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A morphism from Cm to Cn is an isomorphism lass of a Riemann surfae Σwith boundary ∂Σ together with an orientation-preserving di�eomorphism ∂Σ→
Cn ∐−Cm. The omposition is by sewing surfaes together.Given a di�erentiable subsurfae F ⊆ [a0, a1]×Rn+1 with ∂F = F ∩ {a0, a1}×Rn+1, eah tangent spae TpF inherits an inner produt from the surroundingeulidean spae and hene a onformal struture. If F is oriented, this induesa omplex struture on F . The ategory C2 of embedded surfaes an thus beviewed as a substitute for the onformal surfae ategory. It is a onsequene ofTeihmüller theory that their lassifying spaes are rationally homotopy equiva-lent.The embedded surfae ategory has an obvious generalization to higher dimen-sions. For any d ≥ 0, we have a ategory Cd whose morphisms are d-dimensionalsubmanifolds W ⊆ [a0, a1] × Rn+d−1 that interset the walls {a0, a1} × Rn+d−1transversely in ∂W . The odimension n is arbitrarily large, and not part ofthe struture. Viewing W as a morphism from the inoming boundary ∂inW =
{a0} ×Rn+d−1 ∩W to the outgoing boundary ∂outW = {a1} ×Rn+d−1 ∩W , andusing union as omposition, we get the embedded obordism ategory Cd.It is a topologial ategory in the sense that the total set of objets and thetotal set of morphisms have topologies suh that the struture maps (soure,target, identity and omposition) are ontinuous. In fat, there are homotopyequivalenes

obCd ≃
∐

M

BDiff(M), mor Cd ≃
∐

W

BDiff(W ; {∂in}, {∂out})whereM varies over losed (d−1)-dimensional manifolds andW over d-dimensionalobordisms, one in eah di�eomorphism lass. Here Diff(M) denotes the topolog-ial group of di�eomorphisms of M and Diff(W, {∂in}, {∂out}) denotes the groupof di�eomorphisms of W that restrit to di�eomorphisms of the inoming andoutgoing boundaries. Soure and target maps are indued by restrition.In order to desribe our main result about the homotopy type of the lassifyingspae BCd, we need some notation. Let G(d, n) denote the Grassmannian of d-dimensional linear subspaes of Rn+d. There are two standard vetor bundles,
Ud,n and U⊥

d,n, over G(d, n). We are interested in the n-dimensional one with totalspae
U⊥

d,n = {(V, v) ∈ G(d, n)×Rd+n | v ⊥ V }.The Thom spaes (one-point ompati�ations)Th(U⊥
d,n) de�ne a spetrum MTO(d)as n varies∗. The (n + d)th spae in the spetrum MTO(d) is Th(U⊥

d,n). We are
∗This onvenient and �exible notation was suggested by Mike Hopkins. O(d) is the struturegroup for Tangent bundles of manifolds, as opposed to the standard notation MO(d) for theThom spae of Ud,∞ → G(d,∞), where O(d) is the struture group for normal bundles ofmanifolds. 2



primarily interested in the diret limit
Ω∞−1

MTO(d) = colim
n→∞

Ωn+d−1 Th(U⊥
d,n).

MTO(d) and Ω∞−1
MTO(d) are desribed in more detail in setion 3.1.Given a morphism W ⊆ [a0, a1] × Rn+d−1, the Pontrjagin-Thom ollapse maponto a tubular neighborhood gives a map

[a0, a1]+ ∧ S
n+d−1 → Th(U⊥

d,n),whose adjoint determines a path in Ω∞−1
MTO(d) as n → ∞. With more are,one gets a funtor from Cd to the ategory Path(Ω∞−1

MTO(d)), whose objetsare points in Ω∞−1
MTO(d) and whose morphisms are ontinuous paths.The lassifying spae of a path ategory is always homotopy equivalent to theunderlying spae. We therefore get a map

α : BCd → Ω∞−1
MTO(d) (1.1)(f. [MT01℄ for d = 2).Main Theorem. The map α : BCd → Ω∞−1
MTO(d) is a weak homotopy equiv-alene.For any ategory C, the set of omponents π0BC an be desribed as the quo-tient of the set π0 ob(C) by the equivalene relation generated by the morphisms.For the ategory Cd, this gives that π0BCd is the group ΩO

d−1 of obordism lassesof losed unoriented manifolds. As explained in setion 3.1 below, the group ofomponents π0Ω
∞−1

MTO(d) is isomorphi to the homotopy group πd−1MO ofthe Thom spetrum MO. Thus the main theorem an be seen as generalizationof Thom's theorem: ΩO
d−1
∼= πd−1MO.More generally we also onsider the obordism ategory Cθ of manifolds withtangential struture, given by a lifting of the lassifying map for the tangentbundle over a �bration θ : B → G(d,∞). In this ase, the right hand side of (1.1)gets replaed by a spetrum MT (θ) whose (n+d)th spae is Th(θ∗U⊥

d,n). Chapter5 de�nes Cθ and MT (θ) in more detail, and proves the following version of themain theorem.Main Theorem (with tangential strutures). There is a weak homotopyequivalene αθ : BCθ → Ω∞−1
MT (θ).The simplest example of a tangential struture is that of an ordinary orienta-tion, leading to the ategory C+

d of oriented embedded obordisms. In this ase,the target of α beomes the oriented version Ω∞−1
MTSO(d), whih di�ers from

Ω∞−1
MTO(d) only in that we start with the Grassmannian G+(d, n) of oriented

d-planes in Rn+d. Another interesting speial ase leads to the ategory C+
d (X) oforiented manifolds with a ontinuous map to a bakground spae X. In this aseour result is a weak equivalene

BC+
d (X) ≃ Ω∞−1(MTSO(d) ∧X+).3



In partiular, the homotopy groups π∗BC+
d (X) beomes a generalized homologytheory as a funtor of the bakground spaeX, with oe�ients π∗Ω∞−1

MTSO(d).The same works in the non-oriented situation.We shall write MT (d) = MTO(d) and MT (d)+ = MTSO(d) for brevity, sinewe are mostly onerned with these two ases.For any topologial ategory C and objets x, y ∈ ob C, there is a ontinuousmap
C(x, y)→ Ωx,yBC,from the spae of morphisms in C from x to y to the spae Ωx,yBC of paths in

BC from x to y. In the ase of the oriented obordism ategory we get for everyoriented d-manifold W a map
σ : BDiff+(W ; ∂W )→ ΩBC+

dinto the loop spae of BC+
d . For d = 2 and W = Wg,n an oriented surfae of genus

g,
BDiff+(W, ∂W ) ≃ BΓg,n,where Γg,n = π0 Diff+(W, ∂W ) is the mapping lass group of W . In this ase, theomposition

BΓ∞,n → Ω0BC+
2

≃
−→ Ω∞

0 MT (2)+indues an isomorphism in integral homology. This is the generalized Mumfordonjeture, proved in [MW02℄. We give a new proof of this below, based on theabove Main Theorem.2. The obordism ategory and its sheaves2.1. The obordism ategory. We �x the integer d ≥ 0. The objets of the
d-dimensional obordism ategory Cd are losed (d−1)-dimensional submanifoldsof high-dimensional eulidean spae; the morphisms are d-dimensional embeddedobordisms with a ollared boundary.More preisely, an objet of Cd is a pair (M, a) with a ∈ R, and suh that M isa losed (d− 1)-dimensional submanifold

M ⊆ Rd−1+∞ , Rd−1+∞ = colim
n→∞

Rd−1+nA non-identity morphism from (M0, a0) to (M1, a1) is a triple (W, a0, a1) onsistingof the numbers a0, a1, whih must satisfy a0 < a1, and a d-dimensional ompatsubmanifold
W ⊆ [a0, a1]×Rd−1+∞,suh that for some ε > 0 we have(i) W ∩ ([a0, a0 + ε)×Rd−1+∞) = [a0, a0 + ε)×M0,(ii) W ∩ ((a1 − ε, a1]×Rd−1+∞) = (a1 − ε, a1]×M1,(iii) ∂W = W ∩ ({a0, a1} ×Rd−1+∞). 4



Composition is union of subsets (of R×Rd−1+∞):
(W1, a0, a1) ◦ (W2, a1, a2) = (W1 ∪W2, a0, a2).This de�nes Cd as a ategory of sets. We desribe its topology.Given a losed smooth (d − 1)-manifold M , let Emb(M,Rd−1+n) denote thespae of smooth embeddings, and write
Emb(M,Rd−1+∞) = colim

n→∞
Emb(M,Rd−1+n).Composing an embedding with a di�eomorphism of M gives a free ation of

Diff(M) on the embedding spae, and the orbit map
Emb(M,Rd−1+∞)→ Emb(M,Rd−1+∞)/Diff(M)is a prinipal Diff(M) bundle in the sense of [Ste51℄, if Emb(M,Rd−1+∞) and

Diff(M) are given Whitney C∞ topology.Let E∞(M) = Emb(M,Rd−1+∞)×Diff(M) M and let B∞(M) be the orbit spae
Emb(M,Rd−1+∞)/Diff(M). The assoiated �ber bundle

E∞(M)→ B∞(M) (2.1)has �ber M and struture group Diff(M). By Whitney's embedding theorem
Emb(M,Rd−1+∞) is ontratible, so B∞(M) ≃ BDiff(M). In [KM97℄ a onve-nient ategory of in�nite dimensional manifolds is desribed in whih Diff(M) isa Lie group and (2.1) is a smooth �ber bundle. The �ber bundle (2.1) omeswith a natural embedding E∞(M) ⊂ B∞(M) ×Rd−1+∞. With this struture, itis universal. More preisely, if f : X → B∞(M) is a smooth map from a smoothmanifold Xd, then the pullbak

f ∗(E∞(M)) = {(x, v) ∈ X ×Rd−1+∞ | (f(x), v) ∈ E∞(M)}is a smooth (k + d)-dimensional submanifold E ⊆ X × Rd−1+∞ suh that theprojetion E → X is a smooth �ber bundle with �ber M . Any suh E ⊆ X ×Rd−1+∞ is indued by a unique smooth map f : X → B∞(M).Now the set of objets of Cd is
obCd

∼= R×∐

M

B∞(M), (2.2)where M varies over losed (d − 1)-manifolds, one in eah di�eomorphism lass.We use this identi�ation to topologize obCd.The set of morphisms in Cd is topologized in a similar fashion. Let (W,h0, h1)be an abstrat obordism from M0 to M1, i.e. a triple onsisting of a smoothompat d-manifold W and embeddings (�ollars�)
h0 : [0, 1)×M0 →W

h1 : (0, 1]×M1 →W
(2.3)5



suh that ∂W is the disjoint union of the two spaes hν({ν} ×Mν), ν = 0, 1. For
0 < ε < 1

2
, let Embε(W, [0, 1]×Rd−1+n) be the spae of embeddings

j : W → [0, 1]×Rd−1+nfor whih there exists embeddings jν : Mν → Rd−1+n, ν = 0, 1, suh that
j ◦ h0(t0, x0) = (t0, j0(x0)) and j ◦ h1(t1, x1) = (t1, j1(x1))for all t0 ∈ [0, ε), t1 ∈ (1− ε, 1], and xν ∈Mν . Let
Emb(W, [0, 1]×Rd−1+∞) = colim

n→∞
ε→0

Embε(W, [0, 1]×Rd−1+n).Let Diffε(W ) denote the group of di�eomorphisms of W that restrit to produtdi�eomorphisms on the ε-ollars, and let Diff(W ) = colimε Diffε(W ).As before, we get a prinipal Diff(W )-bundle
Emb(W,Rd−1+∞)→ Emb(W, [0, 1]×Rd−1+∞)/Diff(W ),and an assoiated �ber bundle
E∞(W )→ B∞(W ) = Emb(W, [0, 1]×Rd−1+∞)/Diff(W )with �ber W and struture group Diff(W ), satisfying a universal property similarto the one for E∞(M)→ B∞(M) desribed above.Topologize mor Cd by

mor Cd
∼= obCd ∐

∐

W

R2
+ × B∞(W ), (2.4)where R2

+ is the open half plane a0 < a1, and W varies over obordisms W =
(W,h0, h1), one in eah di�eomorphism lass.For (a0, a1) ∈ R2

+, let l : [0, 1] → [a0, a1] be the a�ne map with l(ν) = aν ,
ν = 0, 1. For an element j ∈ Embε(W, [0, 1] × Rd−1+∞) we identify the element
((a0, a1), [j]) ∈ R2

+ × B∞(W ) with the element (a0, a1, E) ∈ morCd, where E isthe image
E = (l ◦ j)(W ) ⊆ [a0, a1]×Rd−1+∞.Let us point out a slight abuse of notation: Stritly speaking, we should inludethe ollars h0 and h1 in the notation for the Emb and Diff spaes. Up to homotopy,

Diff(W )
≃
−→ Diff(W, {∂inW}, {∂outW}) (2.5)is the group of di�eomorphisms of W that restrit to di�eomorphisms of theinoming and of the outgoing boundary of the obordism W .Again, Whitney's embedding theorem implies that B∞(W ) ≃ BDiff(W ). Withrespet to this homotopy equivalene, omposition in Cd is indued by the mor-phism of topologial groups

Diff(W1)×Diff(M1) Diff(W2)→ Diff(W ),where ∂outW1 = M1 = ∂inW2, and W = W1 ∪M1
W2.6



Remark 2.1. (i) There is a redued version C̃d where objets are embedded in
{0}×Rd−1+∞ and morphisms in [0, a1]×Rd−1+∞. The funtor Cd → C̃d that mapsa obordismW d ⊆ [a0, a1]×Rd−1+∞ intoW d−a0 ∈ [0, a1−a0]×Rd−1+∞ induesa homotopy equivalene on lassifying spaes. Indeed, the nerves are related by apullbak diagram

NkCd
//

��

NkC̃d

��

Nk(R,≤) // Nk(R+,+)

(2.6)where (R,≤) denotes R as an ordered set and (R+,+) denotes R+ = {0}∐(0,∞)as a monoid under addition. The two vertial maps are �brations, and the bottomhorizontal map is a weak equivalene. Therefore the funtor Cd → C̃d indues alevelwise homotopy equivalene on nerves.(ii) In the previous remark it is ruial that R be given its usual topology. Morepreisely, let Rδ denote R with the disrete topology, and de�ne Cδ
d and C̃δ

d usingRδ instead of R in the homeomorphisms (2.2) and (2.4). Then the right handvertial map in (2.6) de�nes a map BC̃δ
d → B(Rδ

+,+) whih is a split surjetion.By the group-ompletion theorem [MS76℄, π1B(Rδ
+,+) ∼= R, and this is a diretsummand of π1BC̃δ

d, so the main theorem fails for C̃δ
d. We shall see later that

BCδ
d → BCd is a homotopy equivalene (f. Remark 4.5).(iii) There is a version C+

d of Cd where one adds an orientation to the objetsand morphisms in the usual way. For d = 2, the redued version C̃+
d is the surfaeategory Y of [MT01, �2℄.2.2. Reolletion from [MW02℄ on sheaves. Let X denote the ategory ofsmooth manifolds without boundary and smooth maps. We shall onsider sheaveson X, that is, ontravariant funtors F on X that satisfy the sheaf ondition: forany open overing U = {Uj | j ∈ J} of an objet X in X and elements sj ∈ F(Uj)with sj|Ui ∩ Uj = si|Ui ∩ Uj there is a unique s ∈ F(X) that restrits to sj for all

j. We have the Yoneda embedding of X into the ategory Sh(X) of sheaves on Xthat to X ∈ X assoiates the representable sheaf X̃ = C∞(−, X) ∈ Sh(X).For the funtors F we shall onsider, F(X) onsists of spaes over X with extraproperties. In general the set of spaes E over X is not a funtor under pull-bak((g ◦ f)∗(E) 6= f ∗(g∗(E))). But if E → X omes from subsets E ⊆ X × U where
U is some �universe� then pull-baks with respet to f : X ′ → X in X, de�ned as

f ∗(E) = {(x′, u) | (f(x′), u) ∈ E} ⊆ X ′ × U,is a funtorial onstrution.A set-valued sheaf F on X gives rise to a representing spae |F|, onstruted asthe topologial realization of the following simpliial set. The hyperplane (open7



or extended simplex)
∆ℓ

e = {(t0, . . . , tℓ) ∈ Rℓ+1 |
∑
ti = 1}is an objet of X, and

[ℓ] 7−→ F(∆ℓ
e)is a simpliial set. The spae |F| is its standard topologial realization. This is arepresenting spae in the following sense.De�nition 2.2. Two elements s0, s1 ∈ F(X) are onordant if there exists an

s ∈ F(X ×R) whih agrees with pr∗(s0) near X × (−∞, 0] and with pr∗(s1) near
X × [1,+∞) where pr : X ×R→ X is the projetion.The set of onordane lasses will be denoted by F[X]. The spae |F| aboveis a representing spae in the sense that F[X] is in bijetive orrespondene withthe set of homotopy lasses of ontinuous maps from X into |F|:

F[X] ∼= [X, |F|] (2.7)by Proposition A.1.1 of [MW02℄. We desribe the map. For X̃ = C∞(−, X),
[l] 7→ X̃(∆l

e) is the (extended, smooth) total simpliial set of X, and satis�es thatthe anonial map |X̃| → X is a homotopy equivalene ([Mil57℄). An element
s ∈ F(X) has an adjoint s̃ : X̃ → F, induing |s̃| : |X̃| → |F|, and thus a wellde�ned homotopy lass of maps X → |F| whih is easily seen to depend only onthe onordane lass of s.De�nition 2.3. A map τ : F1 → F2 is alled a weak equivalene if the induedmap from |F1| to |F2| indues an isomorphism on all homotopy groups.There is a onvenient riteria for deiding if a map of sheaves is a weak equiv-alene. This requires a relative version of De�nition 2.2. Let A ⊆ X be a losedsubset of X, and let s ∈ colimU F(U) where U runs over open neighborhoods of
A. Let F(X,A; s) ⊆ F(X) be the subset of elements that agree with s near A.De�nition 2.4. Two elements t0, t1 ∈ F(X,A; s) are onordant rel.A if they areonordant by a onordane whose germ near A is the onstant onordane of
s. Let F1[X,A; s] denote the set of onordane lasses.Criteria 2.5. A map τ : F1 → F2 is a weak equivalene provided it indues asurjetive map

F1[X,A; s]→ F2[X,A; τ(s)]for all (X,A, s) as above.Let x0 ∈ X and s0 ∈ F({x0}). This gives a germ s0 ∈ colimU F(U) with Uranging over the open neighborhoods of x0. There is the following relative versionof (2.7), also proved in Appendix A of [MW02℄: for every (X,A, s0),
F[X,A; s0] ∼= [(X,A), (|F|, s0)]8



In partiular the homotopy groups πn(|F|, s0) are equal to the relative onordanelasses F[Sn, x0; s0]. By Whitehead's theorem τ : F1 → F2 is a weak equivaleneif and only if
F1[S

n, x0; s0]
∼=
−−→ F2[S

n, x0; τ(s0)]is an equivalene for all basepoints x0 and all s0 ∈ F1(x0). This is sometimes amore onvenient formulation than Criteria 2.5 above.Atually, for the onrete sheaves we onsider in this paper the representingspaes are �simple� in the sense of homotopy theory, and in this situation the basepoint s0 ∈ F(∗) is irrelevant: a map τ : F1 → F2 is a weak equivalene if and onlyif it indues a bijetion F1[X]→ F2[X] for all X ∈ X. In fat, it su�es to hekthis when X is a sphere.2.3. A sheaf model for the obordism ategory. We apply the above to givea sheaf model of the obordism ategory Cd. First some notation. For funtions
a0, a1 : X → R with a0(x) ≤ a1(x) at all x ∈ X, we write

X × (a0, a1) = {(x, u) ∈ X ×R | a0(x) < u < a1(x)}

X × [a0, a1] = {(x, u) ∈ X ×R | a0(x) ≤ u ≤ a1(x)}.Given a submersion π : W → X of smooth manifolds (without boundary) andsmooth maps
f : W → R, a : X → R,we say that f is �berwise transverse to a if the restrition fx of f to Wx = π−1(x)is transversal to a(x) for every x ∈ X, or equivalently if the graph X×{a} onsistsof regular values for (π, f) : E → X ×R. In this ase

M = (f − aπ)−1(0) = {z ∈W | f(z) = a(π(z))}is a odimension one submanifold of W , and the restrition π : M → X is still asubmersion.For X ∈ X and smooth real funtions
a0 ≤ a1 : X → R, ε : X → (0,∞)we shall onsider submanifolds
W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞.The three projetions will be denoted

π : W → X, f : W → R, j : W → Rd−1+∞unless otherwise spei�ed.De�nition 2.6. For X ∈ X and smooth real funtions a0 ≤ a1 and ε as above,the set C⋔
d (X; a0, a1, ε) onsists of all submanifolds

W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞whih satis�es the following onditions: 9



(i) π : W → X is a submersion with d-dimensional �bers,(ii) (π, f) : W → X × (a0 − ε, a1 + ε) is proper,(iii) The restrition of (π, f) to (π, f)−1(X × (aν − ε, aν + ε)) is a submersion for
ν = 0, 1.The three onditions imply that π : W → X is a smooth �ber bundle ratherthan just a submersion. Indeed for eah ν = 0, 1, restriting (π, f) gives a map

(π, f)−1(X × (aν − ε, aν + ε))→ X × (aν − ε, aν + ε)whih is a proper submersion, and hene a smooth �ber bundle by Ehresmann's�bration lemma, f. [BJ82, p. 84℄. Similarly the restrition of π to
W [a0, a1] = W ∩X × [a0, a1]×Rd−1+∞is a smooth �ber bundle with boundary. The result for π : W → X follows bygluing the ollars.We remove the dependene on ε and de�ne
C⋔

d (X; a0, a1) = colim
ε→0

C⋔

d (X; a0, a1, ε).De�nition 2.7. For X ∈ X,
C⋔

d (X) =
∐

C⋔

d (X; a0, a1).The disjoint union varies over all pairs of smooth funtions with a0 ≤ a1 and suhthat {x | a0(x) = a1(x)} is open (hene a union of onneted omponents of X).This de�nes a sheaf C⋔
d .Taking union of embedded manifolds gives a partially de�ned map

C⋔

d (X; a0, a1)× C
⋔

d (X; a1, a2)→ C⋔

d (X; a0, a2)and de�nes a ategory struture on C⋔
d (X) with the objets (or identity mor-phisms) orresponding to a0 = a1.A smooth map ϕ : Y → X indues a map of ategories ϕ∗ : C⋔

d (X) → C⋔
d (Y )by the pull-bak onstrution of � 2.2: For

W ⊆ X × (a0 − ε, a1 + ε)×Rd−1+∞,

ϕ∗W = {(y, u, r) | (ϕ(y), u, r) ∈ W} is an element of C⋔
d (Y ; a0ϕ, a1ϕ, εϕ). Thisgives a CAT-valued sheaf

C⋔

d : X→ CAT,where CAT is the ategory of small ategories.An objet of C⋔
d (pt) is represented by a d-manifoldW ⊆ (a−ε, a+ε)×Rd−1+∞suh that f : W → (a − ε, a + ε) is a proper submersion. Thus M = f−1(0) ⊆Rd−1+∞ is a losed (d− 1)-manifold. Only the germ of W near M is well-de�ned.As an abstrat manifold, W is di�eomorphi to M × (a − ε, a + ε), but theembedding into (a − ε, a + ε) × Rd−1+∞ need not be the produt embedding.Hene the germ of W near M arries slightly more information than just thesubmanifold M ⊆ {a} ×Rd−1+∞. This motivates10



De�nition 2.8. Let Cd(X; a0, a1, ε) ⊆ C⋔
d (X; a0, a1, ε) be the subset satisfyingthe further ondition(iv) For x ∈ X and ν = 0, 1, let Jν be the interval ((aν − ε)(x), (aν + ε)(x)) ⊆ R,and let Vν = (π, f)−1({x} × Jν) ⊆ {x} × Jν ×Rd−1+∞. Then

Vν = {x} × Jν ×Mfor some (d− 1)-dimensional submanifold M ⊆ Rd−1+∞.De�ne Cd(X; a0, a1) ⊆ C⋔
d (X; a0, a1) and Cd(X) ⊆ C⋔

d (X) similarly.It is easy to see that Cd(X) is a full subategory of C⋔
d (X) and that

Cd : X→ CATis a sheaf of ategories, isomorphi to the sheaf C∞(−,Cd), where Cd is equippedwith the (in�nite dimensional) smooth struture desribed in setion 2.1. Inpartiular we get a ontinuous funtor
η : |Cd| → Cd.Proposition 2.9. Bη : B|Cd| → BCd is a weak homotopy equivalene.Proof. The spae Nk|Cd| is the realization of the simpliial set

[l] 7→ NkCd(∆
l
e) = C∞(∆l

e, NkC).A theorem from [Mil57℄ asserts that the realization of the singular simpliial setof any spae Y is weakly homotopy equivalent to Y itself. This is also the ase ifone uses the extended simplies ∆k
e to de�ne the singular simpliial set, and formanifolds it is also true if we use smooth maps. This proves that the map

Nkη : Nk|Cd| → NkCdis a weak homotopy equivalene for all k, and hene that Bη is a weak homotopyequivalene. �2.4. Coyle sheaves. We review the onstrution from [MW02, �4.1℄ of a modelfor the lassifying spae onstrution at the sheaf level.Let F be any CAT-valued sheaf on X. There is an assoiated set valued sheaf
βF. Choose, one and for all, an unountable set J . An element of βF(X) is apair (U,Φ) where U = {Uj | j ∈ J} is a loally �nite open over of X, indexed by
J , and Φ a ertain olletion of morphisms. In detail: given a non-empty �nitesubset R ⊆ J , let UR be the intersetion of the Uj's for j ∈ R. Then Φ is aolletion ϕRS ∈ N1F(US) indexed by pairs R ⊆ S of non-empty �nite subsets of
J , subjet to the onditions(i) ϕRR = idcR

for an objet cR ∈ N0F(UR),(ii) For eah non-empty �nite R ⊆ S, ϕRS is a morphism from cS to cR|US,(iii) For all triples R ⊆ S ⊆ T of �nite non-empty subsets of J , we have
ϕRT = (ϕRS|UT ) ◦ ϕST . (2.8)11



Theorem 4.1.2 of [MW02℄ asserts a weak homotopy equivalene
|βF| ≃ B|F|. (2.9)Remark 2.10. In the ase F(X) = Map(X,C) for some topologial ategory Cthe onstrution βF takes the following form. Let XU be the topologial ategoryfrom [Seg68℄:

obXU =
∐

R

UR morXU =
∐

R⊆S

US,i.e. XU is the topologial poset of pairs (R, x), where R ⊆ J is a �nite non-emptysubset and x ∈ UR. If R ⊆ S and x = y, then there is preisely one morphism
(S, x)→ (R, y), otherwise there is none.Then (2.8) amounts to a ontinuous funtor Φ: XU → C. In general, (2.8)amounts to a funtor X̃U → F, where X̃U = C∞(−, XU) is the (representable)sheaf of posets assoiated to XU.A partition of unity {λj | j ∈ J} subordinate to U de�nes a map from X to
BXU and Φ a map from BXU to BC. This indues a map

βF[X]→ [X,BC]and (2.9) asserts that this is a bijetion for all X.3. The Thom spetra and their sheaves3.1. The spetrum MT (d) and its in�nite loop spae. We write G(d, n) forthe Grassmann manifold of d-dimensional linear subspaes of Rd+n and G+(d, n)for the double over of G(d, n) where the subspae is equipped with an orientation.There are two distinguished vetor bundles over G(d, n), the tautologial d-dimensional vetor bundle Ud,n onsisting of pairs of a d-plane and a vetor inthat plane, and its orthogonal omplement, the n-dimensional vetor bundle U⊥
d,n.The diret sum Ud,n ⊕ U

⊥
d,n is the produt bundle G(d, n)×Rd+n.The Thom spaes (one point ompati�ations) Th(U⊥

d,n) form the spetrum
MT (d) as n varies. Indeed, sine U⊥

d,n+1 restrits over G(d, n) to the diret sumof U⊥
d,n and a trivial line, there is an indued map

S1 ∧ Th(U⊥
d,n)→ Th(U⊥

d,n+1). (3.1)The (n + d)th spae of the spetrum MT (d) is Th(U⊥
d,n), and (3.1) provides thestruture maps. The assoiated in�nite loop spae is therefore

Ω∞
MT (d) = colim

n→∞
Ωn+d Th(U⊥

d,n),where the maps in the olimit
Ωn+d Th(U⊥

d,n)→ Ωn+d+1 Th(U⊥
d,n+1)are the (n + d)-fold loops of the adjoints of (3.1).12



There is a orresponding oriented version MT (d)+ where one uses the Thomspaes of pull-baks θ∗U⊥
d,n, θ : G+(d, n)→ G(d, n). The spetrum MT (d)+ mapsto MT (d) and indues

Ω∞
MT (d)+ → Ω∞

MT (d).Proposition 3.1. There are homotopy �bration sequenes
Ω∞

MT (d) −→ Ω∞Σ∞(BO(d)+)
∂
−−→ Ω∞

MT (d− 1),

Ω∞
MT (d)+ −→ Ω∞Σ∞(BSO(d)+)

∂
−−→ Ω∞

MT (d− 1)+.Proof. For any two vetor bundles E and F over the same base B there is a o�bersequene
Th(p∗E)→ Th(E)→ Th(E ⊕ F ) (3.2)where p : S(F )→ X is the bundle projetion of the sphere bundles.Apply this to X = G(d, n), E = U⊥

d,n, F = Ud,n. The sphere bundle is
S(Ud,n) = O(n+ d)/O(n)×O(d− 1).Sine G(d−1, n) = O(n+d−1)/O(n)×O(d−1), the natural map G(d−1, n)→

S(Ud,n) is (n+d−2)-onneted. The bundle p∗U⊥
d,n over S(Ud,n) restrits to U⊥

d−1,nover G(d− 1, n), so
Th(U⊥

d−1,n)→ Th(p∗U⊥
d,n)is (2n + d − 2)-onneted. The right-hand term in (3.2) is G(d, n)+ ∧ S

n+d, andthe map G(d, n)→ BO(d) is (n− 1)-onneted (BO(d) = G(d,∞)).The o�ber sequene (3.2) gives a o�ber sequene of spetra
Σ−1

MT (d− 1)→ MT (d)→ Σ∞(BO(d)+)→ MT (d− 1) (3.3)and an assoiated homotopy �bration sequene
Ω∞

MT (d)→ Ω∞Σ∞(BO(d)+)→ Ω∞
MT (d− 1)of in�nite loop spaes. The oriented ase is ompletely similar. �Remark 3.2. For d = 1, the sequenes in Proposition 3.1 are

Ω∞
MT (1) −→ Ω∞Σ∞(RP∞

+ )
∂
−−→ Ω∞Σ∞

Ω∞
MT (1)+ −→ Ω∞Σ∞ ∂

−−→ Ω∞Σ∞ × Ω∞Σ∞.In the �rst sequene, ∂ is the stable transfer assoiated with the universal doubleovering spae. In the oriented ase, ∂ is the diagonal. Thus
Ω∞

MT (1) = Ω∞RP∞
−1, Ω∞

MT (1)+ = Ω(Ω∞Σ∞).The oriented Grassmannian G+(2,∞) is homotopy equivalent to CP∞, and thespae Ω∞
MT (2)+ is homotopy equivalent to the spae Ω∞CP∞

−1, in the notationfrom [MW02℄. 13



The o�ber sequene (3.3) de�nes a diret system of spetra
MT (0)→ ΣMT (1)→ · · · → Σd−1

MT (d− 1)→ Σd
MT (d)→ · · · (3.4)whose diret limit is the universal Thom spetrum usually denoted MO. Thehomotopy groups of MO form the unoriented bordism ring

πd−1MO = MOd−1(pt) = ΩO
d−1.The diret system (3.4) an be thought of as a �ltration of MO, with �ltrationquotients ΣdBO(d)+. In partiular, the maps in the diret system indue anisomorphism

π−1MT (d) = πd−1Σ
d
MT (d)

∼=
−→ πd−1MO = ΩO

d−1,and an exat sequene
π0MT (d+ 1)

χ
−→ Z Sd

−→ π0MT (d)→ ΩO
d → 0. (3.5)The map χ : π0MT (d + 1) → Z orresponds under the homotopy equivaleneof our main theorem to the map that to a losed (d + 1)-manifold W , thoughtof as an endomorphism in Cd+1 of the empty d-manifold, assoiates the Eulerharateristi χ(W ) ∈ Z. The map Sd : Z → π0MT (d) orresponds to the d-sphere Sd, thought of as an endomorphism in Cd of the empty (d − 1)-manifold.For odd d, χ is surjetive (χ(RP d+1) = 1), so the sequene (3.5) de�nes anisomorphism π0MT (d) ∼= ΩO

d . On the other hand χ = 0 for even d by Poinaréduality, so the sequene (3.5) works out to be
0→ Z Sd

−→ π0MT (d)→ ΩO
d → 0.3.2. Using Phillips' submersion theorem. We give a sheaf model for thespae Ω∞−1

MT (d).De�nition 3.3. For a natural number n > 0 and X ∈ X, an element of Dd(X;n)is a submanifold
W ⊆ X ×R×Rd−1+n,with projetions π, f , and j, respetively, suh that(i) π : W → X is a submersion with d-dimensional �bers.(ii) (π, f) : W → X ×R is proper.This de�nes a set valued sheaf Dd(−;n) ∈ Sh(X). Let Dd be the olimit (in

Sh(X)) of Dd(−;n) as n → ∞. Expliitly, Dd(X) is the set of submanifolds
W ⊆ X × R × Rd−1+∞ satisfying (i) and (ii) above, and suh that for eahompat K ⊆ X there exists an n with π−1(K) ⊆ K ×R×Rd−1+n.We will prove the following theorem by onstruting a natural bijetion [X,Ω∞−1

MT (d)] ∼=
Dd[X].Theorem 3.4. There is a weak homotopy equivalene

|Dd|
≃
−−→ Ω∞−1

MT (d).14



Given W ⊆ X×R×Rd−1+n with n-dimensional normal bundle N →W , thereis a vetor bundle map
N

γ̂
//

��

U⊥
d,n

��

W γ
// G(d, n).

(3.6)WriteWx for the intersetionWx = W∩{x}×R×Rd−1+n. Then γ(z) = Tz(Wπ(z)),onsidered as a subspae of Rd+n. The normal �ber Nz of W in X ×R×Rd−1+nis the normal �ber of Wx in Rd+n, so is equal to γ(z)⊥; this de�nes γ̂ in (3.6).Next we pik a regular value for f : W → R, say 0 ∈ R, and let M = f−1(0).Then the normal bundle N ofW ⊆ X×R×Rd−1+n restrits to the normal bundleof M ⊂ X ×Rd−1+n. Choose a tubular neighborhood of M in X ×Rd−1+n, andlet
e : N |M → X ×Rd−1+nbe the assoiated embedding ([BJ82, �12℄). The indued map of one-point om-pati�ations, omposed with (3.6), gives a map

g : X+ ∧ S
d−1+n → Th(U⊥

d,n) (3.7)whose homotopy lass is independent of the hoies made (when n ≫ d). Itsadjoint is a well-de�ned homotopy lass of maps from X to Ω∞−1
MT (d). Thisde�nes

ρ : Dd[X]→ [X,Ω∞−1
MT (d)].We now onstrut an inverse to ρ using transversality and Phillips' submersiontheorem. We give the argument only in the ase where X is ompat. Anymap (3.7) is homotopi to a map that is transversal to the zero setion, and

M = g−1(G(d, n)) ⊆ X ×Rd−1+nis a submanifold. The projetion π0 : M → X is proper, and the normal bundleis N = g∗(U⊥
d,n). De�ne T πM = g∗(Ud,n) so that

N ⊕ T πM = M ×Rn+d.Combined with the bundle information of the embedding of M in X × Rd−1+nthis yields an isomorphism of vetor bundles over M
TM ×Rn+d

∼=
−−→ (π∗

0TX ⊕ T
πM)×Rd−1+n. (3.8)By standard obstrution theory (f. [MW02℄, Lemma 3.2.3) there is an isomor-phism (unique up to onordane)

π̂0 : TM ×R ∼=
−−→ π∗

0TX ⊕ T
πM15



that indues (3.8). Set W = M ×R, π1 = π0 ◦ prM and T πW = pr∗M T πM . Then
TW

∼=
−−→ π∗

1TX ⊕ T
πW, (3.9)and sineW has no losed omponents we are in a position to apply the submersiontheorem. Indeed, (3.9) gives a bundle epimorphism π̂1 : TW → TX over π1 : W →

X. By Phillips' theorem, there is a homotopy (πt, π̂t), t ∈ [1, 2] through bundleepimorphisms, from (π1, π̂1) to a pair (π2, dπ2), i.e. to a submersion π2. Let
f : W → R be the projetion. Then (π2, f) : W → X×R is proper sine we haveassumed thatX is ompat. For n≫ d we get an embeddingW ⊂ X×R×Rd−1+nwhih lifts (π2, f).If n ≫ d the original embedding W ⊂ X × R × Rd−1+∞ is isotopi to anembedding where the projetion onto X is the submersion π and with (π, f)proper. (This is diret from [Phi67℄ when X is ompat; and in general a slightextension.) We have onstruted

σ : [X,Ω∞−1
MT (d)]→ Dd[X]. (3.10)Proposition 3.5. The maps σ and ρ are inverse bijetions.Proof. By onstrution ρ ◦ σ = id. The other omposite σ ◦ ρ = id uses that anelement W ∈ Dd(X) is onordant to one where W is replaed by M ×R and fby the projetion;M is the inverse image of a regular value of f . The onordaneis given in Lemma 2.5.2 of [MW02℄. �Remark 3.6. One an de�ne σ also for non-ompat X, but it requires a slightextension of [Phi67℄ to see that (π2, f) : W → X ×R an be taken to be proper.The proof of Theorem 3.4 above only uses (3.10) for ompat X, in fat for X asphere. 4. Proof of the main theoremThe proof uses an auxiliary sheaf of ategories D⋔

d and a zig-zag of funtors
Dd

α
←− D⋔

d

γ
−→ C⋔

d

δ
←− CdThe sheaf Cd is the obordism ategory sheaf, de�ned in setion 2.3 above, and

C⋔
d is the slightly larger sheaf, de�ned in the same setion. The sheaf Dd is, byTheorem 3.4, a sheaf model of Ω∞−1

MT (d). We regard Dd as a sheaf of ategorieswith only identity morphisms. To prove the main theorem it will su�e to provethat α, γ and δ all indue weak equivalenes.De�nition 4.1. Let D⋔
d (X) denote the set of pairs (W, a) suh that(i) W ∈ Dd(X),(ii) a : X → R is smooth,(iii) f : W → R is �berwise transverse to a.Thus, D⋔

d is a subsheaf of Dd×R̃, where R̃ is the representable sheaf C∞(−,R).It is also a sheaf of posets, where (W, a) ≤ (W ′, a′) when W = W ′, a ≤ a′ and
(a′ − a)−1(0) ⊆ X is open. 16



Reall from setion 2.3 that f : W → R is �berwise transverse to a : X → Rif fx : Wx → R is transverse to a(x) ∈ R for all x ∈ X. By properness of (π, f),there will exist a smooth map ε : X → (0,∞), suh that the restrition of (π, f)to the open subset
Wε = (π, f)−1(X × (a− ε, a+ ε)),is a (proper) submersion Wε → X × (a− ε, a+ ε). Thus the lass [Wε], as ε→ 0,is a well-de�ned element of C⋔

d (X; a, a) and hene gives an objet
γ(W, a) = ([Wε], a, a) ∈ obC⋔

d (X).This de�nes the funtor γ : D⋔
d → C⋔

d on the level of objets, and it is de�nedsimilarly on morphisms.Proposition 4.2. The forgetful map α : βD⋔
d → Dd is a weak equivalene.Proof. We apply the relative surjetivity riteria 2.5 to the map βD⋔

d → Dd. Theargument is ompletely analogous to the proof of Proposition 4.2.4 of [MW02℄.First we show that βD⋔
d (X)→ Dd(X) is surjetive. Let W ⊆ X×R×Rd−1+∞be an element of Dd(X). For eah x ∈ X we an hoose ax ∈ R suh that ax isa regular value of fx : Wx = π−1(x)→ R. The same number ax will be a regularvalue of fy : Wy → R for all y in a small neighborhood Ux ⊆ X of x. Thereforewe an pik a loally �nite open overing U = (Uj)j∈J of X, and real numbers aj ,so that fj : Wj → R is �berwise transverse to aj , where Wj = W |Uj ∈ Dd(Uj).Thus (Wj, aj) is an objet of D⋔

d (Uj) with aj : Uj → R the onstant map.For eah �nite subset R ⊆ J , set WR = W |UR and aR = min{aj | j ∈ R}. If
R ⊆ S then aS ≤ aR and (WS, aS, aR) is an element ϕRS ∈ N1D

⋔
d (US). The pair

(U,Φ) with Φ = (ϕRS)R⊆S is an element of βD⋔
d (US) that maps to W by α.Seond, let A be a losed subset of X, W ⊆ X × R × Rd−1+∞ an element of

Dd(X), and suppose we are given a lift to βD⋔

d (U ′) of the restrition of W tosome open neighborhood U ′ of A. This lift is given by a loally �nite open over
U′ = {Uj |j ∈ J}, together with smooth funtions aR : UR → R, one for eah �nitenon-empty R ⊆ J . Let J ′ ⊆ J denote the set of j for whih Uj is non-empty, andlet J ′′ = J − J ′.Choose a smooth funtion b : X → [0,∞) with A ⊆ Int b−1(0) and b−1(0) ⊆ U ′.Let q = 1/b : X → (0,∞]. We an assume that q(x) > aR(x) for R ⊆ J ′ (make
U ′ smaller if not). For eah x ∈ X − U ′, we an hoose an a ∈ R satisfying(i) a > q(x)(ii) a is a regular value for fx : π−1(x)→ R.The same number a will satisfy (i) and (ii) for all x in a small neighborhood
Ux ⊆ X − A of X, so we an pik an open overing U′′ = {Uj | j ∈ J ′′} of
X − U ′, and real numbers aj , suh that (i) and (ii) are satis�ed for all x ∈ Uj .The overing U′′ an be assumed loally �nite. For eah �nite non-empty R ⊆ J ′′,set aR = min{aj | j ∈ R}. For R ⊆ J = J ′ ∪ J ′′, write R = R′ ∪ R′′ with R′ ⊆ J ′and R′′ ⊆ J ′′, and de�ne aR = aR′ if R′ 6= ∅.17



This de�nes smooth funtions aR : UR → R for all �nite non-empty subsets
R ⊆ J (aR is a onstant funtion for R ⊆ J ′′) with the property that R ⊆ Simplies aS ≤ aR|US. This de�nes an element of βD⋔

d (X) whih lifts W ∈ Dd(X)and extends the lift given near A. �Proposition 4.3. The inlusion funtor γ : D⋔
d → C⋔

d indues an equivalene
B|D⋔

d | → B|C⋔
d |.Proof. We show that γ indues an equivalene |NkD

⋔
d | → |NkC

⋔
d | for all k, usingthe relative surjetivity riteria 2.5.An element of NkC

⋔
d (X) an be represented by a sequene of funtions a0 ≤

· · · ≤ ak : X → R, a funtion ε : X → (0,∞), and a submanifold W ⊆ X × (a0−
ε, ak+ε)×Rd−1+∞. Choosing a di�eomorphismX×(a0−ε, ak+ε)→ X×R whihis the inlusion map on X × (a0 − ε/2, ak + ε/2), lifts the element to NkD

⋔
d (X).This proves the absolute ase and the relative ase is similar. �Proposition 4.4. The forgetful funtor δ : Cd → C⋔

d indues a weak equivalene
B|Cd| → B|C⋔

d |.Proof. Again we prove the stronger statement that δ indues an equivalene
|NkCd| → |NkC

⋔
d | for all k.First, remember that two smooth maps f : M → P and g : N → P are alledtransversal if their produt is transverse to the diagonal in P × P . We applyCriteria 2.5, and �rst prove that δ is surjetive on onordane lasses. Let

ψ : R → [0, 1] be a �xed smooth funtion whih is 0 near (−∞, 1
3
] and is 1 near

[2
3
,∞), satisfying that ψ′ ≥ 0 and that ψ′ > 0 on ψ−1((0, 1)).Given smooth funtions a0 ≤ a1 : X → R with (a1 − a0)

−1(0) ⊆ X an opensubset, we de�ne ϕ : X ×R→ X ×R by the formulas
ϕ(x, u) = (x, ϕx(u)),

ϕx(u) =

{
a0(x) + (a1(x)− a0(x))ψ

(
u−a0(x)

a1(x)−a0(x)

) if a0(x) < a1(x),

a0(x) if a0(x) = a1(x).Suppose that W ∈ C⋔
d (X; a0, a1) with a0 ≤ a1. The �berwise transversalityondition (iii) of De�nition 2.6 implies that (π, f) and ϕ are transverse, and henethat

Wϕ = ϕ∗W = {(x, u, z) | π(z) = x, f(z) = ϕx(u)}is a submanifold of X ×R×W . Using the embedding W ⊂ X ×R×Rd−1+∞ wean rewrite Wϕ as
Wϕ = {(x, u, r) | (x, ϕx(u), r) ∈W} ⊆ X ×R×Rd−1+∞.It follows that
Wϕ ∩

(
X × (−∞, a0 + ε)×Rd−1+∞

)
= M0 × (−∞, a0 + ε)

Wϕ ∩
(
X × (a1 − ε,+∞)×Rd−1+∞

)
= M1 × (a1 − ε,+∞),18



where ε = 1 on (a1 − a0)
−1(0) and ε = 1

3
(a1 − a0) otherwise. Thus Wϕ de�nes anelement of Cd(X; a0, a1, ε), and in turn an element of Cd(X; a0, a1).We have left to hek that Wϕ is onordant toW in C⋔

d (X; a0, a1). To this endwe interpolate between the identity and our �xed funtion ψ : R→ [0, 1]. De�ne
ψs(u) = ρ(s)ψ(u) + (1− ρ(s))uwith ρ any smooth funtion from R to [0, 1] for whih ρ = 0 near (−∞, 0] and

ρ = 1 near [1,∞). De�ne Φ: X ×R ×R → X × R as Φ(x, s, u) = (x,Φx(s, u))where
Φx(s, u) =

{
a0(x) + (a1(x)− a0(x))ψs

(
u−a0(x)

a1(x)−a0(x)

) if a0(x) < a1(x),

ρ(s)a0(x) + (1− ρ(s))u if a0(x) = a1(x).

Φ is transversal to (π, f), and the manifold
WΦ = {((x, s), u, r) | (x,Φx(s, u), r) ∈W} ⊆ (X ×R)×R×Rd−1+∞de�nes the required onordane in C⋔

d (X ×R) from W to Wϕ.We have proved that
δ : N0Cd[X]→ N0C

⋔

d [X] and
δ : N1Cd[X]→ N1C

⋔

d [X]are both surjetive. The obvious relative argument is similar, and we an use Cri-teria 2.5. This proves that δ : |NkCd| → |NkC
⋔
d | is a weak homotopy equivalenefor k = 0 and k = 1. The ase of general k is similar. �Remark 4.5. There are versions of the sheaves D⋔

d , C⋔
d , Cd, where the funtions

a : X → R are required to be loally onstant. The proofs given in this setionremain valid for these sheaves (the point is that in the proof of Proposition 4.2,we are hoosing the funtions aj : Uj → R loally onstant anyway). This provesthe laim in the last sentene of Remark 2.1(ii).5. Tangential struturesWe prove the version of the Main Theorem with tangential strutures, as an-nouned in the introdution. First we give the preise de�nitions.Fix d ≥ 0 as before, and let BO(d) = G(d,∞) denote the Grassmannian of
d-planes in R∞, Ud → BO(d) the universal d-dimensional vetor bundle, and
EO(d) its frame bundle. Let

θ : B → BO(d)be a Serre �bration (e.g. a �ber bundle). We think of θ as strutures on d-dimensional vetor bundles: If f : X → BO(d) lassi�es a vetor bundle over X,then a θ-struture on the vetor bundle is a map l : X → B with θ ◦ l = f .An important lass of examples omes from group representations. If G is atopologial group and ρ : G → GL(d,R) is a representation, then it indues amap Bρ : BG→ BGL(d,R) ≃ BO(d), whih we an replae by a Serre �bration.19



In this ase, a θ-struture is equivalent to a lifting of the struture group to G.These examples inlude SO(d), Spin(d), Pin(d), U(d/2) et.Another important lass of examples omes from spaes with an ation of O(d).If Y is an O(d)-spae, we let B = EO(d)×O(d)Y . If Y is a spae with trivial O(d)-ation, then a θ-struture amounts to a map fromX to Y . If Y = (O(d)/SO(d))×
Z, with trivial ation on Z, then a θ-struture amounts to an orientation of thevetor bundle together with a map from X to Z.The proof of the main theorem applies almost verbatim if we add θ-strutures tothe tangent bundles of all d-manifolds in sight. We give the neessary de�nitions.If V → X and U → Y are two vetor bundles, a bundle map V → U is aontinuous map of the total spaes of the vetor bundles, whih on eah �ber of
V restrits to a linear isomorphism onto a �ber of U . Let Bun(V, U) denote thespae of all bundle maps, equipped with the ompat-open topology. If U = Udis the universal bundle over BO(d) (and X is a CW omplex), then Bun(V, U) isontratible if V is d-dimensional.A (non-identity) point in morCd is given by (W, a0, a1), where a0 < a1 ∈ R and
W is a submanifold (with boundary) of [a0, a1] × Rd−1+n, n ≫ 0. The tangentspaes TpW de�ne a map

τW : W → G(d, n)→ BO(d),overed by a bundle map TW → Ud.De�nition 5.1. Let Cθ be the ategory with morphisms (W, a0, a1, l), where
(W, a0, a1) ∈ morCd and l : W → B is a map satifying θ ◦ l = τW . We topologize
morCθ as in (2.4), but with B∞(W ) replaed with Bθ

∞(W ) = Embθ(W, [0, 1] ×Rd−1+∞)/Diff(W ), where Embθ is de�ned by the pullbak square
Embθ(W, [0, 1]×Rd−1+∞) //

��

Bun(TW, θ∗Ud)

θ

��

Emb(W, [0, 1]×Rd−1+∞)
τW

// Bun(TW,Ud).

(5.1)The objets of Cθ are topologized similarly.The spae Bun(TW,Ud) is ontratible, so the inlusion of the �ber produt inthe produt
Embθ(W, [0, 1]×Rd−1+∞)→ Emb(W, [0, 1]×Rd−1+∞)× Bun(TW, θ∗Ud)is a homotopy equivalene. Dividing out the ation of Diff(W ) we get a homotopyequivalene

Bθ
∞(W )

≃
−→ E Diff(W )×Diff(W ) Bun(TW, θ∗Ud).20



Thus, up to homotopy,
obCθ ≃

∐

M

E Diff(M)×Diff(M) Bun(R× TM, θ∗Ud), (5.2)
morCθ ≃

∐

W

E Diff(W )×Diff(W ) Bun(TW, θ∗Ud), (5.3)where M runs over losed (d − 1)-manifolds, one in eah di�eomorphism lass,and W runs over ompat d-dimensional obordisms, one in eah di�eomorphismlass. As before, Diff(W ) ≃ Diff(W, {∂in}, {∂out}) denotes the topologial groupof di�eomorphisms that restrit to di�eomorphisms of the inoming and outgoingboundaries separately (or to produt di�eomorphisms on a ollar).The left hand side of the homotopy equivalene (5.3) is the spae of all mor-phisms in Cθ. The spae of morphisms between two �xed objets an be de-termined similarly. We �rst treat the ase θ = id. Let c0 = (M0, a0) and
c1 = (M1, a1) be two objets of Cd, given by real numbers a0 < a1, losed man-ifolds Mν ⊆ Rd−1+∞. Let W be a ompat manifold and h0 : [0, 1) ×M0 → Wand h1 : (0, 1]×M1 →W be ollars as in (2.3). Let

Emb∂(W, [0, 1]×Rd−1+∞) ⊆ Emb(W, [0, 1]×Rd−1+∞)be the subspae onsisting of embeddings j whih satisfy j ◦ h0(t, x) = (t, x)for t su�iently lose to 0 and j ◦ h1(t, x) = (t, x) for t su�iently lose to1. Let Diff(W ; ∂W ) ⊆ Diff(W ) be the subgroup onsisting of di�eomorphismsthat restrit to the identity on a neighborhood of ∂W . This subgroup ats on
Emb∂(W, [0, 1]×Rd−1+∞) and we let B∂

∞(W ) be the orbit spae
B∂

∞(W ) = Emb∂(W, [0, 1]×Rd−1+∞)/Diff(W ; ∂W ).Then, up to homeomorphism, the spae of morphisms is
Cd(c0, c1) ∼=

∐

W

B∂
∞(W ),where the disjoint union is over obordisms W from M0 to M1, one in eah dif-feomorphism lass relative to M0 and M1. Sine Emb∂(W, [0, 1] × Rd−1+∞) isontratible, we get the homotopy equivalene

Cd(c0, c1) ≃
∐

W

BDiff(W ; ∂W ).The ase of a general θ : B → BO(d) is handled similarly. If l0 : M0 → B and
l1 : M1 → B are two maps satisfying θ◦ lν = τR×Mν

and cν = (Mν , aν , lν), ν = 0, 1,then we get
Cθ(c0, c1) ≃

∐

W

E Diff(W ; ∂W )×Diff(W ;∂W ) Bun∂(TW, θ∗Ud), (5.4)where Bun∂(TW, θ∗Ud) ⊆ Bun(TW, θ∗Ud) is the subspae onsisting of bundlemaps whih agree with the maps indued by l0 and l1 over a neighborhood of ∂W .21



Let us onsider the ase of ordinary orientations in more detail. Here B =
BSO(d) is the oriented Grassmanian onsisting of d-dimentional linear subspaesof R∞ together with a hoie of orientation, and θ : B → BO(d) is the twofoldovering spae that forgets the orientation. Let W be a obordism between theoriented manifolds M0 and M1. Then the set

Or(W ; ∂W ) = π0 Bun∂(TW, θ∗Ud)is the set of orientations of W agreeing with the orientations given near ∂W(i.e. the ollars h0 and h1 are oriented embeddings). Furthermore, the onnetedomponents of Bun∂(TW, θ∗Ud) are ontratible, so we get a homotopy equivalene
E Diff(W ; ∂W )×Diff(W ;∂W ) Bun∂(TW, θ∗Ud) ≃

EDiff(W ; ∂W )×Diff(W ;∂W ) Or(W ; ∂W ).The stabilizer of an element of Or(W ; ∂W ) is the subgroup Diff+(W ; ∂W ) of ori-entation preserving di�eomorphisms, restriting to the identity near the boundary.Thus we get
C+

d (c0, c1) ≃
∐

W

BDiff+(W ; ∂W ),where the disjoint union is over all oriented obordisms W from M0 to M1, onein eah oriented di�eomorphism lass.De�nition 5.2. Let θd,n : Bd,n → G(d, n) be the pullbak
Bd,n

//

θd,n

��

B

θ
��

G(d, n) // BO(d),and let MT (θ) be the spetrum whose (n+ d)th spae is Th(θ∗d,nUd,n).The o�ber sequene (3.3) generalizes to a o�ber sequene
MT (θ) −→ Σ∞B+ −→ MT (θd−1),where θd−1 is the pullbak

Bd−1
//

θd−1

��

B

θ
��

BO(d− 1) // BO(d).With these de�nitions, the general form of the main theorem (as also stated inthe introdution) is that for every tangential struture θ, there is a weak equiva-lene
BCθ ≃ Ω∞−1

MT (θ) = colim
n→∞

Ωd+n−1 Th(θ∗d,nU
⊥
d,n).22



The θ-versions of the sheaves used in setion 4 to prove the speial ase θ = id,are de�ned as follows.De�nition 5.3. Let W ∈ Dd(X). Let T πW be the �berwise tangent bundle ofthe submersion π : W → X. The embedding W ⊂ X×Rd+∞ indues a anoniallassifying map T πW : W → BO(d). Let Dθ(X) be the set of pairs (W, l) with
W ∈ Dd(X) and l : W → B a map satisfying θ ◦ f = T πW .The sheaves Cd, C⋔

d and D⋔
d all onsist of submanifolds W ⊆ X × Rd+n suhthat the projetion π : W → X is a submersion, together with some extra data.The tangential struture versions Cθ, C⋔

θ and D⋔
θ are de�ned in the obvious way:add a lifting l : W → B of the vertial tangent bundle T πW : W → BO(d).With these de�nitions, the proofs of setion 4 apply almost verbatim. We notethat the θ-versions of Theorem 3.4 and Proposition 4.4 use that θ is a Serre�bration. 6. Connetedness issuesThis setion, tehnially the hardest of the paper, ompares the ategory Cθwith the positive boundary subategory Cθ,∂. It is similar in spirit to setion�6 of [MW02℄. The two ategories have the same spae of objets. The spaeof morphisms of Cθ,∂ is as in (2.4) and De�nition 5.1, but taking only disjointunion over the W for whih eah onneted omponent has non-empty outgoingboundary: if W is a obordism from M0 to M1, then π0M1 → π0W is surjetive.In this setion we proveTheorem 6.1. For d ≥ 2 and any θ : B → BO(d), the inlusion

BCθ,∂ → BCθis a weak equivalene.In order to simplify the exposition we treat only the ase θ = id. The generalase of an arbitrary θ-struture is similar.We say that a map f : X → Y of topologial spaes is π0-surjetive if theindued map π0X → π0Y is surjetive. The subsheaf D⋔
d,∂ ⊆ D⋔

d is de�ned asfollows: (W, a0, a1) ∈ D
⋔
d (pt) is in D⋔

d,∂(pt) if the inlusion
f−1(a1)→ f−1[a0, a1]is π0-surjetive. In general χ = (W, a0, a1) ∈ D⋔

d (X) is in D⋔
d,∂(X) if χ|{x} ∈

D⋔
d,∂({x}) for all x ∈ X. The proof given above that |βD⋔

d | ≃ BCd (in Propositions2.9, 4.3 and 4.4) is easily modi�ed to show that |βD⋔
d,∂| ≃ BCd,∂. We will showthat the omposite map of sheaves βD⋔

d,∂ → βD⋔
d → Dd satis�es the relativelifting riteria 2.5 for all d ≥ 2. 23



6.1. Disussion. We desribe the ideas involved and indiate the issues in prov-ing that the map βD⋔
d,∂ → Dd is a weak equivalene.As a �rst approximation we an try to repeat the proof for βD⋔

d → Dd (inProposition 4.2), by hoosing regular values ax ∈ R for fx : Wx → R �at random�(using Sard's theorem), and using that ax is a regular value for fy : Wy → Ralso for y in a small neighborhood Ux of x ∈ X. This will produe an element
(W, (Uj , aj)j∈J) ∈ βD⋔

d (X) but in general there is, of ourse, no reason to expetto get an element of βD⋔
d,∂(X) ⊆ βD⋔

d (X). The idea is now to deform (i.e. hangeby a onordane) the underlying W ∈ Dd(X) to an element W ′ ∈ Dd(X) suhthat W ′ together with the regular values aj (possibly slightly perturbed) de�nesan element of βD⋔
d,∂(X).

a0

a1

a2

Figure 1.It is instrutive to �rst onsider the ase X = pt. Given an element (W, a0 <
· · · < ak) ∈ NkD

⋔
d (pt), it is easy to see that there is a onordane H ∈ Dd(R)from W to W ′ suh that (W ′, a0 < · · · < ak) ∈ NkD

⋔
d,∂(pt). Roughly, we haveto get rid of some loal maxima, with values between a0 and ak, of the funtion

f : W → R f. Figure 1. A naive way to do that is to �pull them up�, i.e. if p ∈Wis near a �loal maximum� for f : W → R, then we an hange f near p to have
f(p) > ak f. Figure 2. A better way (for reasons explained below) to get rid of aloal maximum, is given in Lemma 6.2 below.

a0

a1

a2

Figure 2.For generalX it is equally easy to solve the problem loally. GivenW ∈ Dd(X),suppose we have hosen regular values aj ∈ R and orresponding open overing24



Uj ⊆ X, j ∈ J , suh that (W, (aj, Uj)j∈J) de�nes an element of βD⋔
d (X). Given

x ∈ X it is easy (as in the ase X = pt) to �nd a small neighborhood Ux ⊆ Xand a onordane Hx ∈ Dd(Ux × R) from W |Ux to W ′ ∈ Dd(Ux) suh that
(W ′, (aj, Uj ∩Ux)j∈J) de�nes an element of βD⋔

d,∂(Ux). We now need to glue theseloal onstrutions.The loally de�ned onordane Hx ∈ Dd(Ux × R) an be assumed to extendto Hx ∈ Dd(X × R). Namely we may hoose a bump funtion λ : X → [0, 1],supported in Ux, and whih is 1 in a smaller neighborhood U ′
x ⊆ Ux, and let h :

Ux×R→ Ux×R be given by h(x, t) = (x, tλ(x)). Then H ′
x = h∗Hx ∈ Dd(Ux×R)is a onordane whih is onstant outside the support of λ, so it extends to aonordane H ′

x ∈ Dd(X × R). Moreover H ′
x|(U

′
x × R) = Hx|(U

′
x × R). Thus

H ′
x is a onordane from W to W ′ ∈ Dd(X), suh that W ′|U ′

x ∈ Dd(U
′
x) lifts to

βDd,∂(U
′
x). Also W and W ′ agree outside Ux ⊇ U ′

x.We have desribed how, given a way of getting rid of a single loal maxima, todeform an element W ∈ Dd(X) into an element W ′ ∈ Dd(X), with the propertythatW ′|U ′
x lifts to βD⋔

d,∂(U
′
x), and suh thatW andW ′ agree outside a larger openneighborhood Ux ⊇ U ′

x. Roughly, the idea is now to apply suh a onstrution forsu�iently many x ∈ X, enough that the sets U ′
x over X. For this to work thereis one ritial issue, however. Namely it is essential that the loal onstrutionused to get rid of �berwise loal maxima over U ′

x does not reate new �berwiseloal maxima over Ux − U
′
x. Without this, the idea to �apply suh a onstrutionfor su�iently many x ∈ X� will not work.The naive idea of �pulling loal maxima up� will not work, preisely for thisreason. If we �pull up� a �berwise loal maximum over U ′

x, we have to pull lessand less over Ux − U
′
x (as spei�ed by the bump funtion λ), whih will give riseto �berwise loal maxima of f ′ : W ′ → R over Ux − U

′
x whih are not �berwiseloal maxima of f : W → R.Thus we will need a way of deforming f : W → R to get rid of loal maximawithout reating new ones in the proess. Suh a onstrution is desribed inLemma 6.2 below. It desribes a family of maps ft : Kt → R, t ∈ [0, 1] from

d-manifolds Kt, suh that f0 is the onstant map 0 : Rd → R, suh that f1 :Rd − {0} → R has limx→0 f(x) = +∞, and suh that ft : Kt → R has no loalmaxima, exept some with value 0 ∈ R, for any t ∈ [0, 1]. Moreover eah Ktontains the open subset Rd −Dd ⊆ Kt and ft|(Rd −Dd) = 0.6.2. Surgery. The geometri onstrution is based on the following lemma. Letus say that a map f : M → N is proper relative to an open set U ⊆ M , if
f|M−U : M − U → N is proper.Lemma 6.2. There exists a smooth (d+1)-manifold K ontaining U = R×(Rd−
Dd) as an open subset, and smooth maps (π, f) : K → R×R, suh that(i) π is a submersion, and (π, f) is proper relative to U . In partiular, if we let

Kt = π−1(t) and Ut = U ∩Kt = {t}× (Rd−Dd), then ft : Kt → R is properrelative to Ut. 25



(ii) (π, f)(t, x) = (t, 0) for all (t, x) ∈ U ⊆ K.(iii) K0 = {0} ×Rd and f0 : K0 → R is the zero funtion.(iv) For all t ∈ [0, 1] and all a0 < a1 ∈ R, the following inlusions are π0-surjetions
Ut ∐ f

−1
t (a1)→ f−1

t ([a0, a1]) if 0 ∈ [a0, a1]

f−1
t (a1)→ f−1

t ([a0, a1]) if 0 6∈ [a0, a1].(v) For all a0 < a1 ∈ R, the inlusion
f−1

1 (a1)→ f−1
1 ([a0, a1])is a π0-surjetion.(vi) K1 = {1} × (Rd − {0}) and f1 : K1 → R is non-negative and has 0 ∈ R asonly ritial value.(vii) T πK is a trivial vetor bundle.The last property, that T πK be a trivial vetorbundle, is needed to make theonstrutions work in the presene of θ-strutures.As stated, the lemma is true also for d = 1, but is useful only for d > 1. For

d > 1 the set Ut is onneted, and the properties (iii) and (iv) say that the numberof elements in the quotient
Qt = π0(f

−1
t [a0, a1])/π0(f

−1
t (a1))is never larger than the number of elements in Q0. For 0 ∈ [a0, a1] and d = 1,the inlusion Ut → f−1

t ([a0, a1]) de�nes an element [Ut] ∈ Qt, and (v) says that
[U0] ∈ Q0 is not the basepoint, then Q1 is stritly smaller than Q0.Proof. We will onstrut K as a ertain pullbak of a 2-manifold L whih we�rst onstrut. L will ome with an immersion (π, j) : L → [0, 4] × [0,∞) anda funtion f : L → R. L will be glued from four piees L1, . . . , L4 whih weonstrut individually. The piees L1, L2 and L4 will be subsets of [0, 1]× [0,∞),and L3 will be the disjoint union of three open subsets of [0, 1] × [0,∞). In allases, (π, j) : Lν → [0, 1]× [0,∞) will be given by the inlusions.Let ρ : [0,∞)→ [0, 1] be a smooth funtion with supp(ρ) = [0, 1], ρ(0) = 1, and
ρ′(r) ≤ 0. For s ∈ [0, 1] let qs(r) = ρ(r2) 1−s

r2+s
and let gs and ĝs be the funtionsgiven by

gs(r) = −qs(r)− qs(r − 2) + q0(r − 1)

ĝs(r) = sgn(r(r − 2))

(
−q0(r)− q0(r − 2) + q1−s(r − 1)−

1− s

s

)
+

1− s

s
.

gs(r) is de�ned unless r = 1 or (s, r) ∈ {0} × {0, 2}. ĝs(r) is de�ned unless
r ∈ {0, 2} or (s, r) = (1, 1) or (s, r) ∈ {0} × [0, 2]. It is easily heked that
g′s(r) = 0 only if r ≥ 3, if (s, r) ∈ (0, 1] × {0, 2}, or if (s, r) ∈ {1} × [2,∞).Similarly ĝ′s(r) = 0 only if r ≥ 3 or (s, r) ∈ (0, 1)×{1}. All isolated ritial pointsof gs and ĝs are loal minima. 26



De�ne funtions f ν : Lν → R for ν = 1, 2, 4 by the following formulas, usingthe (alulus) onvention that the set Lν ⊆ [0, 1]× [0,∞) is the largest open setfor whih the de�nitions make sense.
f 1(t, r) = ĝ0(r + 3(1− t))

f 2(t, r) = ĝt(r)

f 4(t, r) = gt(r + t).To de�ne f 3, let L3 = L3
− ∐ L

3
+ ∐ L

3
0, where

L3
− = {(t, r) ∈ [0, 1]× [0,∞) | t < r < t+ 1}

L3
+ = {(t, r) ∈ [0, 1]× [0,∞) | (1− t) < r < (2− t)}

L3
0 = [0, 1]× (2,∞).Let f 3 = f 3

− ∐ f
3
+ ∐ f

3
0 , where

f 3
ε (t, r) = ĝ1(r + εt).It is easily heked that f 1(1, r) = f 2(0, r), f 2(1, r) = f 3(0, r) and f 3(1, r) =

f 4(0, r), so they glue to a ontinuous funtion f̃ : L̃→ R, where L̃ is glued from
L1, . . . , L4. L̃ is a smooth manifold and omes with an immersion (π̃, j̃) : L̃ →
[0, 4] × [0,∞). The 2-manifold L̃ is skethed in Figure 3, whih also depits themap π̃ : L̃ → [0, 4] as the projetion onto the horizontal axis and j̃ : L̃ → [0,∞)as the projetion onto the vertial axis.The funtion f̃ is not smooth in the t-variable along the gluing lines. To �xthat, we hoose a funtion σ : [0, 4]→ [0, 4] whih for eah n = 1, 2, 3 has σ(t) = nfor all t near n. Then let L be de�ned by the pullbak diagram

L
σ

//

π

��

L̃

π̃
��

[0, 4]
σ

// [0, 4],and let j = j̃ ◦ σ : L→ [0,∞) and f = f̃ ◦ σ : L → R. The resulting f : L→ Ris then smooth.Let λ : R → [0, 1] be a smooth funtion whih is 0 near (−∞, 0] and 1 near
[1,∞) and has λ′ > 0 on λ−1((0, 1)). Let g : R×Rd → [0, 4]× [0,∞) be the mapgiven by

g(t, x) = (4λ(t), 3|x|2).27
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Figure 3. Image of (π̃, j̃) : L̃→ [0, 4]× [0,∞).To onstrut the map (π, f) : K → R × R of the proposition, de�ne K as thepullbak in the diagram
K

(π,j)
��

// L

(π,j)
��

f
// RR×Rd

g
// [0, 4]× [0,∞).

(6.1)Then (π, j) : K → R × Rd is a odimension 0 immersion, and over U = R ×
(Rd −Dd) it is a di�eomorphism. The diagram also provides a map f : K → R,and it is easily seen that (π, f) : K → R × R satis�es the �rst six properties ofthe proposition. The di�erential of (π, j) : K → R × Rd de�nes a trivializationof the d-dimensional vetor bundle T πK. �The manifold K and the map (π, f) : K → Rd ×R are illustrated in Figure 4,whih shows the d-manifold Kt = π−1(t) for d = 1 and various values of t ∈ [0, 1].The horizontal axis is [−1, 1] = Dd ⊆ Rd and the projetion is the immersion
jt : Kt → Rd. The vertial axis is (−∞,∞) and the projetion is the funtion
ft : Kt → (−∞,∞). The small arrows indiate how Kt hanges when t inreases.Given an element W ∈ Dd(pt), assume e : Rd → W is an embedding with
e(Rd) ⊆ f−1(r) for some r ∈ R. Then W ×R ∈ Dd(R) has an embedded Rd×Rfrom whih we an remove Dd × R and glue in the manifold K from the aboveLemma 6.2 along the embedded (Rd−Dd)×R. This gluing is over R if we equip
K with the map f + r : K → R and we get a onordane W e ∈ Dd(R) startingatW ∈ Dd({0}). We will desribe an enhaned version of this onstrution wherewe start with W ∈ Dd(X) and a �nite set of embeddings eτ : X × Rd → W(τ ∈ T ) suh that rτ (x) = f ◦ eτ (x, u) is independent of u ∈ Rd. The enhaned28



τ = 0 0 < τ < 1/3 1/3 < τ < 1

1 < τ < 2 τ = 2 2 < τ < 3

τ = 3 3 < τ < 4 τ = 4Figure 4. (ft, jt)(Kt) for d = 1 and various values of τ =
σ(4λ(t)) ∈ [0, 4].onstrution will give an element W e ∈ Dd(X × RT ) whih upon restrition to

X × {1}T is an element where the �loal maxima� at eτ (x, 0) have disappeared.De�nition 6.3. Let X be a manifold and T a �nite set. Let r : X × T → R besmooth. For τ ∈ T , let qτ,r : (X ×RT )×R→ R×R be the map
qτ,r((x, l), t) = (lτ , t− r(x, τ)), l = (lτ )τ∈T .Considering K as a spae over R × R via the map (π, f) from (6.1), we get amanifold q∗τ,rK over (X ×RT )×R, ontaining q∗τ,rU = (X ×RT )× (Rd −Dd) asan open subset. Let

Kr =
∐

τ∈T

q∗τ,rK, U r =
∐

τ∈T

q∗τ,rU ⊆ Kr.This omes equipped with a map (πr, f r) : Kr → (X ×RT )×R whih is properrelative to U r = (X×RT )×
∐

T (Rd−Dd), and πr : Kr → X×RT is a submersion.Remark 6.4. This behaves well under union in the T -variable. If T = T0 ∐ T1and rν : X × Tν → R, ν = 0, 1 are the restritions of r, then
Kr = proj∗

X×RT0
(Kr1)∐ proj∗

X×RT1
(Kr0)where the indiated projetions are X ×RT → X ×RTν , ν = 0, 1.29



Constrution 6.5. Let W ∈ Dd(X), and let T be a �nite set. Let r : X×T → Rbe smooth. Then X×∐
T Rd = X×T×Rd is a spae over X×R via the projetionomposed with r. Let

e : X ×
∐

T

Rd → Wbe an embedding over X×R, i.e. with π◦e(x, τ, u) = x and f ◦e(x, τ, u) = r(x, τ).This indues an embedding
ẽ : (X ×RT )×

∐

T

Rd → proj∗X W,where projX : X ×RT → X is the projetion. Let W e be the pushout
U r ẽ

//

��

proj∗X W − ẽ(X ×RT ×
∐

T D
d)

��

Kr // W e

(6.2)This gives a manifold W e over (X×RT )×R whih de�nes an element of Dd(X×RT ).Elements of Dd(X × RT ) are submanifolds of (X × RT ) × R × Rd−1+∞, sostritly speaking the onstrution of W e inludes a hoie of an embedding
ϕ : W e → (X ×RT )×R×Rd−1+∞extending the given map W e → (X × RT ) × R. Then the image ϕ(W e) isan element of Dd(X × RT ). The element proj∗X W ∈ Dd(X × RT ) has a pre-ferred embedding i : proj∗X W → (X × RT ) × R × Rd−1+∞ (namely the in-lusion), and it is onvenient to assume that ϕ and i agree on the subspae

proj∗X W − ẽ(X ×RT ×
∐

T D
d). Suh an embedding ϕ an always be hosen,and is unique up to isotopy. It is irrelevant for the arguments whih ϕ we hoose,and therefore we omit it from the notation, writing W e ∈ Dd(X ×RT ) instead of

ϕ(W e).6.3. Connetivity. We will apply the surgery onstrution of the previous se-tion to a morphism (W, a0, a1) ∈ D⋔
d (X) with a0 < a1. The resulting W e ∈

Dd(X ×RT ) will usually not give rise to an element (W e, a0, a1) ∈ D
⋔
d (X ×RT )beause f e : W e → R might not be �berwise transverse to a0, a1. Let V =

V (a0, a1) ⊆ X ×RT be the open set of points (x, l) for whih f e
(x,l) : W e

(x,l) → R istransverse to a0(x) and a1(x). Then we have (W e, a0, a1)|V ∈ D
⋔
d (V ). By Sard'stheorem, any (x, t) ∈ X × RT is in V (b0, b1) for some b0, b1 arbitrarily lose to

a0, a1. The goal is to use these onordanes to get an element of D⋔
d,∂. Sine theondition for being in D⋔

d,∂ ⊆ D⋔
d is pointwise, we restrit attention to the ase

X = pt in the following propositions. 30



Proposition 6.6. Let (W, a0, a1) ∈ D⋔
d (pt) with a0 < a1. Let r : T → R and

e :
∐

T Rd → W be as in Constrution 6.5. Let V = V (a0, a1) ⊆ RT be as above.(i) If r(τ) 6= a0, a1 for all τ ∈ T , then {0, 1}T ⊆ V .(ii) If (W, a0, a1) ∈ D
⋔
d,∂(pt), then (W e, a0, a1)|V ∈ D

⋔
d,∂(V ).(iii) If (W, a0, a1) ∈ D

⋔
d (pt), a0 < r < a1, and if
f−1(a1)∐

∐

T

Rd → f−1([a0, a1])is π0-surjetive, then the restrition to {1}T ⊆ RT de�nes an element (W, a0, a1){1}T ∈
D⋔

d,∂({1}
T ).Proof. Let l ∈ {0, 1}T . By Lemma 6.2(vi) we get that ritial values of fl : W e

l →R will be either ritial values of f : W → R, or values r(τ) for τ ∈ T with lτ = 1.This proves (i). (ii) follows from Lemma 6.2(iv) and (iii) follows in the same wayfrom Lemma 6.2(v). �If not l ∈ V (a0, a1), then l ∈ V (b0, b1) for some b0, b1 near a0, a1. We have thefollowing orollary of the above proposition.Corollary 6.7. Let (W, a0, a1) ∈ D
⋔
d (pt). Let U0 and U1 be small open intervals inR around a0 and a1, respetively, onsisting of regular values of f . Let r : T → Rand e :

∐
T Rd → W be as in Constrution 6.5. Let T = T0 ∐ T1 and assume

supU0 < r(τ) < inf U1 for τ ∈ T1, and that
f−1(a1)∐

∐

T1

Rd → f−1([a0, a1])is π0-surjetive. Then
(W e

l , b0, b1) ∈ D
⋔

d,∂({l})for all b0, b1 ∈ U0 ∪ U1 with b0 < b1, and all l ∈ V (b0, b1) ∩
(RT0 × {1}T1

).Proof. If b0 ∈ U0 and b1 ∈ U1 then, sine U0 and U1 are onneted and onsist ofregular values of f ,
f−1(b1)∐

∐

T1

Rd → f−1([b0, b1]) (6.3)will also be π0-surjetive. If b0, b1 ∈ U1 or if b0, b1 ∈ U1, then [b0, b1] onsistsof regular values of f , so f−1([b0, b1]) ∼= f−1(b1) × [b0, b1], so the inlusion (6.3)is π0-surjetive in this ase too. Therefore, by Proposition 6.6(iii) the element
W e1 ∈ Dd(RT1) will have

(W e1

{1}T1
, b0, b1) ∈ D

⋔

d,∂({1}
T1).It follows from Remark 6.4 that the onstrution of W e ∈ Dd(X ×RT ) enjoysthe following naturality property. If T = T0 ∐ T1, then we an restrit e to

eν : X ×
∐

Tν
Rd → W , ν = 0, 1. By onstrution (diagram (6.2)), the element31



W e1 ontains the open subset proj∗X W − ẽ1(X ×RT1 ×
∐

T1
Dd) and hene e0de�nes an embedding

proj∗X(e0) : (X ×RT1)×
∐

T0

Rd →W e1.The naturality property is that
(W e1)proj∗X(e0) = W e.Restriting to {1}T1 ×RT0 we have

W e
{1}T1×RT0

= (W e1

{1}T1
)proj∗X(e0).The laim now follows from Proposition 6.6(ii) above. �We will say that an open set U0 ⊆ X × R is a tube around a0 if it ontainsthe graph of a0, and if the intersetion U0 ∩ {x} ×R is an interval onsisting ofregular values of fx : Wx → R for all x ∈ X.De�nition 6.8. For a funtion λ : X×T → [0, 1], let λ̂ : X×R→ X×RT denotethe adjoint λ̂(x, t) = (x, tλ(x)). Given r : X × T → R and e : X ×

∐
T Rd → Was in Constrution 6.5, let W e,λ ∈ Dd(X ×R) denote the pullbak of W e along λ̂.If T = T0 ∐ T ′ and λ|X×T0

= 0, then W e,λ = W e′,λ′, where e′ and λ′ arethe restritions to T ′ ⊆ T . The following orollary follows immediately fromCorollary 6.7 above.Corollary 6.9. Let (W, a0, a1) ∈ D
⋔
d (X). Let r, e, λ be as in De�nition 6.8. Let

W e,λ ∈ Dd(X × R) be the resulting element. Let U0, U1 be tubes around a0 and
a1. Assume that there is a subset T1 ⊆ T with λ|X×T1

= 1, suh that the graph of
r|X×T1

is above U0 and below U1, and suh that
f−1

x (a1(x)) ∐
∐

T1

Rd → f−1
x ([a0(x), a1(x)])is π0-surjetive for all x.For all b0, b1 : X → R with b0 < b1 and graph(bν) ⊆ U0 ∪ U1, let V̂ (b0, b1)denote the intersetion X × {1} ∩ λ̂−1V (b0, b1). Then the resulting element

(W e,λ, b0, b1)|λ̂−1V (b0,b1)
∈ D⋔

d (λ̂−1V (b0, b1))restrits to an element
(W e,λ, b0, b1)|V̂ (b0,b1)

∈ D⋔

d,∂(V̂ (b0, b1))Thus, we get a onordane from W = W e,λ

|X×{0} ∈ Dd(X × {0}) to the element
W e,λ

|X×{1} ∈ Dd(X × {1}) and the latter element lifts over V̂ (b0, b1) to morphismsin D⋔

d,∂. 32



6.4. Parametrized surgery. So far we have desribed how to perform surgeryon W ∈ Dd(X) along an embedding e : X ×
∐

T Rd → W . If we only have suhembeddings given loally in X, then we an perform the surgeries loally and gluethem together using appropriate partitions of unity. More preisely we have thefollowing onstrution.Constrution 6.10. Let (p, r) : E → X × R be smooth, with p : E → Xetale (loal di�eomorphism). Let e : E × Rd → W an embedding over X × R.Let λ : E → [0, 1] be a smooth map with p| suppλ proper. De�ne an element
W e,λ ∈ Dd(X×R) in the following way. For x ∈ X, the set Tx = p−1(x)∩ supp λis �nite. Choose a onneted neighborhood Ux ⊆ X of x, and extend to a (unique)embedding Tx×Ux → E over X, suh that p−1(Ux)∩supp λ is ontained in Tx×Ux(this an be done beause p| supp(λ) is a losed map).De�ne W e,λ

|Ux
∈ Dd(Ux ×R) as the onstrution in De�nition 6.8 applied to therestrition of e to Tx × Ux. (If Tx = ∅ then W e,λ

|Ux
= W|Ux

.) These elements agreeon overlaps, so by the sheaf property of Dd we have de�ned W e,λ ∈ Dd(X ×R).We are now ready to prove that βD⋔
d,∂ → Dd is a homotopy equivalene. Itsu�es to prove that any element of Dd(X) is onordant to an element whihlifts to βD⋔

d,∂(X) (plus orresponding relative statement).Given an element (W,π, f) ∈ Dd(X), we hoose (as in the proof of Proposi-tion 4.2) a loally �nite open overing X = ∪jEj and orresponding numbers
aj ∈ R suh that (W, aj)|Ej

∈ D⋔
d (Ej) for all j. We an assume that the aj are alldistint onstants.For eah pair j, k with aj < ak, let Ejk = Ej ∩Ek. Then ϕjk = (W, aj, ak)|Ejk

isa morphism in D⋔

d (Ejk). We an assume that Ejk is either ontratible or empty,so (π, f)−1(Ejk× [aj , ak]) ∼= Ejk×W0 for a ompat manifoldW0 with boundary.Consider the inlusion
(π, f)−1(Ejk × {ak})→ (π, f)−1(Ejk × [aj , ak]).If this is π0-surjetive, then ϕjk ∈ D

⋔
d,∂(Ejk). If not, we an hoose a �nite set Tjkand an embedding ẽjk : Ejk × Tjk → (π, f)−1(Ejk × (aj , ak)) over Ejk suh that

(π, f)−1(Ejk × {ak})∐ Ejk × Tjk → (π, f)−1(Ejk × [aj , ak])is π0-surjetive. Let rjk = f ◦ ẽjk : Ejk × Tjk → R. Let E =
∐
Ejk × Tjk,and let (p, r) : E → X × R be the resulting map. Then the ẽjk assemble to amap ẽ : E → W over X × R. By possibly hanging the f -level of ẽjk, we anarrange that the various ẽjk have disjoint images so that ẽ is an embedding. Ehas ontratible omponents, so the normal bundle of ẽ an be trivialized. Thus

ẽ extends to an embedding e : E ×Rd → W over X.Now, for eah v ∈ p−1(x) ⊆ E, e de�nes an embedding ev : {v} × Rd → Wx,but fx : Wx → R might not be onstant on the image of ev. However, let
ϕ : [0,∞) → [0,∞) be a smooth proper funtion with ϕ[0, 1] = 0 and ϕ′(t) > 0for t > 1 and ϕ(t) = t for t ≥ 2. Then fx ◦ ev

(
ϕ(|u|)u

) is onstantly equal to r(v)33



for u ∈ Dd and agrees with fxev(u) outside 2Dd. After hanging fx on the imageof ev and then re-hoosing the embedding e (preompose it with an embeddingof Rd into Dd), we an assume that ev maps into f−1
x (r(v)). This proess worksequally well in the parametrized setting, so after modifying f : W → R we anassume that e : E × Rd → W is an embedding with π ◦ e(v, u) = p(v) and

f ◦ e(v, u) = r(v). Choose ompatly supported λj : Ej → [0, 1] suh that X isovered by the sets Ẽj = Intλ−1
j (1), and let λjk = λjλk : Ejk → [0, 1]. Theseassemble to a funtion λ : E → R with p| supp(λ) proper.Using these p, r, e and λ, Constrution 6.10 provides an elementW e,λ ∈ Dd(X×R). We laim that W e,λ

1 = W e,λ

|X×{1} lifts to an element of βD⋔
d,∂(X). Indeed, for

x ∈ Ẽj , hoose bxj ∈ R in a tube around aj suh that (x, 1) ∈ V̂ (bxj , bxj). Choosea neighborhood Uxj suh that Uxj × {1} ⊆ V̂ (bxj , bxj). Then (W e,λ
1 , bxj, bxj)|Uxjis an objet of D⋔

d (Uxj). As before, re�ning the Uxj to a loally �nite overingde�nes an element of βD⋔

d (X) whih in turn, by Corollary 6.9, is an element of
βD⋔

d,∂(X). 7. Harer type stability and C2[Til97℄ introdued a version Sb of the ategory C+
2,∂ to prove that Z × BΓ∞,nis homology equivalent to an in�nite loop spae. This used two properties of

Sb. Firstly that Sb is symmetri monoidal, and seondly that ΩBSb is homologyequivalent to Z × BΓ∞,n. In this setion we will prove that ΩBC+
2,∂ is homologyequivalent to Z×BΓ∞,n, using a version of the argument from [Til97℄.The original stability theorem, proved by J. Harer in [Har85℄ is about the homol-ogy of the oriented mapping lass group. In the language used in this paper, it anbe stated as follows. Consider an oriented surfae Wg,n of genus g with n bound-ary irles. There are inlusions Wg,n → Wg+1,n and Wg,n → Wg,n−1 by addingthe torus W1,2 or the disk W0,1 to one of the boundary irles. Let Diff+(W, ∂)denote the group of orientation-preserving di�eomorphisms of W that restrit tothe identity near the boundary, and let

BDiff+(Wg,n; ∂)→ BDiff+(Wg+1,n; ∂), (7.1)
BDiff+(Wg,n; ∂)→ BDiff+(Wg,n−1; ∂), (7.2)be the maps of lassifying spaes indued from the above inlusions. Harer'sstability theorem is that the maps in (7.1) and (7.2) indue isomorphisms, inintegral homology in a range of dimensions that tends to in�nity with g. (Therange is approximately g/2 [Iva89℄.)In the setup of hapter 5, Harer's stability theorem onerns the ase θ : B →

BO(2), where B = EO(2) ×O(2) (O(2)/SO(2)). Reently, homologial stabilitytheorems have been proved for surfaes with tangential struture in a number ofother situations, whih we now list.
• N. Wahl onsidered stability for non-orientable surfaes in [Wah06℄. Let
Sg,n denote the onneted sum of g opies of RP 2 with n disks ut out, and34



onsider the analogue of (7.1) with Diff+(Wg,n; ∂) replaed by Diff(Sg,n; ∂).She proves a stability range (approximately g/4) for the assoiated map-ping lass groups π0 Diff(Sg,n; ∂) and, using the ontratibility of the om-ponent Diff1(Sg,n; ∂), dedues the homologial stability for BDiff(Sg,n; ∂).
• Stability for spin mapping lass groups was established in [Har90℄ and[Bau04℄. It orresponds to the ategory Cθ

2, with the tangential struture
θ : B Spin(2)→ BO(2), f. [Gal06℄.
• Our �nal example is the stability theorem from [CM06℄, orresponding tothe tangential struture

θ : EO(2)×O(2) ((O(2)/SO(2))× Z)→ BO(2),where Z is a simply onneted spae.With the above examples in mind, we now turn to a disussion of abstratstability in a topologial ategory C. We �rst remind the reader that a squarediagram of spaes
Y //

f

��

X0

g

��

X1
p

// X

(7.3)is homotopy artesian if for all x ∈ X1 the indued map of the vertial homotopy�bers
hofib

x
(f)→ hofib

p(x)
(g) (7.4)is a weak equivalene. Similarly, the diagram (7.3) is homology artesian if (7.4)is a homology equivalene, i.e. indues an isomorphism in integral homology. Ifthe map g is a Serre �bration, then diagram (7.3) is homotopy artesian if it isartesian.We also remind the reader that if C is a ategory, then a funtor F : Cop → Setsdetermines, and is determined by, a ategory (F ≀ C) and a projetion funtor

(F ≀ C)→ C, suh that the diagram of sets
N1(F ≀ C)

di
//

��

N0(F ≀ C)

��

N1C
di

// N0C

(7.5)is artesian for i = 0 (so di is the target map). Expliitly, (F ≀ C) is de�ned by
N0(F ≀ C) = {(x, c) | c ∈ N0C, x ∈ F (c)},

N1(F ≀ C) = {(x, f) | f ∈ N1C, x ∈ F (d0c)}.Similarly, a funtor F with values in the ategory of spaes determines, and isdetermined by, a topologial ategory (F ≀ C) with a projetion funtor to C suhthat the diagram (7.5) is a artesian diagram of spaes for i = 0. If the ategory35



C itself is topologial, then it is better to take this as a de�nition: A funtor F :
Cop → Spaces is a topologial ategory (F ≀C) together with a funtor (F ≀C)→ Csuh that the diagram (7.5) is a artesian diagram of spaes for i = 0.We return to (7.5) under the assumption that the right hand vertial map is aSerre �bration. Then the diagram is homotopy artesian for i = 0. It is homotopyartesian also for i = 1, preisely if every morphism f : x→ y in C indues a weakequivalene F (f) : F (x) → F (y). Similarly it is homology artesian for i = 1,preisely if every f : x→ y indues an isomorphism F (f)∗ : H∗(F (x))→ H∗(Fy).Proposition 7.1. Let F : Cop → Spaces be a funtor suh that N0(F ≀ C)→ N0Cis a Serre �bration. Suppose that every f : x → y in C indues an isomorphism
F (f)∗ : H∗(F (x)) → H∗(F (y)) and that B(F ≀ C) is ontratible. Then for eahobjet c ∈ C there is a map

F (c)→ ΩcBCwhih indues an isomorphism in integral homology.Proof. The assumptions imply that diagram (7.5) is homology artesian for i = 0and i = 1, and by indution every diagram of the form
Nk(F ≀ C)

di
//

��

Nk−1(F ≀ C)

��

NkC
di

// Nk−1Cis homology artesian. Then it follows from [MS76, Proposition 4℄ that the dia-gram
N0(F ≀ C)

di
//

��

B(F ≀ C)

��

N0C
di

// BCis homology artesian, i.e. the indued map of vertial homotopy �bers is a ho-mology isomorphism. Let c ∈ ObC. Sine N0(F ≀ C) → N0C is assumed a Serre�bration, the homotopy �ber at c of the left vertial map is F (c). Sine B(F ≀ C)is assumed ontratible, the homotopy �ber of the right vertial map at c is
ΩcBC. �We apply this in the ase where C ⊆ Cθ,∂ is the subategory of objets (M, a)with a < 0, and θ : B → BO(2) is a tangential struture for whih we have a Harertype stability theorem. To de�ne a funtor F : Cop → Spaces, let S1 ⊆ R2−1+∞be a �xed irle, and onsider the objets bi = {i} × S1 in (Cθ,∂), i ∈ N. Choosemorphisms βi ⊆ [i, i+1]×R2−1+∞ from bi to bi+1 whih are onneted surfaes ofgenus 1, and ompatible θ-strutures on the bi and the βi. We use here that the36



tangent bundle of the surfae βi
∼= W1,2 an be trivialized. Let Fi : Cop→ Spacesbe the funtors
Fi(c) = Cθ,∂(c, bi)and let

F (c) = hocolim(F0(c)
◦β0

−−→ F1(c)
◦β1

−−→ · · · ).As a spae, N0(Fi ≀ C) is de�ned by the artesian diagram
N0(Fi ≀ C) //

��

X1

(d0,d1)

��

N0C
(bi,id)

// X0 ×N0C,where X1 = {(W, a0, a1, l) ∈ N1Cθ,∂ | a0 < 0 < a1} and X0 = {(M, a, l) ∈
N0Cθ,∂ | a > 0}. It follows from [KM97℄ that the right hand vertial map is asmooth Serre �bration, so N0(Fi ≀ C) → N0C and in turn N0(F ≀ C) → N0C areSerre �brations, as required in Proposition 7.1. The ategory (Fi ≀C) has terminalobjet idbi

, so B(Fi ≀ C) is ontratible. Therefore B(F ≀C) = hocolimiB(Fi ≀C) isalso ontratible. Finally, if c = {t} × Sn, where Sn ⊆ R2−1+∞ is a disjoint unionof n irles, then the homotopy equivalene (5.4) gives
Fi(c) ≃

∐

g≥0

E Diff(Wg,n+1, ∂)×Diff(Wg,n+1,∂) Bun∂(TWg,n+1, θ
∗Ud),where Wg,n+1 is a surfae of genus g with n + 1 boundary omponents, and

Diff(Wg,n+1, ∂) is the topologial group of di�eomorphisms of Wg,n+1 restritingto the identity near the boundary.Any morphism x→ y in C indues a map Fi(x)→ Fi(y) whih orresponds toinluding one onneted surfae W into another onneted surfae. After takingthe limit g →∞, any morphism x→ y in C indues an isomorphism H∗(F (x))→
H∗(F (y)) in the four ase listed above, f. [Gal06℄, [CM06℄, [Wah06℄. In the aseof ordinary orientations we get

F (c) ≃ Z× BΓ∞,n+1,so we get a new proof of the generalized Mumford onjeture.Theorem 7.2 ([MW02℄). There is a homology equivalene
α : Z× BΓ∞,n → Ω∞

MT (2)+.Referenes[Bau04℄ Tilman Bauer. An in�nite loop spae struture on the nerve of spin bordism ategories.Q. J. Math., 55(2):117�133, 2004.[BJ82℄ Theodor Bröker and Klaus Jänih. Introdution to di�erential topology. CambridgeUniversity Press, Cambridge, 1982. Translated from the German by C. B. Thomas andM. J. Thomas. 37
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