a submanifold. The proje
tion π0 : M → X is proper, and the normal bundleis N = g∗(U⊥
d,n). De�ne T πM = g∗(Ud,n) so that

N ⊕ T πM = M ×Rn+d.Combined with the bundle information of the embedding of M in X × Rd−1+nthis yields an isomorphism of ve
tor bundles over M
TM ×Rn+d

∼=
−−→ (π∗

0TX ⊕ T
πM)×Rd−1+n. (3.8)By standard obstru
tion theory (
f. [MW02℄, Lemma 3.2.3) there is an isomor-phism (unique up to 
on
ordan
e)

π̂0 : TM ×R ∼=
−−→ π∗

0TX ⊕ T
πM15



that indu
es (3.8). Set W = M ×R, π1 = π0 ◦ prM and T πW = pr∗M T πM . Then
TW

∼=
−−→ π∗

1TX ⊕ T
πW, (3.9)and sin
eW has no 
losed 
omponents we are in a position to apply the submersiontheorem. Indeed, (3.9) gives a bundle epimorphism π̂1 : TW → TX over π1 : W →

X. By Phillips' theorem, there is a homotopy (πt, π̂t), t ∈ [1, 2] through bundleepimorphisms, from (π1, π̂1) to a pair (π2, dπ2), i.e. to a submersion π2. Let
f : W → R be the proje
tion. Then (π2, f) : W → X×R is proper sin
e we haveassumed thatX is 
ompa
t. For n≫ d we get an embeddingW ⊂ X×R×Rd−1+nwhi
h lifts (π2, f).If n ≫ d the original embedding W ⊂ X × R × Rd−1+∞ is isotopi
 to anembedding where the proje
tion onto X is the submersion π and with (π, f)proper. (This is dire
t from [Phi67℄ when X is 
ompa
t; and in general a slightextension.) We have 
onstru
ted

σ : [X,Ω∞−1
MT (d)]→ Dd[X]. (3.10)Proposition 3.5. The maps σ and ρ are inverse bije
tions.Proof. By 
onstru
tion ρ ◦ σ = id. The other 
omposite σ ◦ ρ = id uses that anelement W ∈ Dd(X) is 
on
ordant to one where W is repla
ed by M ×R and fby the proje
tion;M is the inverse image of a regular value of f . The 
on
ordan
eis given in Lemma 2.5.2 of [MW02℄. �Remark 3.6. One 
an de�ne σ also for non-
ompa
t X, but it requires a slightextension of [Phi67℄ to see that (π2, f) : W → X ×R 
an be taken to be proper.The proof of Theorem 3.4 above only uses (3.10) for 
ompa
t X, in fa
t for X asphere. 4. Proof of the main theoremThe proof uses an auxiliary sheaf of 
ategories D⋔

d and a zig-zag of fun
tors
Dd

α
←− D⋔

d

γ
−→ C⋔

d

δ
←− CdThe sheaf Cd is the 
obordism 
ategory sheaf, de�ned in se
tion 2.3 above, and

C⋔
d is the slightly larger sheaf, de�ned in the same se
tion. The sheaf Dd is, byTheorem 3.4, a sheaf model of Ω∞−1

MT (d). We regard Dd as a sheaf of 
ategorieswith only identity morphisms. To prove the main theorem it will su�
e to provethat α, γ and δ all indu
e weak equivalen
es.De�nition 4.1. Let D⋔
d (X) denote the set of pairs (W, a) su
h that(i) W ∈ Dd(X),(ii) a : X → R is smooth,(iii) f : W → R is �berwise transverse to a.Thus, D⋔

d is a subsheaf of Dd×R̃, where R̃ is the representable sheaf C∞(−,R).It is also a sheaf of posets, where (W, a) ≤ (W ′, a′) when W = W ′, a ≤ a′ and
(a′ − a)−1(0) ⊆ X is open. 16



Re
all from se
tion 2.3 that f : W → R is �berwise transverse to a : X → Rif fx : Wx → R is transverse to a(x) ∈ R for all x ∈ X. By properness of (π, f),there will exist a smooth map ε : X → (0,∞), su
h that the restri
tion of (π, f)to the open subset
Wε = (π, f)−1(X × (a− ε, a+ ε)),is a (proper) submersion Wε → X × (a− ε, a+ ε). Thus the 
lass [Wε], as ε→ 0,is a well-de�ned element of C⋔

d (X; a, a) and hen
e gives an obje
t
γ(W, a) = ([Wε], a, a) ∈ obC⋔

d (X).This de�nes the fun
tor γ : D⋔
d → C⋔

d on the level of obje
ts, and it is de�nedsimilarly on morphisms.Proposition 4.2. The forgetful map α : βD⋔
d → Dd is a weak equivalen
e.Proof. We apply the relative surje
tivity 
riteria 2.5 to the map βD⋔

d → Dd. Theargument is 
ompletely analogous to the proof of Proposition 4.2.4 of [MW02℄.First we show that βD⋔
d (X)→ Dd(X) is surje
tive. Let W ⊆ X×R×Rd−1+∞be an element of Dd(X). For ea
h x ∈ X we 
an 
hoose ax ∈ R su
h that ax isa regular value of fx : Wx = π−1(x)→ R. The same number ax will be a regularvalue of fy : Wy → R for all y in a small neighborhood Ux ⊆ X of x. Thereforewe 
an pi
k a lo
ally �nite open 
overing U = (Uj)j∈J of X, and real numbers aj ,so that fj : Wj → R is �berwise transverse to aj , where Wj = W |Uj ∈ Dd(Uj).Thus (Wj, aj) is an obje
t of D⋔

d (Uj) with aj : Uj → R the 
onstant map.For ea
h �nite subset R ⊆ J , set WR = W |UR and aR = min{aj | j ∈ R}. If
R ⊆ S then aS ≤ aR and (WS, aS, aR) is an element ϕRS ∈ N1D

⋔
d (US). The pair

(U,Φ) with Φ = (ϕRS)R⊆S is an element of βD⋔
d (US) that maps to W by α.Se
ond, let A be a 
losed subset of X, W ⊆ X × R × Rd−1+∞ an element of

Dd(X), and suppose we are given a lift to βD⋔

d (U ′) of the restri
tion of W tosome open neighborhood U ′ of A. This lift is given by a lo
ally �nite open 
over
U′ = {Uj |j ∈ J}, together with smooth fun
tions aR : UR → R, one for ea
h �nitenon-empty R ⊆ J . Let J ′ ⊆ J denote the set of j for whi
h Uj is non-empty, andlet J ′′ = J − J ′.Choose a smooth fun
tion b : X → [0,∞) with A ⊆ Int b−1(0) and b−1(0) ⊆ U ′.Let q = 1/b : X → (0,∞]. We 
an assume that q(x) > aR(x) for R ⊆ J ′ (make
U ′ smaller if not). For ea
h x ∈ X − U ′, we 
an 
hoose an a ∈ R satisfying(i) a > q(x)(ii) a is a regular value for fx : π−1(x)→ R.The same number a will satisfy (i) and (ii) for all x in a small neighborhood
Ux ⊆ X − A of X, so we 
an pi
k an open 
overing U′′ = {Uj | j ∈ J ′′} of
X − U ′, and real numbers aj , su
h that (i) and (ii) are satis�ed for all x ∈ Uj .The 
overing U′′ 
an be assumed lo
ally �nite. For ea
h �nite non-empty R ⊆ J ′′,set aR = min{aj | j ∈ R}. For R ⊆ J = J ′ ∪ J ′′, write R = R′ ∪ R′′ with R′ ⊆ J ′and R′′ ⊆ J ′′, and de�ne aR = aR′ if R′ 6= ∅.17



This de�nes smooth fun
tions aR : UR → R for all �nite non-empty subsets
R ⊆ J (aR is a 
onstant fun
tion for R ⊆ J ′′) with the property that R ⊆ Simplies aS ≤ aR|US. This de�nes an element of βD⋔

d (X) whi
h lifts W ∈ Dd(X)and extends the lift given near A. �Proposition 4.3. The in
lusion fun
tor γ : D⋔
d → C⋔

d indu
es an equivalen
e
B|D⋔

d | → B|C⋔
d |.Proof. We show that γ indu
es an equivalen
e |NkD

⋔
d | → |NkC

⋔
d | for all k, usingthe relative surje
tivity 
riteria 2.5.An element of NkC

⋔
d (X) 
an be represented by a sequen
e of fun
tions a0 ≤

· · · ≤ ak : X → R, a fun
tion ε : X → (0,∞), and a submanifold W ⊆ X × (a0−
ε, ak+ε)×Rd−1+∞. Choosing a di�eomorphismX×(a0−ε, ak+ε)→ X×R whi
his the in
lusion map on X × (a0 − ε/2, ak + ε/2), lifts the element to NkD

⋔
d (X).This proves the absolute 
ase and the relative 
ase is similar. �Proposition 4.4. The forgetful fun
tor δ : Cd → C⋔

d indu
es a weak equivalen
e
B|Cd| → B|C⋔

d |.Proof. Again we prove the stronger statement that δ indu
es an equivalen
e
|NkCd| → |NkC

⋔
d | for all k.First, remember that two smooth maps f : M → P and g : N → P are 
alledtransversal if their produ
t is transverse to the diagonal in P × P . We applyCriteria 2.5, and �rst prove that δ is surje
tive on 
on
ordan
e 
lasses. Let

ψ : R → [0, 1] be a �xed smooth fun
tion whi
h is 0 near (−∞, 1
3
] and is 1 near

[2
3
,∞), satisfying that ψ′ ≥ 0 and that ψ′ > 0 on ψ−1((0, 1)).Given smooth fun
tions a0 ≤ a1 : X → R with (a1 − a0)

−1(0) ⊆ X an opensubset, we de�ne ϕ : X ×R→ X ×R by the formulas
ϕ(x, u) = (x, ϕx(u)),

ϕx(u) =

{
a0(x) + (a1(x)− a0(x))ψ

(
u−a0(x)

a1(x)−a0(x)

) if a0(x) < a1(x),

a0(x) if a0(x) = a1(x).Suppose that W ∈ C⋔
d (X; a0, a1) with a0 ≤ a1. The �berwise transversality
ondition (iii) of De�nition 2.6 implies that (π, f) and ϕ are transverse, and hen
ethat

Wϕ = ϕ∗W = {(x, u, z) | π(z) = x, f(z) = ϕx(u)}is a submanifold of X ×R×W . Using the embedding W ⊂ X ×R×Rd−1+∞ we
an rewrite Wϕ as
Wϕ = {(x, u, r) | (x, ϕx(u), r) ∈W} ⊆ X ×R×Rd−1+∞.It follows that
Wϕ ∩

(
X × (−∞, a0 + ε)×Rd−1+∞

)
= M0 × (−∞, a0 + ε)

Wϕ ∩
(
X × (a1 − ε,+∞)×Rd−1+∞

)
= M1 × (a1 − ε,+∞),18



where ε = 1 on (a1 − a0)
−1(0) and ε = 1

3
(a1 − a0) otherwise. Thus Wϕ de�nes anelement of Cd(X; a0, a1, ε), and in turn an element of Cd(X; a0, a1).We have left to 
he
k that Wϕ is 
on
ordant toW in C⋔

d (X; a0, a1). To this endwe interpolate between the identity and our �xed fun
tion ψ : R→ [0, 1]. De�ne
ψs(u) = ρ(s)ψ(u) + (1− ρ(s))uwith ρ any smooth fun
tion from R to [0, 1] for whi
h ρ = 0 near (−∞, 0] and

ρ = 1 near [1,∞). De�ne Φ: X ×R ×R → X × R as Φ(x, s, u) = (x,Φx(s, u))where
Φx(s, u) =

{
a0(x) + (a1(x)− a0(x))ψs

(
u−a0(x)

a1(x)−a0(x)

) if a0(x) < a1(x),

ρ(s)a0(x) + (1− ρ(s))u if a0(x) = a1(x).

Φ is transversal to (π, f), and the manifold
WΦ = {((x, s), u, r) | (x,Φx(s, u), r) ∈W} ⊆ (X ×R)×R×Rd−1+∞de�nes the required 
on
ordan
e in C⋔

d (X ×R) from W to Wϕ.We have proved that
δ : N0Cd[X]→ N0C

⋔

d [X] and
δ : N1Cd[X]→ N1C

⋔

d [X]are both surje
tive. The obvious relative argument is similar, and we 
an use Cri-teria 2.5. This proves that δ : |NkCd| → |NkC
⋔
d | is a weak homotopy equivalen
efor k = 0 and k = 1. The 
ase of general k is similar. �Remark 4.5. There are versions of the sheaves D⋔

d , C⋔
d , Cd, where the fun
tions

a : X → R are required to be lo
ally 
onstant. The proofs given in this se
tionremain valid for these sheaves (the point is that in the proof of Proposition 4.2,we are 
hoosing the fun
tions aj : Uj → R lo
ally 
onstant anyway). This provesthe 
laim in the last senten
e of Remark 2.1(ii).5. Tangential stru
turesWe prove the version of the Main Theorem with tangential stru
tures, as an-noun
ed in the introdu
tion. First we give the pre
ise de�nitions.Fix d ≥ 0 as before, and let BO(d) = G(d,∞) denote the Grassmannian of
d-planes in R∞, Ud → BO(d) the universal d-dimensional ve
tor bundle, and
EO(d) its frame bundle. Let

θ : B → BO(d)be a Serre �bration (e.g. a �ber bundle). We think of θ as stru
tures on d-dimensional ve
tor bundles: If f : X → BO(d) 
lassi�es a ve
tor bundle over X,then a θ-stru
ture on the ve
tor bundle is a map l : X → B with θ ◦ l = f .An important 
lass of examples 
omes from group representations. If G is atopologi
al group and ρ : G → GL(d,R) is a representation, then it indu
es amap Bρ : BG→ BGL(d,R) ≃ BO(d), whi
h we 
an repla
e by a Serre �bration.19



In this 
ase, a θ-stru
ture is equivalent to a lifting of the stru
ture group to G.These examples in
lude SO(d), Spin(d), Pin(d), U(d/2) et
.Another important 
lass of examples 
omes from spa
es with an a
tion of O(d).If Y is an O(d)-spa
e, we let B = EO(d)×O(d)Y . If Y is a spa
e with trivial O(d)-a
tion, then a θ-stru
ture amounts to a map fromX to Y . If Y = (O(d)/SO(d))×
Z, with trivial a
tion on Z, then a θ-stru
ture amounts to an orientation of theve
tor bundle together with a map from X to Z.The proof of the main theorem applies almost verbatim if we add θ-stru
tures tothe tangent bundles of all d-manifolds in sight. We give the ne
essary de�nitions.If V → X and U → Y are two ve
tor bundles, a bundle map V → U is a
ontinuous map of the total spa
es of the ve
tor bundles, whi
h on ea
h �ber of
V restri
ts to a linear isomorphism onto a �ber of U . Let Bun(V, U) denote thespa
e of all bundle maps, equipped with the 
ompa
t-open topology. If U = Udis the universal bundle over BO(d) (and X is a CW 
omplex), then Bun(V, U) is
ontra
tible if V is d-dimensional.A (non-identity) point in morCd is given by (W, a0, a1), where a0 < a1 ∈ R and
W is a submanifold (with boundary) of [a0, a1] × Rd−1+n, n ≫ 0. The tangentspa
es TpW de�ne a map

τW : W → G(d, n)→ BO(d),
overed by a bundle map TW → Ud.De�nition 5.1. Let Cθ be the 
ategory with morphisms (W, a0, a1, l), where
(W, a0, a1) ∈ morCd and l : W → B is a map satifying θ ◦ l = τW . We topologize
morCθ as in (2.4), but with B∞(W ) repla
ed with Bθ

∞(W ) = Embθ(W, [0, 1] ×Rd−1+∞)/Diff(W ), where Embθ is de�ned by the pullba
k square
Embθ(W, [0, 1]×Rd−1+∞) //

��

Bun(TW, θ∗Ud)

θ

��

Emb(W, [0, 1]×Rd−1+∞)
τW

// Bun(TW,Ud).

(5.1)The obje
ts of Cθ are topologized similarly.The spa
e Bun(TW,Ud) is 
ontra
tible, so the in
lusion of the �ber produ
t inthe produ
t
Embθ(W, [0, 1]×Rd−1+∞)→ Emb(W, [0, 1]×Rd−1+∞)× Bun(TW, θ∗Ud)is a homotopy equivalen
e. Dividing out the a
tion of Diff(W ) we get a homotopyequivalen
e

Bθ
∞(W )

≃
−→ E Diff(W )×Diff(W ) Bun(TW, θ∗Ud).20



Thus, up to homotopy,
obCθ ≃

∐

M

E Diff(M)×Diff(M) Bun(R× TM, θ∗Ud), (5.2)
morCθ ≃

∐

W

E Diff(W )×Diff(W ) Bun(TW, θ∗Ud), (5.3)where M runs over 
losed (d − 1)-manifolds, one in ea
h di�eomorphism 
lass,and W runs over 
ompa
t d-dimensional 
obordisms, one in ea
h di�eomorphism
lass. As before, Diff(W ) ≃ Diff(W, {∂in}, {∂out}) denotes the topologi
al groupof di�eomorphisms that restri
t to di�eomorphisms of the in
oming and outgoingboundaries separately (or to produ
t di�eomorphisms on a 
ollar).The left hand side of the homotopy equivalen
e (5.3) is the spa
e of all mor-phisms in Cθ. The spa
e of morphisms between two �xed obje
ts 
an be de-termined similarly. We �rst treat the 
ase θ = id. Let c0 = (M0, a0) and
c1 = (M1, a1) be two obje
ts of Cd, given by real numbers a0 < a1, 
losed man-ifolds Mν ⊆ Rd−1+∞. Let W be a 
ompa
t manifold and h0 : [0, 1) ×M0 → Wand h1 : (0, 1]×M1 →W be 
ollars as in (2.3). Let

Emb∂(W, [0, 1]×Rd−1+∞) ⊆ Emb(W, [0, 1]×Rd−1+∞)be the subspa
e 
onsisting of embeddings j whi
h satisfy j ◦ h0(t, x) = (t, x)for t su�
iently 
lose to 0 and j ◦ h1(t, x) = (t, x) for t su�
iently 
lose to1. Let Diff(W ; ∂W ) ⊆ Diff(W ) be the subgroup 
onsisting of di�eomorphismsthat restri
t to the identity on a neighborhood of ∂W . This subgroup a
ts on
Emb∂(W, [0, 1]×Rd−1+∞) and we let B∂

∞(W ) be the orbit spa
e
B∂

∞(W ) = Emb∂(W, [0, 1]×Rd−1+∞)/Diff(W ; ∂W ).Then, up to homeomorphism, the spa
e of morphisms is
Cd(c0, c1) ∼=

∐

W

B∂
∞(W ),where the disjoint union is over 
obordisms W from M0 to M1, one in ea
h dif-feomorphism 
lass relative to M0 and M1. Sin
e Emb∂(W, [0, 1] × Rd−1+∞) is
ontra
tible, we get the homotopy equivalen
e

Cd(c0, c1) ≃
∐

W

BDiff(W ; ∂W ).The 
ase of a general θ : B → BO(d) is handled similarly. If l0 : M0 → B and
l1 : M1 → B are two maps satisfying θ◦ lν = τR×Mν

and cν = (Mν , aν , lν), ν = 0, 1,then we get
Cθ(c0, c1) ≃

∐

W

E Diff(W ; ∂W )×Diff(W ;∂W ) Bun∂(TW, θ∗Ud), (5.4)where Bun∂(TW, θ∗Ud) ⊆ Bun(TW, θ∗Ud) is the subspa
e 
onsisting of bundlemaps whi
h agree with the maps indu
ed by l0 and l1 over a neighborhood of ∂W .21



Let us 
onsider the 
ase of ordinary orientations in more detail. Here B =
BSO(d) is the oriented Grassmanian 
onsisting of d-dimentional linear subspa
esof R∞ together with a 
hoi
e of orientation, and θ : B → BO(d) is the twofold
overing spa
e that forgets the orientation. Let W be a 
obordism between theoriented manifolds M0 and M1. Then the set

Or(W ; ∂W ) = π0 Bun∂(TW, θ∗Ud)is the set of orientations of W agreeing with the orientations given near ∂W(i.e. the 
ollars h0 and h1 are oriented embeddings). Furthermore, the 
onne
ted
omponents of Bun∂(TW, θ∗Ud) are 
ontra
tible, so we get a homotopy equivalen
e
E Diff(W ; ∂W )×Diff(W ;∂W ) Bun∂(TW, θ∗Ud) ≃

EDiff(W ; ∂W )×Diff(W ;∂W ) Or(W ; ∂W ).The stabilizer of an element of Or(W ; ∂W ) is the subgroup Diff+(W ; ∂W ) of ori-entation preserving di�eomorphisms, restri
ting to the identity near the boundary.Thus we get
C+

d (c0, c1) ≃
∐

W

BDiff+(W ; ∂W ),where the disjoint union is over all oriented 
obordisms W from M0 to M1, onein ea
h oriented di�eomorphism 
lass.De�nition 5.2. Let θd,n : Bd,n → G(d, n) be the pullba
k
Bd,n

//

θd,n

��

B

θ
��

G(d, n) // BO(d),and let MT (θ) be the spe
trum whose (n+ d)th spa
e is Th(θ∗d,nUd,n).The 
o�ber sequen
e (3.3) generalizes to a 
o�ber sequen
e
MT (θ) −→ Σ∞B+ −→ MT (θd−1),where θd−1 is the pullba
k

Bd−1
//

θd−1

��

B

θ
��

BO(d− 1) // BO(d).With these de�nitions, the general form of the main theorem (as also stated inthe introdu
tion) is that for every tangential stru
ture θ, there is a weak equiva-len
e
BCθ ≃ Ω∞−1

MT (θ) = colim
n→∞

Ωd+n−1 Th(θ∗d,nU
⊥
d,n).22



The θ-versions of the sheaves used in se
tion 4 to prove the spe
ial 
ase θ = id,are de�ned as follows.De�nition 5.3. Let W ∈ Dd(X). Let T πW be the �berwise tangent bundle ofthe submersion π : W → X. The embedding W ⊂ X×Rd+∞ indu
es a 
anoni
al
lassifying map T πW : W → BO(d). Let Dθ(X) be the set of pairs (W, l) with
W ∈ Dd(X) and l : W → B a map satisfying θ ◦ f = T πW .The sheaves Cd, C⋔

d and D⋔
d all 
onsist of submanifolds W ⊆ X × Rd+n su
hthat the proje
tion π : W → X is a submersion, together with some extra data.The tangential stru
ture versions Cθ, C⋔

θ and D⋔
θ are de�ned in the obvious way:add a lifting l : W → B of the verti
al tangent bundle T πW : W → BO(d).With these de�nitions, the proofs of se
tion 4 apply almost verbatim. We notethat the θ-versions of Theorem 3.4 and Proposition 4.4 use that θ is a Serre�bration. 6. Conne
tedness issuesThis se
tion, te
hni
ally the hardest of the paper, 
ompares the 
ategory Cθwith the positive boundary sub
ategory Cθ,∂. It is similar in spirit to se
tion�6 of [MW02℄. The two 
ategories have the same spa
e of obje
ts. The spa
eof morphisms of Cθ,∂ is as in (2.4) and De�nition 5.1, but taking only disjointunion over the W for whi
h ea
h 
onne
ted 
omponent has non-empty outgoingboundary: if W is a 
obordism from M0 to M1, then π0M1 → π0W is surje
tive.In this se
tion we proveTheorem 6.1. For d ≥ 2 and any θ : B → BO(d), the in
lusion

BCθ,∂ → BCθis a weak equivalen
e.In order to simplify the exposition we treat only the 
ase θ = id. The general
ase of an arbitrary θ-stru
ture is similar.We say that a map f : X → Y of topologi
al spa
es is π0-surje
tive if theindu
ed map π0X → π0Y is surje
tive. The subsheaf D⋔
d,∂ ⊆ D⋔

d is de�ned asfollows: (W, a0, a1) ∈ D
⋔
d (pt) is in D⋔

d,∂(pt) if the in
lusion
f−1(a1)→ f−1[a0, a1]is π0-surje
tive. In general χ = (W, a0, a1) ∈ D⋔

d (X) is in D⋔
d,∂(X) if χ|{x} ∈

D⋔
d,∂({x}) for all x ∈ X. The proof given above that |βD⋔

d | ≃ BCd (in Propositions2.9, 4.3 and 4.4) is easily modi�ed to show that |βD⋔
d,∂| ≃ BCd,∂. We will showthat the 
omposite map of sheaves βD⋔

d,∂ → βD⋔
d → Dd satis�es the relativelifting 
riteria 2.5 for all d ≥ 2. 23



6.1. Dis
ussion. We des
ribe the ideas involved and indi
ate the issues in prov-ing that the map βD⋔
d,∂ → Dd is a weak equivalen
e.As a �rst approximation we 
an try to repeat the proof for βD⋔

d → Dd (inProposition 4.2), by 
hoosing regular values ax ∈ R for fx : Wx → R �at random�(using Sard's theorem), and using that ax is a regular value for fy : Wy → Ralso for y in a small neighborhood Ux of x ∈ X. This will produ
e an element
(W, (Uj , aj)j∈J) ∈ βD⋔

d (X) but in general there is, of 
ourse, no reason to expe
tto get an element of βD⋔
d,∂(X) ⊆ βD⋔

d (X). The idea is now to deform (i.e. 
hangeby a 
on
ordan
e) the underlying W ∈ Dd(X) to an element W ′ ∈ Dd(X) su
hthat W ′ together with the regular values aj (possibly slightly perturbed) de�nesan element of βD⋔
d,∂(X).

a0

a1

a2

Figure 1.It is instru
tive to �rst 
onsider the 
ase X = pt. Given an element (W, a0 <
· · · < ak) ∈ NkD

⋔
d (pt), it is easy to see that there is a 
on
ordan
e H ∈ Dd(R)from W to W ′ su
h that (W ′, a0 < · · · < ak) ∈ NkD

⋔
d,∂(pt). Roughly, we haveto get rid of some lo
al maxima, with values between a0 and ak, of the fun
tion

f : W → R 
f. Figure 1. A naive way to do that is to �pull them up�, i.e. if p ∈Wis near a �lo
al maximum� for f : W → R, then we 
an 
hange f near p to have
f(p) > ak 
f. Figure 2. A better way (for reasons explained below) to get rid of alo
al maximum, is given in Lemma 6.2 below.

a0

a1

a2

Figure 2.For generalX it is equally easy to solve the problem lo
ally. GivenW ∈ Dd(X),suppose we have 
hosen regular values aj ∈ R and 
orresponding open 
overing24



Uj ⊆ X, j ∈ J , su
h that (W, (aj, Uj)j∈J) de�nes an element of βD⋔
d (X). Given

x ∈ X it is easy (as in the 
ase X = pt) to �nd a small neighborhood Ux ⊆ Xand a 
on
ordan
e Hx ∈ Dd(Ux × R) from W |Ux to W ′ ∈ Dd(Ux) su
h that
(W ′, (aj, Uj ∩Ux)j∈J) de�nes an element of βD⋔

d,∂(Ux). We now need to glue theselo
al 
onstru
tions.The lo
ally de�ned 
on
ordan
e Hx ∈ Dd(Ux × R) 
an be assumed to extendto Hx ∈ Dd(X × R). Namely we may 
hoose a bump fun
tion λ : X → [0, 1],supported in Ux, and whi
h is 1 in a smaller neighborhood U ′
x ⊆ Ux, and let h :

Ux×R→ Ux×R be given by h(x, t) = (x, tλ(x)). Then H ′
x = h∗Hx ∈ Dd(Ux×R)is a 
on
ordan
e whi
h is 
onstant outside the support of λ, so it extends to a
on
ordan
e H ′

x ∈ Dd(X × R). Moreover H ′
x|(U

′
x × R) = Hx|(U

′
x × R). Thus

H ′
x is a 
on
ordan
e from W to W ′ ∈ Dd(X), su
h that W ′|U ′

x ∈ Dd(U
′
x) lifts to

βDd,∂(U
′
x). Also W and W ′ agree outside Ux ⊇ U ′

x.We have des
ribed how, given a way of getting rid of a single lo
al maxima, todeform an element W ∈ Dd(X) into an element W ′ ∈ Dd(X), with the propertythatW ′|U ′
x lifts to βD⋔

d,∂(U
′
x), and su
h thatW andW ′ agree outside a larger openneighborhood Ux ⊇ U ′

x. Roughly, the idea is now to apply su
h a 
onstru
tion forsu�
iently many x ∈ X, enough that the sets U ′
x 
over X. For this to work thereis one 
riti
al issue, however. Namely it is essential that the lo
al 
onstru
tionused to get rid of �berwise lo
al maxima over U ′

x does not 
reate new �berwiselo
al maxima over Ux − U
′
x. Without this, the idea to �apply su
h a 
onstru
tionfor su�
iently many x ∈ X� will not work.The naive idea of �pulling lo
al maxima up� will not work, pre
isely for thisreason. If we �pull up� a �berwise lo
al maximum over U ′

x, we have to pull lessand less over Ux − U
′
x (as spe
i�ed by the bump fun
tion λ), whi
h will give riseto �berwise lo
al maxima of f ′ : W ′ → R over Ux − U

′
x whi
h are not �berwiselo
al maxima of f : W → R.Thus we will need a way of deforming f : W → R to get rid of lo
al maximawithout 
reating new ones in the pro
ess. Su
h a 
onstru
tion is des
ribed inLemma 6.2 below. It des
ribes a family of maps ft : Kt → R, t ∈ [0, 1] from

d-manifolds Kt, su
h that f0 is the 
onstant map 0 : Rd → R, su
h that f1 :Rd − {0} → R has limx→0 f(x) = +∞, and su
h that ft : Kt → R has no lo
almaxima, ex
ept some with value 0 ∈ R, for any t ∈ [0, 1]. Moreover ea
h Kt
ontains the open subset Rd −Dd ⊆ Kt and ft|(Rd −Dd) = 0.6.2. Surgery. The geometri
 
onstru
tion is based on the following lemma. Letus say that a map f : M → N is proper relative to an open set U ⊆ M , if
f|M−U : M − U → N is proper.Lemma 6.2. There exists a smooth (d+1)-manifold K 
ontaining U = R×(Rd−
Dd) as an open subset, and smooth maps (π, f) : K → R×R, su
h that(i) π is a submersion, and (π, f) is proper relative to U . In parti
ular, if we let

Kt = π−1(t) and Ut = U ∩Kt = {t}× (Rd−Dd), then ft : Kt → R is properrelative to Ut. 25



(ii) (π, f)(t, x) = (t, 0) for all (t, x) ∈ U ⊆ K.(iii) K0 = {0} ×Rd and f0 : K0 → R is the zero fun
tion.(iv) For all t ∈ [0, 1] and all a0 < a1 ∈ R, the following in
lusions are π0-surje
tions
Ut ∐ f

−1
t (a1)→ f−1

t ([a0, a1]) if 0 ∈ [a0, a1]

f−1
t (a1)→ f−1

t ([a0, a1]) if 0 6∈ [a0, a1].(v) For all a0 < a1 ∈ R, the in
lusion
f−1

1 (a1)→ f−1
1 ([a0, a1])is a π0-surje
tion.(vi) K1 = {1} × (Rd − {0}) and f1 : K1 → R is non-negative and has 0 ∈ R asonly 
riti
al value.(vii) T πK is a trivial ve
tor bundle.The last property, that T πK be a trivial ve
torbundle, is needed to make the
onstru
tions work in the presen
e of θ-stru
tures.As stated, the lemma is true also for d = 1, but is useful only for d > 1. For

d > 1 the set Ut is 
onne
ted, and the properties (iii) and (iv) say that the numberof elements in the quotient
Qt = π0(f

−1
t [a0, a1])/π0(f

−1
t (a1))is never larger than the number of elements in Q0. For 0 ∈ [a0, a1] and d = 1,the in
lusion Ut → f−1

t ([a0, a1]) de�nes an element [Ut] ∈ Qt, and (v) says that
[U0] ∈ Q0 is not the basepoint, then Q1 is stri
tly smaller than Q0.Proof. We will 
onstru
t K as a 
ertain pullba
k of a 2-manifold L whi
h we�rst 
onstru
t. L will 
ome with an immersion (π, j) : L → [0, 4] × [0,∞) anda fun
tion f : L → R. L will be glued from four pie
es L1, . . . , L4 whi
h we
onstru
t individually. The pie
es L1, L2 and L4 will be subsets of [0, 1]× [0,∞),and L3 will be the disjoint union of three open subsets of [0, 1] × [0,∞). In all
ases, (π, j) : Lν → [0, 1]× [0,∞) will be given by the in
lusions.Let ρ : [0,∞)→ [0, 1] be a smooth fun
tion with supp(ρ) = [0, 1], ρ(0) = 1, and
ρ′(r) ≤ 0. For s ∈ [0, 1] let qs(r) = ρ(r2) 1−s

r2+s
and let gs and ĝs be the fun
tionsgiven by

gs(r) = −qs(r)− qs(r − 2) + q0(r − 1)

ĝs(r) = sgn(r(r − 2))

(
−q0(r)− q0(r − 2) + q1−s(r − 1)−

1− s

s

)
+

1− s

s
.

gs(r) is de�ned unless r = 1 or (s, r) ∈ {0} × {0, 2}. ĝs(r) is de�ned unless
r ∈ {0, 2} or (s, r) = (1, 1) or (s, r) ∈ {0} × [0, 2]. It is easily 
he
ked that
g′s(r) = 0 only if r ≥ 3, if (s, r) ∈ (0, 1] × {0, 2}, or if (s, r) ∈ {1} × [2,∞).Similarly ĝ′s(r) = 0 only if r ≥ 3 or (s, r) ∈ (0, 1)×{1}. All isolated 
riti
al pointsof gs and ĝs are lo
al minima. 26



De�ne fun
tions f ν : Lν → R for ν = 1, 2, 4 by the following formulas, usingthe (
al
ulus) 
onvention that the set Lν ⊆ [0, 1]× [0,∞) is the largest open setfor whi
h the de�nitions make sense.
f 1(t, r) = ĝ0(r + 3(1− t))

f 2(t, r) = ĝt(r)

f 4(t, r) = gt(r + t).To de�ne f 3, let L3 = L3
− ∐ L

3
+ ∐ L

3
0, where

L3
− = {(t, r) ∈ [0, 1]× [0,∞) | t < r < t+ 1}

L3
+ = {(t, r) ∈ [0, 1]× [0,∞) | (1− t) < r < (2− t)}

L3
0 = [0, 1]× (2,∞).Let f 3 = f 3

− ∐ f
3
+ ∐ f

3
0 , where

f 3
ε (t, r) = ĝ1(r + εt).It is easily 
he
ked that f 1(1, r) = f 2(0, r), f 2(1, r) = f 3(0, r) and f 3(1, r) =

f 4(0, r), so they glue to a 
ontinuous fun
tion f̃ : L̃→ R, where L̃ is glued from
L1, . . . , L4. L̃ is a smooth manifold and 
omes with an immersion (π̃, j̃) : L̃ →
[0, 4] × [0,∞). The 2-manifold L̃ is sket
hed in Figure 3, whi
h also depi
ts themap π̃ : L̃ → [0, 4] as the proje
tion onto the horizontal axis and j̃ : L̃ → [0,∞)as the proje
tion onto the verti
al axis.The fun
tion f̃ is not smooth in the t-variable along the gluing lines. To �xthat, we 
hoose a fun
tion σ : [0, 4]→ [0, 4] whi
h for ea
h n = 1, 2, 3 has σ(t) = nfor all t near n. Then let L be de�ned by the pullba
k diagram

L
σ

//

π

��

L̃

π̃
��

[0, 4]
σ

// [0, 4],and let j = j̃ ◦ σ : L→ [0,∞) and f = f̃ ◦ σ : L → R. The resulting f : L→ Ris then smooth.Let λ : R → [0, 1] be a smooth fun
tion whi
h is 0 near (−∞, 0] and 1 near
[1,∞) and has λ′ > 0 on λ−1((0, 1)). Let g : R×Rd → [0, 4]× [0,∞) be the mapgiven by

g(t, x) = (4λ(t), 3|x|2).27
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Figure 3. Image of (π̃, j̃) : L̃→ [0, 4]× [0,∞).To 
onstru
t the map (π, f) : K → R × R of the proposition, de�ne K as thepullba
k in the diagram
K

(π,j)
��

// L

(π,j)
��

f
// RR×Rd

g
// [0, 4]× [0,∞).

(6.1)Then (π, j) : K → R × Rd is a 
odimension 0 immersion, and over U = R ×
(Rd −Dd) it is a di�eomorphism. The diagram also provides a map f : K → R,and it is easily seen that (π, f) : K → R × R satis�es the �rst six properties ofthe proposition. The di�erential of (π, j) : K → R × Rd de�nes a trivializationof the d-dimensional ve
tor bundle T πK. �The manifold K and the map (π, f) : K → Rd ×R are illustrated in Figure 4,whi
h shows the d-manifold Kt = π−1(t) for d = 1 and various values of t ∈ [0, 1].The horizontal axis is [−1, 1] = Dd ⊆ Rd and the proje
tion is the immersion
jt : Kt → Rd. The verti
al axis is (−∞,∞) and the proje
tion is the fun
tion
ft : Kt → (−∞,∞). The small arrows indi
ate how Kt 
hanges when t in
reases.Given an element W ∈ Dd(pt), assume e : Rd → W is an embedding with
e(Rd) ⊆ f−1(r) for some r ∈ R. Then W ×R ∈ Dd(R) has an embedded Rd×Rfrom whi
h we 
an remove Dd × R and glue in the manifold K from the aboveLemma 6.2 along the embedded (Rd−Dd)×R. This gluing is over R if we equip
K with the map f + r : K → R and we get a 
on
ordan
e W e ∈ Dd(R) startingatW ∈ Dd({0}). We will des
ribe an enhan
ed version of this 
onstru
tion wherewe start with W ∈ Dd(X) and a �nite set of embeddings eτ : X × Rd → W(τ ∈ T ) su
h that rτ (x) = f ◦ eτ (x, u) is independent of u ∈ Rd. The enhan
ed28



τ = 0 0 < τ < 1/3 1/3 < τ < 1

1 < τ < 2 τ = 2 2 < τ < 3

τ = 3 3 < τ < 4 τ = 4Figure 4. (ft, jt)(Kt) for d = 1 and various values of τ =
σ(4λ(t)) ∈ [0, 4].
onstru
tion will give an element W e ∈ Dd(X × RT ) whi
h upon restri
tion to

X × {1}T is an element where the �lo
al maxima� at eτ (x, 0) have disappeared.De�nition 6.3. Let X be a manifold and T a �nite set. Let r : X × T → R besmooth. For τ ∈ T , let qτ,r : (X ×RT )×R→ R×R be the map
qτ,r((x, l), t) = (lτ , t− r(x, τ)), l = (lτ )τ∈T .Considering K as a spa
e over R × R via the map (π, f) from (6.1), we get amanifold q∗τ,rK over (X ×RT )×R, 
ontaining q∗τ,rU = (X ×RT )× (Rd −Dd) asan open subset. Let

Kr =
∐

τ∈T

q∗τ,rK, U r =
∐

τ∈T

q∗τ,rU ⊆ Kr.This 
omes equipped with a map (πr, f r) : Kr → (X ×RT )×R whi
h is properrelative to U r = (X×RT )×
∐

T (Rd−Dd), and πr : Kr → X×RT is a submersion.Remark 6.4. This behaves well under union in the T -variable. If T = T0 ∐ T1and rν : X × Tν → R, ν = 0, 1 are the restri
tions of r, then
Kr = proj∗

X×RT0
(Kr1)∐ proj∗

X×RT1
(Kr0)where the indi
ated proje
tions are X ×RT → X ×RTν , ν = 0, 1.29



Constru
tion 6.5. Let W ∈ Dd(X), and let T be a �nite set. Let r : X×T → Rbe smooth. Then X×∐
T Rd = X×T×Rd is a spa
e over X×R via the proje
tion
omposed with r. Let

e : X ×
∐

T

Rd → Wbe an embedding over X×R, i.e. with π◦e(x, τ, u) = x and f ◦e(x, τ, u) = r(x, τ).This indu
es an embedding
ẽ : (X ×RT )×

∐

T

Rd → proj∗X W,where projX : X ×RT → X is the proje
tion. Let W e be the pushout
U r ẽ

//

��

proj∗X W − ẽ(X ×RT ×
∐

T D
d)

��

Kr // W e

(6.2)This gives a manifold W e over (X×RT )×R whi
h de�nes an element of Dd(X×RT ).Elements of Dd(X × RT ) are submanifolds of (X × RT ) × R × Rd−1+∞, sostri
tly speaking the 
onstru
tion of W e in
ludes a 
hoi
e of an embedding
ϕ : W e → (X ×RT )×R×Rd−1+∞extending the given map W e → (X × RT ) × R. Then the image ϕ(W e) isan element of Dd(X × RT ). The element proj∗X W ∈ Dd(X × RT ) has a pre-ferred embedding i : proj∗X W → (X × RT ) × R × Rd−1+∞ (namely the in-
lusion), and it is 
onvenient to assume that ϕ and i agree on the subspa
e

proj∗X W − ẽ(X ×RT ×
∐

T D
d). Su
h an embedding ϕ 
an always be 
hosen,and is unique up to isotopy. It is irrelevant for the arguments whi
h ϕ we 
hoose,and therefore we omit it from the notation, writing W e ∈ Dd(X ×RT ) instead of

ϕ(W e).6.3. Conne
tivity. We will apply the surgery 
onstru
tion of the previous se
-tion to a morphism (W, a0, a1) ∈ D⋔
d (X) with a0 < a1. The resulting W e ∈

Dd(X ×RT ) will usually not give rise to an element (W e, a0, a1) ∈ D
⋔
d (X ×RT )be
ause f e : W e → R might not be �berwise transverse to a0, a1. Let V =

V (a0, a1) ⊆ X ×RT be the open set of points (x, l) for whi
h f e
(x,l) : W e

(x,l) → R istransverse to a0(x) and a1(x). Then we have (W e, a0, a1)|V ∈ D
⋔
d (V ). By Sard'stheorem, any (x, t) ∈ X × RT is in V (b0, b1) for some b0, b1 arbitrarily 
lose to

a0, a1. The goal is to use these 
on
ordan
es to get an element of D⋔
d,∂. Sin
e the
ondition for being in D⋔

d,∂ ⊆ D⋔
d is pointwise, we restri
t attention to the 
ase

X = pt in the following propositions. 30



Proposition 6.6. Let (W, a0, a1) ∈ D⋔
d (pt) with a0 < a1. Let r : T → R and

e :
∐

T Rd → W be as in Constru
tion 6.5. Let V = V (a0, a1) ⊆ RT be as above.(i) If r(τ) 6= a0, a1 for all τ ∈ T , then {0, 1}T ⊆ V .(ii) If (W, a0, a1) ∈ D
⋔
d,∂(pt), then (W e, a0, a1)|V ∈ D

⋔
d,∂(V ).(iii) If (W, a0, a1) ∈ D

⋔
d (pt), a0 < r < a1, and if
f−1(a1)∐

∐

T

Rd → f−1([a0, a1])is π0-surje
tive, then the restri
tion to {1}T ⊆ RT de�nes an element (W, a0, a1){1}T ∈
D⋔

d,∂({1}
T ).Proof. Let l ∈ {0, 1}T . By Lemma 6.2(vi) we get that 
riti
al values of fl : W e

l →R will be either 
riti
al values of f : W → R, or values r(τ) for τ ∈ T with lτ = 1.This proves (i). (ii) follows from Lemma 6.2(iv) and (iii) follows in the same wayfrom Lemma 6.2(v). �If not l ∈ V (a0, a1), then l ∈ V (b0, b1) for some b0, b1 near a0, a1. We have thefollowing 
orollary of the above proposition.Corollary 6.7. Let (W, a0, a1) ∈ D
⋔
d (pt). Let U0 and U1 be small open intervals inR around a0 and a1, respe
tively, 
onsisting of regular values of f . Let r : T → Rand e :

∐
T Rd → W be as in Constru
tion 6.5. Let T = T0 ∐ T1 and assume

supU0 < r(τ) < inf U1 for τ ∈ T1, and that
f−1(a1)∐

∐

T1

Rd → f−1([a0, a1])is π0-surje
tive. Then
(W e

l , b0, b1) ∈ D
⋔

d,∂({l})for all b0, b1 ∈ U0 ∪ U1 with b0 < b1, and all l ∈ V (b0, b1) ∩
(RT0 × {1}T1

).Proof. If b0 ∈ U0 and b1 ∈ U1 then, sin
e U0 and U1 are 
onne
ted and 
onsist ofregular values of f ,
f−1(b1)∐

∐

T1

Rd → f−1([b0, b1]) (6.3)will also be π0-surje
tive. If b0, b1 ∈ U1 or if b0, b1 ∈ U1, then [b0, b1] 
onsistsof regular values of f , so f−1([b0, b1]) ∼= f−1(b1) × [b0, b1], so the in
lusion (6.3)is π0-surje
tive in this 
ase too. Therefore, by Proposition 6.6(iii) the element
W e1 ∈ Dd(RT1) will have

(W e1

{1}T1
, b0, b1) ∈ D

⋔

d,∂({1}
T1).It follows from Remark 6.4 that the 
onstru
tion of W e ∈ Dd(X ×RT ) enjoysthe following naturality property. If T = T0 ∐ T1, then we 
an restri
t e to

eν : X ×
∐

Tν
Rd → W , ν = 0, 1. By 
onstru
tion (diagram (6.2)), the element31



W e1 
ontains the open subset proj∗X W − ẽ1(X ×RT1 ×
∐

T1
Dd) and hen
e e0de�nes an embedding

proj∗X(e0) : (X ×RT1)×
∐

T0

Rd →W e1.The naturality property is that
(W e1)proj∗X(e0) = W e.Restri
ting to {1}T1 ×RT0 we have

W e
{1}T1×RT0

= (W e1

{1}T1
)proj∗X(e0).The 
laim now follows from Proposition 6.6(ii) above. �We will say that an open set U0 ⊆ X × R is a tube around a0 if it 
ontainsthe graph of a0, and if the interse
tion U0 ∩ {x} ×R is an interval 
onsisting ofregular values of fx : Wx → R for all x ∈ X.De�nition 6.8. For a fun
tion λ : X×T → [0, 1], let λ̂ : X×R→ X×RT denotethe adjoint λ̂(x, t) = (x, tλ(x)). Given r : X × T → R and e : X ×

∐
T Rd → Was in Constru
tion 6.5, let W e,λ ∈ Dd(X ×R) denote the pullba
k of W e along λ̂.If T = T0 ∐ T ′ and λ|X×T0

= 0, then W e,λ = W e′,λ′, where e′ and λ′ arethe restri
tions to T ′ ⊆ T . The following 
orollary follows immediately fromCorollary 6.7 above.Corollary 6.9. Let (W, a0, a1) ∈ D
⋔
d (X). Let r, e, λ be as in De�nition 6.8. Let

W e,λ ∈ Dd(X × R) be the resulting element. Let U0, U1 be tubes around a0 and
a1. Assume that there is a subset T1 ⊆ T with λ|X×T1

= 1, su
h that the graph of
r|X×T1

is above U0 and below U1, and su
h that
f−1

x (a1(x)) ∐
∐

T1

Rd → f−1
x ([a0(x), a1(x)])is π0-surje
tive for all x.For all b0, b1 : X → R with b0 < b1 and graph(bν) ⊆ U0 ∪ U1, let V̂ (b0, b1)denote the interse
tion X × {1} ∩ λ̂−1V (b0, b1). Then the resulting element

(W e,λ, b0, b1)|λ̂−1V (b0,b1)
∈ D⋔

d (λ̂−1V (b0, b1))restri
ts to an element
(W e,λ, b0, b1)|V̂ (b0,b1)

∈ D⋔

d,∂(V̂ (b0, b1))Thus, we get a 
on
ordan
e from W = W e,λ

|X×{0} ∈ Dd(X × {0}) to the element
W e,λ

|X×{1} ∈ Dd(X × {1}) and the latter element lifts over V̂ (b0, b1) to morphismsin D⋔

d,∂. 32



6.4. Parametrized surgery. So far we have des
ribed how to perform surgeryon W ∈ Dd(X) along an embedding e : X ×
∐

T Rd → W . If we only have su
hembeddings given lo
ally in X, then we 
an perform the surgeries lo
ally and gluethem together using appropriate partitions of unity. More pre
isely we have thefollowing 
onstru
tion.Constru
tion 6.10. Let (p, r) : E → X × R be smooth, with p : E → Xetale (lo
al di�eomorphism). Let e : E × Rd → W an embedding over X × R.Let λ : E → [0, 1] be a smooth map with p| suppλ proper. De�ne an element
W e,λ ∈ Dd(X×R) in the following way. For x ∈ X, the set Tx = p−1(x)∩ supp λis �nite. Choose a 
onne
ted neighborhood Ux ⊆ X of x, and extend to a (unique)embedding Tx×Ux → E over X, su
h that p−1(Ux)∩supp λ is 
ontained in Tx×Ux(this 
an be done be
ause p| supp(λ) is a 
losed map).De�ne W e,λ

|Ux
∈ Dd(Ux ×R) as the 
onstru
tion in De�nition 6.8 applied to therestri
tion of e to Tx × Ux. (If Tx = ∅ then W e,λ

|Ux
= W|Ux

.) These elements agreeon overlaps, so by the sheaf property of Dd we have de�ned W e,λ ∈ Dd(X ×R).We are now ready to prove that βD⋔
d,∂ → Dd is a homotopy equivalen
e. Itsu�
es to prove that any element of Dd(X) is 
on
ordant to an element whi
hlifts to βD⋔

d,∂(X) (plus 
orresponding relative statement).Given an element (W,π, f) ∈ Dd(X), we 
hoose (as in the proof of Proposi-tion 4.2) a lo
ally �nite open 
overing X = ∪jEj and 
orresponding numbers
aj ∈ R su
h that (W, aj)|Ej

∈ D⋔
d (Ej) for all j. We 
an assume that the aj are alldistin
t 
onstants.For ea
h pair j, k with aj < ak, let Ejk = Ej ∩Ek. Then ϕjk = (W, aj, ak)|Ejk

isa morphism in D⋔

d (Ejk). We 
an assume that Ejk is either 
ontra
tible or empty,so (π, f)−1(Ejk× [aj , ak]) ∼= Ejk×W0 for a 
ompa
t manifoldW0 with boundary.Consider the in
lusion
(π, f)−1(Ejk × {ak})→ (π, f)−1(Ejk × [aj , ak]).If this is π0-surje
tive, then ϕjk ∈ D

⋔
d,∂(Ejk). If not, we 
an 
hoose a �nite set Tjkand an embedding ẽjk : Ejk × Tjk → (π, f)−1(Ejk × (aj , ak)) over Ejk su
h that

(π, f)−1(Ejk × {ak})∐ Ejk × Tjk → (π, f)−1(Ejk × [aj , ak])is π0-surje
tive. Let rjk = f ◦ ẽjk : Ejk × Tjk → R. Let E =
∐
Ejk × Tjk,and let (p, r) : E → X × R be the resulting map. Then the ẽjk assemble to amap ẽ : E → W over X × R. By possibly 
hanging the f -level of ẽjk, we 
anarrange that the various ẽjk have disjoint images so that ẽ is an embedding. Ehas 
ontra
tible 
omponents, so the normal bundle of ẽ 
an be trivialized. Thus

ẽ extends to an embedding e : E ×Rd → W over X.Now, for ea
h v ∈ p−1(x) ⊆ E, e de�nes an embedding ev : {v} × Rd → Wx,but fx : Wx → R might not be 
onstant on the image of ev. However, let
ϕ : [0,∞) → [0,∞) be a smooth proper fun
tion with ϕ[0, 1] = 0 and ϕ′(t) > 0for t > 1 and ϕ(t) = t for t ≥ 2. Then fx ◦ ev

(
ϕ(|u|)u

) is 
onstantly equal to r(v)33



for u ∈ Dd and agrees with fxev(u) outside 2Dd. After 
hanging fx on the imageof ev and then re-
hoosing the embedding e (pre
ompose it with an embeddingof Rd into Dd), we 
an assume that ev maps into f−1
x (r(v)). This pro
ess worksequally well in the parametrized setting, so after modifying f : W → R we 
anassume that e : E × Rd → W is an embedding with π ◦ e(v, u) = p(v) and

f ◦ e(v, u) = r(v). Choose 
ompa
tly supported λj : Ej → [0, 1] su
h that X is
overed by the sets Ẽj = Intλ−1
j (1), and let λjk = λjλk : Ejk → [0, 1]. Theseassemble to a fun
tion λ : E → R with p| supp(λ) proper.Using these p, r, e and λ, Constru
tion 6.10 provides an elementW e,λ ∈ Dd(X×R). We 
laim that W e,λ

1 = W e,λ

|X×{1} lifts to an element of βD⋔
d,∂(X). Indeed, for

x ∈ Ẽj , 
hoose bxj ∈ R in a tube around aj su
h that (x, 1) ∈ V̂ (bxj , bxj). Choosea neighborhood Uxj su
h that Uxj × {1} ⊆ V̂ (bxj , bxj). Then (W e,λ
1 , bxj, bxj)|Uxjis an obje
t of D⋔

d (Uxj). As before, re�ning the Uxj to a lo
ally �nite 
overingde�nes an element of βD⋔

d (X) whi
h in turn, by Corollary 6.9, is an element of
βD⋔

d,∂(X). 7. Harer type stability and C2[Til97℄ introdu
ed a version Sb of the 
ategory C+
2,∂ to prove that Z × BΓ∞,nis homology equivalent to an in�nite loop spa
e. This used two properties of

Sb. Firstly that Sb is symmetri
 monoidal, and se
ondly that ΩBSb is homologyequivalent to Z × BΓ∞,n. In this se
tion we will prove that ΩBC+
2,∂ is homologyequivalent to Z×BΓ∞,n, using a version of the argument from [Til97℄.The original stability theorem, proved by J. Harer in [Har85℄ is about the homol-ogy of the oriented mapping 
lass group. In the language used in this paper, it 
anbe stated as follows. Consider an oriented surfa
e Wg,n of genus g with n bound-ary 
ir
les. There are in
lusions Wg,n → Wg+1,n and Wg,n → Wg,n−1 by addingthe torus W1,2 or the disk W0,1 to one of the boundary 
ir
les. Let Diff+(W, ∂)denote the group of orientation-preserving di�eomorphisms of W that restri
t tothe identity near the boundary, and let

BDiff+(Wg,n; ∂)→ BDiff+(Wg+1,n; ∂), (7.1)
BDiff+(Wg,n; ∂)→ BDiff+(Wg,n−1; ∂), (7.2)be the maps of 
lassifying spa
es indu
ed from the above in
lusions. Harer'sstability theorem is that the maps in (7.1) and (7.2) indu
e isomorphisms, inintegral homology in a range of dimensions that tends to in�nity with g. (Therange is approximately g/2 [Iva89℄.)In the setup of 
hapter 5, Harer's stability theorem 
on
erns the 
ase θ : B →

BO(2), where B = EO(2) ×O(2) (O(2)/SO(2)). Re
ently, homologi
al stabilitytheorems have been proved for surfa
es with tangential stru
ture in a number ofother situations, whi
h we now list.
• N. Wahl 
onsidered stability for non-orientable surfa
es in [Wah06℄. Let
Sg,n denote the 
onne
ted sum of g 
opies of RP 2 with n disks 
ut out, and34




onsider the analogue of (7.1) with Diff+(Wg,n; ∂) repla
ed by Diff(Sg,n; ∂).She proves a stability range (approximately g/4) for the asso
iated map-ping 
lass groups π0 Diff(Sg,n; ∂) and, using the 
ontra
tibility of the 
om-ponent Diff1(Sg,n; ∂), dedu
es the homologi
al stability for BDiff(Sg,n; ∂).
• Stability for spin mapping 
lass groups was established in [Har90℄ and[Bau04℄. It 
orresponds to the 
ategory Cθ

2, with the tangential stru
ture
θ : B Spin(2)→ BO(2), 
f. [Gal06℄.
• Our �nal example is the stability theorem from [CM06℄, 
orresponding tothe tangential stru
ture

θ : EO(2)×O(2) ((O(2)/SO(2))× Z)→ BO(2),where Z is a simply 
onne
ted spa
e.With the above examples in mind, we now turn to a dis
ussion of abstra
tstability in a topologi
al 
ategory C. We �rst remind the reader that a squarediagram of spa
es
Y //

f

��

X0

g

��

X1
p

// X

(7.3)is homotopy 
artesian if for all x ∈ X1 the indu
ed map of the verti
al homotopy�bers
hofib

x
(f)→ hofib

p(x)
(g) (7.4)is a weak equivalen
e. Similarly, the diagram (7.3) is homology 
artesian if (7.4)is a homology equivalen
e, i.e. indu
es an isomorphism in integral homology. Ifthe map g is a Serre �bration, then diagram (7.3) is homotopy 
artesian if it is
artesian.We also remind the reader that if C is a 
ategory, then a fun
tor F : Cop → Setsdetermines, and is determined by, a 
ategory (F ≀ C) and a proje
tion fun
tor

(F ≀ C)→ C, su
h that the diagram of sets
N1(F ≀ C)

di
//

��

N0(F ≀ C)

��

N1C
di

// N0C

(7.5)is 
artesian for i = 0 (so di is the target map). Expli
itly, (F ≀ C) is de�ned by
N0(F ≀ C) = {(x, c) | c ∈ N0C, x ∈ F (c)},

N1(F ≀ C) = {(x, f) | f ∈ N1C, x ∈ F (d0c)}.Similarly, a fun
tor F with values in the 
ategory of spa
es determines, and isdetermined by, a topologi
al 
ategory (F ≀ C) with a proje
tion fun
tor to C su
hthat the diagram (7.5) is a 
artesian diagram of spa
es for i = 0. If the 
ategory35



C itself is topologi
al, then it is better to take this as a de�nition: A fun
tor F :
Cop → Spaces is a topologi
al 
ategory (F ≀C) together with a fun
tor (F ≀C)→ Csu
h that the diagram (7.5) is a 
artesian diagram of spa
es for i = 0.We return to (7.5) under the assumption that the right hand verti
al map is aSerre �bration. Then the diagram is homotopy 
artesian for i = 0. It is homotopy
artesian also for i = 1, pre
isely if every morphism f : x→ y in C indu
es a weakequivalen
e F (f) : F (x) → F (y). Similarly it is homology 
artesian for i = 1,pre
isely if every f : x→ y indu
es an isomorphism F (f)∗ : H∗(F (x))→ H∗(Fy).Proposition 7.1. Let F : Cop → Spaces be a fun
tor su
h that N0(F ≀ C)→ N0Cis a Serre �bration. Suppose that every f : x → y in C indu
es an isomorphism
F (f)∗ : H∗(F (x)) → H∗(F (y)) and that B(F ≀ C) is 
ontra
tible. Then for ea
hobje
t c ∈ C there is a map

F (c)→ ΩcBCwhi
h indu
es an isomorphism in integral homology.Proof. The assumptions imply that diagram (7.5) is homology 
artesian for i = 0and i = 1, and by indu
tion every diagram of the form
Nk(F ≀ C)

di
//

��

Nk−1(F ≀ C)

��

NkC
di

// Nk−1Cis homology 
artesian. Then it follows from [MS76, Proposition 4℄ that the dia-gram
N0(F ≀ C)

di
//

��

B(F ≀ C)

��

N0C
di

// BCis homology 
artesian, i.e. the indu
ed map of verti
al homotopy �bers is a ho-mology isomorphism. Let c ∈ ObC. Sin
e N0(F ≀ C) → N0C is assumed a Serre�bration, the homotopy �ber at c of the left verti
al map is F (c). Sin
e B(F ≀ C)is assumed 
ontra
tible, the homotopy �ber of the right verti
al map at c is
ΩcBC. �We apply this in the 
ase where C ⊆ Cθ,∂ is the sub
ategory of obje
ts (M, a)with a < 0, and θ : B → BO(2) is a tangential stru
ture for whi
h we have a Harertype stability theorem. To de�ne a fun
tor F : Cop → Spaces, let S1 ⊆ R2−1+∞be a �xed 
ir
le, and 
onsider the obje
ts bi = {i} × S1 in (Cθ,∂), i ∈ N. Choosemorphisms βi ⊆ [i, i+1]×R2−1+∞ from bi to bi+1 whi
h are 
onne
ted surfa
es ofgenus 1, and 
ompatible θ-stru
tures on the bi and the βi. We use here that the36



tangent bundle of the surfa
e βi
∼= W1,2 
an be trivialized. Let Fi : Cop→ Spacesbe the fun
tors
Fi(c) = Cθ,∂(c, bi)and let

F (c) = hocolim(F0(c)
◦β0

−−→ F1(c)
◦β1

−−→ · · · ).As a spa
e, N0(Fi ≀ C) is de�ned by the 
artesian diagram
N0(Fi ≀ C) //

��

X1

(d0,d1)

��

N0C
(bi,id)

// X0 ×N0C,where X1 = {(W, a0, a1, l) ∈ N1Cθ,∂ | a0 < 0 < a1} and X0 = {(M, a, l) ∈
N0Cθ,∂ | a > 0}. It follows from [KM97℄ that the right hand verti
al map is asmooth Serre �bration, so N0(Fi ≀ C) → N0C and in turn N0(F ≀ C) → N0C areSerre �brations, as required in Proposition 7.1. The 
ategory (Fi ≀C) has terminalobje
t idbi

, so B(Fi ≀ C) is 
ontra
tible. Therefore B(F ≀C) = hocolimiB(Fi ≀C) isalso 
ontra
tible. Finally, if c = {t} × Sn, where Sn ⊆ R2−1+∞ is a disjoint unionof n 
ir
les, then the homotopy equivalen
e (5.4) gives
Fi(c) ≃

∐

g≥0

E Diff(Wg,n+1, ∂)×Diff(Wg,n+1,∂) Bun∂(TWg,n+1, θ
∗Ud),where Wg,n+1 is a surfa
e of genus g with n + 1 boundary 
omponents, and

Diff(Wg,n+1, ∂) is the topologi
al group of di�eomorphisms of Wg,n+1 restri
tingto the identity near the boundary.Any morphism x→ y in C indu
es a map Fi(x)→ Fi(y) whi
h 
orresponds toin
luding one 
onne
ted surfa
e W into another 
onne
ted surfa
e. After takingthe limit g →∞, any morphism x→ y in C indu
es an isomorphism H∗(F (x))→
H∗(F (y)) in the four 
ase listed above, 
f. [Gal06℄, [CM06℄, [Wah06℄. In the 
aseof ordinary orientations we get

F (c) ≃ Z× BΓ∞,n+1,so we get a new proof of the generalized Mumford 
onje
ture.Theorem 7.2 ([MW02℄). There is a homology equivalen
e
α : Z× BΓ∞,n → Ω∞
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