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Abstract. This text aims to explain what topology, at present, has to say about a few of the many
moduli spaces that are currently under study in mathematics.

The most prominent one is the moduli space Mg of all Riemann surfaces of genus g. Other
examples include the Gromov–Witten moduli space of pseudo-holomorphic curves in a sym-
plectic background, the moduli space of graphs and Waldhausen’s algebraicK-theory of spaces.

Mathematics Subject Classification (2000). 19D55, 32G15, 55P42, 57N70.

Keywords. Moduli spaces, mapping class groups, cobordism, algebraic K-theory of spaces.

Introduction

The classical Riemann moduli space Mg is a (6g − 6)-dimensional manifold with
mild singularities (an orbifold). One would like to characterize its homotopy type, but
in reality one must settle for less. Even the rational cohomology ring of Mg appears
to be far too difficult; it is known today only for g ≤ 4.

The central theme of the article revolves around Mumford’s standard conjecture
about the stable cohomology of Mg , settled in my joint work with Michael Weiss a few
years back [47]. The conjecture predicts the rational cohomology groups of Mg in a
modest range of dimensions, the stable range. More accurately, [47] proves a gener-
alized version of Mumford’s conjecture, proposed in [46]: the (integral) cohomology
ring of the (infinite genus) mapping class group is equal to the cohomology ring of
a rather well-studied space in algebraic topology, a space associated with cobordism
theory. From this Mumford’s conjectured answer for the stable rational cohomology
of Mg is easily deduced.

The new topological method in the study of the Riemann moduli space, presented
below, has three key ingredients: Harer’s stability theorem resulting from the action
of mapping class groups on complexes of curves, Phillips’ submersion theorem in
singularity theory and Gromov’s generalization thereof, and not least the Pontryagin–
Thom theory of cobordisms of smooth manifolds. These tools are all rather old, known
for at least twenty years, and one may wonder why they have not before been put to
use in connection with the Riemann moduli space. Maybe we lacked the inspiration
that comes from the renewed interaction with physics, exemplified in conformal field
theories.
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1. Spaces of surfaces

1.1. Moduli and mapping classes. Fix a closed smooth and oriented surface F of
genus g. One way to define the moduli space Mg is to start with the set of almost
complex structures on F , compatible with the orientation. Such a structure is a
fibrewise map J : T F → T F of the tangent bundle with J 2 = − id and with the
property that {v, Jv} is an oriented basis for each non-zero tangent vector v. The
map J can be thought of as a section of the fibre bundle associated to T F with fibre
GL+2 (R)/GL1(C). We topologize this section space by the C∞ Whitney topology
and denote it SC(T F ). The group Diff(F ) of orientation preserving diffeomorphisms
of F acts on SC(T F ). The orbit space is the moduli space

Mg =M(F ) = SC(T F )/Diff(F ).

By a theorem of Gauss, SC(T F ) is equal to the set of maximal holomorphic atlasses
on F that respect the orientation: elements of SC(T F ) are Riemann surfaces with
underlying manifold F .

The moduli space M0 is a single point by Riemann’s mapping theorem, M1 = R2,
so we can concentrate on Mg for g ≥ 2, where the moduli space is not contractible.
Any Riemann surface� of genus g ≥ 2 is covered by the upper half planeH ⊂ C, so
it is a holomorphic space form � = H/� with � a cocompact torsion free subgroup
of the group PSL2(R) of all Möbius transformations ofH . PSL2(R) is also the group
of all isometries of H in its standard hyperbolic metric ds2 = |dz|2/y2, so � is
a hyperbolic space form as well, and SC(T F ) could be replaced with the space of
hyperbolic metrics in the definition of Mg , g ≥ 2.

The connected component Diff1(F ) of the identity acts freely on SC(T F ) by an
easy fact from hyperbolic geometry. The associated orbit space

Tg = T(F ) = SC(T F )/Diff1(F )

is the Teichmüller space. It is homeomorphic to R6g−6. The rest of the Diff(F ) action
on SC(T F ) is the action of the mapping class group,

�g = �(F) = π0 Diff(F ),

on Tg . It acts discontinuously with finite isotropy groups, so Mg = Tg/�g is a
(6g − 6)-dimensional orbifold. Had the action been free, then Mg would have been
homotopy equivalent to the spaceB�g , classifying �g-covering spaces. As it is, there
is a map from B�g to Mg that induces isomorphisms

H ∗(Mg;Q)
∼=−→ H ∗(B�g;Q) (1.1)

on rational cohomology.
Because SC(T F ) is the space of sections in a fibre bundle with contractible fibre

GL+2 (R)/GL1(C), it is itself contractible. Earle and Eells [15] proved that the orbit
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map of the Diff1(F ) action,

π : SC(T F )→ T(F )

locally has a section, so that π is a fibre bundle. The total space and the base space
both being contractible, they concluded that Diff1(F ) (and hence any other connected
component of Diff(F )) is contractible. This gives the homotopy equivalence

B Diff(F )
	−→ B�(F) (1.2)

of classifying spaces; cf. §2.1 below for a general discussion of classifying spaces.
The model of B Diff(F ) that we use is the space of all oriented surfaces of eu-

clidean space (of arbitrary dimension) that are diffeomorphic to F . This is equal to
the orbit space

Emb(F,R∞)/Diff(F )

of the free Diff(F ) action on the space of smooth embeddings of F in infinite dimen-
sional euclidean space. The embedding space is contractible [80] and the orbit map
is a fibre bundle. This implies the homotopy equivalence

Emb(F,R∞)/Diff(F ) 	 B Diff(F ).

Each surface in euclidean space inherits a Riemannian metric from the surroundings,
which together with the orientation defines, a complex structure. This leads to a
concrete map

Emb(F,R∞)/Diff(F )→M(F )

that induces isomorphism on rational cohomology.

1.2. Stability and Mumford’s standard conjecture. Ideally, one would like to
compute the rational cohomology ring of each individual Mg . This has been done
for g ≤ 4 in [44], [72], but seems too ambitious for larger genus. Following Mum-
ford [57], one should instead attempt a partial calculation of H ∗(Mg), namely in
a certain stable range. For g ≥ 2, Mumford defined tautological classes in the
rational Chow ring of the Deligne–Mumford compactification Mg , and proposed that
their images in H ∗(Mg;Q) freely generate the entire rational cohomology ring as
g → ∞. The proposal is similar in spirit to what happens for the Grassmannian
of d-dimensional linear subspaces of Cn; as n → ∞, the cohomology becomes
a polynomial algebra in the Chern classes of the tautological d-dimensional vector
bundle. See also [28], [41].

More precisely, Mumford predicted that, in a range of dimensions that tends to
infinity with g, the cohomology ring H ∗(Mg;Q) is isomorphic with the polynomial
algebra Q[κ1, κ2, . . .] in the tautological classes κi of degree 2i.



388 Ib Madsen

Miller [52] and Morita [56] used topological methods to define integral cohomol-
ogy classes in B�g that agree with Mumford’s classes under the isomorphism (1.1).
I recall the definition. Choose a point p ∈ F and consider the subgroup Diff(F ;p) of
orientation-preserving diffeomorphisms that fixes p. It has contractible components
[16] and mapping class group �1

g = π0 Diff(F ;p). In the diagram

B Diff(F ;p) ��

π

��

B�1
g

��

π

��

M1
g

π

��
B Diff(F ) �� B�g �� Mg ,

the left-hand horizontal maps are homotopy equivalences and the right-hand ones are
rational cohomology isomorphisms. The right-hand vertical map is the “universal
curve”; the left-hand π is (homotopic to) a smooth fibre bundle with fibre F and
oriented relative tangent bundle T π . Morita defines

κi = (−1)i+1π!(c1(T π)
i+1) ∈ H 2i (B�g;Z), (1.3)

where π! is the Gysin (or integration along the fibres) homomorphism.
The “differential atp” gives a map from Diff(F ;p) to GL+2 (R), and the associated

map

d : B Diff(F ;p)→ B GL+2 (R) 	 CP∞

classifies T π . Its (homotopy theoretic) fibre is the classifying space of the group
Diff(F ;D(p)) of orientation-preserving diffeomorphisms that fix the points of a
small discD(p) around p. Let �g,1 = π0 Diff(F ;D(p)) be its mapping class group
so that we have the fibration

B�g,1
π �� B�1

g
d �� CP∞

to relate the cohomology ofB�g,1 andB�1
g . Note that Diff(F,D(g)) = Diff(Fg,1; ∂),

where Fg,1 = F − intD(p) is a genus g surface with one boundary circle. Since
Fg+1,1 is the union of Fg,1 with a torus F1,2 with two boundary circles, there is a map
�g,1 → �g+1,1. Forgetting D(p) ⊂ F (or filling out the hole in Fg,1) gives a map
�g,1 → �g . The following theorem [27] with an improvement from [38] is of crucial
importance to us. This is Harer’s stability theorem.

Theorem 1.1 ([27], [38]). The induced maps

Hk(B�g,1;Z)→ Hk(B�g+1,1;Z) and Hk(B�g,1;Z)→ Hk(B�g;Z)
are isomorphisms when 2k < g − 1.
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The stable mapping class group �∞,1 is the direct limit of the groups �g,1 as
g→∞. By the theorem,

Hk(B�∞,1;Z) ∼= Hk(B�g;Z)
when 2k < g − 1. Miller and Morita proved in [52] and [56] that H ∗(B�∞,1;Q)
contains the polynomial algebra Q[κ1, κ2, . . .].

Let CPn denote the complex projective n-space, and letL⊥n ⊂ CPn×Cn+1 be the
subspace of pairs (l, v)with v orthogonal to l. Consider the spaceMT (n) of all proper
maps from Cn+1 to L⊥n . The cohomology groups Hk(MT (n);Z) are independent
of n for k < 2n. One form of the generalized Mumford conjecture is the statement

Theorem 1.2 ([47]). For k < 2n there is an isomorphism

Hk(B�∞,1;Z) ∼= Hk(MT (n);Z).
Corollary 1.3 ([47]). The rational cohomology ring ofB�∞,1 is a polynomial algebra
in the classes κ1, κ2, . . . .

In view of (1.1), this also calculates H ∗(Mg;Q) for a range of dimensions, and
affirms Mumford’s conjecture.

The stability theorem from [27], [38] is more general than stated above. Let F sg,b
be a surface of genus gwith b ≥ 0 boundary circles and s distinct points in the interior,
and let �sg,b be the associated mapping class group.

Addendum 1.4. For b > 0, the maps

B�sg,b−1 ← B�sg,b → B�sg+1,b

induce isomorphisms in integral cohomology in degrees less than (g − 1)/2.

The addendum implies thatH ∗(B�s∞,b;Z) is independent of the number of bound-
ary circles. Consequently, we sometimes drop the subscript b from the notation and
write �s∞ instead of �s∞,b. In the diagram

B�g,b+s ��

�����
���

���
�

B�sg,b
d ��

��

∏s
CP∞

B�g,b ,

the skew map is a cohomology isomorphism in the stability range, so

H ∗(B�s∞,b;Z) = H ∗(B�∞,1;Z)⊗ Z[ψ1, . . . , ψs] (1.4)

with degψi = 2. See also [6].
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2. Cobordism categories and their spaces

In this section we explain work of S. Galatius, U. Tillmann, M. Weiss and the author
in various combinations. The most relevant references are [22], [23], [46], [47]. The
section contains, in outline, a proof of the generalized Mumford conjecture, different
from the original one, but still based on concepts and results from [47].

2.1. The classifying space of a category. In [53], Milnor associated to each topolog-
ical group G a space BG by a functorial construction, characterized up to homotopy
by being the base of a principalG-bundle with contractible total space. Moreover, iso-
morphim classes of principalG-bundles with baseX are in one to one correspondence
with homotopy classes of maps from X to BG.

The space BC associated to a (small) category C is a similar construction [64].
The objects of C are the vertices in a simplicial set. Two objects span a 1-simplex if
there is a morphism between them. A k-simplex corresponds to k composable arrows
of C. Formally, let NkC be the set of k-tuples of morphisms,

c0
f1 �� c1

f2 �� c2 �� · · · fk �� ck,

and define face operators

di : NkC→ Nk−1C, i = 0, 1, . . . , k

by removing ci (and composing fi and fi+1 when i �= 0, k). Then

BC =
∞⊔
k=0

�k ×NkC
/
(di t, f ) ≡ (t, dif ) (2.1)

with t ∈ �k−1 and f ∈ NkC. Here �k is the standard euclidean k-simplex and
di : �k−1 → �k the inclusion as the i’th face.

The categories we use below are topological categories. This means that the total
set of objects and the total set of morphisms have topologies, and that the structure
maps (source, target and composition) are continuous. In this case NkC is a space
and di is continuous. I refer to [79] for a discussion of the kind of objects that BC

actually classifies.
A topological category M with a single object is precisely a topological monoid.

In this case, the 1-skeleton in (2.1) gives a map from�1×M intoBM , or equivalently
a map from M into the loop space 	BM . It takes the monoid π0M of connected
components into the fundamental group π1BM . If π0M is a group thenM → 	BM

turns out to be a homotopy equivalence. More generally, we have the group completion
theorem that goes back to Quillen’s work in K-theory. The composition law in M
yields a ring structure on H∗(M), and we have
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Theorem 2.1 ([4], [51]). Suppose that π0M is central in H∗(M). Then

H∗(M)[π0M
−1] ∼=−→ H∗(	BM)

is an isomorphism.

In typical applications of Theorem 2.1, π0M = N and the left-hand side has the
following interpretation. Let m ∈ M represent 1 ∈ π0M and define M∞ to be the
direct limit of M

m→ M
m→ M

m→ · · · . Then H∗(M)[π0M
−1] is the homology of

Z×M∞.

Remark 2.2. In general, the direct limit (or colimit) of a string of spaces fi : Xi →
Xi+1 does not commute with homology, unless the maps fi are closed injections.
When this is not the case, the colimit should be replaced with the homotopy colimit
(or telescope) of [54]. This construction always commutes with homology. The right
definition of M∞ is therefore

M∞ = hocolim(M
m→ M

m→ M
m→ · · · ).

Alternatively, we can apply Quillen’s plus-construction [5] toM∞ to get a homo-
topy equivalence

Z×M+∞ 	−→ 	BM. (2.2)

This applies to the monoids M = ⊔
B�n,

⊔
B GLn(R) or

⊔
B�g,2 where the

composition law is induced from the direct sum of permutations and matrices and, in
the case of the mapping class group, from gluing along one boundary circle. There
are homotopy equivalences

Z× B�+∞ 	−→ 	B
( ⊔

B�n
)
,

Z× B GL∞(R)+
	−→ 	B

( ⊔
B GLn(R)

)
,

Z× B�+∞,2
	−→ 	B

( ⊔
B�n,2

)
.

(2.3)

The effect of the plus-construction is quite dramatic. While it leaves homology groups
unchanged, it produces extra homotopy groups. The spaces B�∞, B GL∞(R), and
B�∞,2 have vanishing homotopy groups past the fundamental group, but their plus-
constructions have very interesting homotopy groups: πiB�+∞ is the i’th stable ho-
motopy group of spheres, and πiB GL∞(R)+ is Quillen’s higher K-group Ki(R)
[61], [62].

2.2. Riemann’s surface category and generalizations. The Riemann surface cat-
egory S has attracted attention with G. Segal’s treatment of conformal field theories
[65], [66]. It is the category with one object Cm for each non-negative integer m,
namely the disjoint union of m parametrized circles. A morphism from Cm to Cn
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is a pair (�, ϕ), consisting of a Riemann surface � and an orientation-preserving
diffeomorphism ϕ : ∂� → (−Cm) � Cn. (The topology on the set of morphisms is
induced from the topology of the moduli spaces.)

As indicated at the end of §1.1, one may replace the moduli space Mg with the
space of surfaces in euclidean space without changing the rational homology. For
Mg,b with b > 0, the replacement does not even change the homotopy type. This
leads to the category C2 of embedded surfaces. Once we go to embedded surfaces
instead of Riemann surfaces, there are no added complications in generalizing from
2 dimensions to d dimensions. This leads to the category Cd .

An object of Cd is a (d − 1)-dimensional closed, oriented submanifold of {a} ×
Rn+d−1 ⊂ Rn+d for some real number a and some large n. A morphism is a compact,
oriented d-dimensional manifoldWd contained in a strip [a0, a1]×Rn+d−1 (a0 < a1)
such that ∂W = (−∂0W) � ∂1W , where ∂iW = W ∩ {ai} × Rn+d−1. For technical
reasons, we require that W meets the walls {ai} × Rn+d−1 orthogonally and that W
is constant near the walls. Here is a schematic picture of W :

{a1} × R∞

{a0} × R∞

The number n is arbitrarily large, and not part of the structure. From now on,
I often write n = ∞. A submanifold of R∞+d−1 can be parametrized in the sense
that it is the image of an embedding. Thus we have the identifications

N0Cd ∼= ⊔

{M},a
Emb(Md−1, {a} × R∞+d−1)/Diff(M), (2.4a)

N1Cd ∼=
( ⊔

{W },a0<a1

Emb(Wd, [a0, a1] × R∞+d−1)/Diff(Wd)
) �N0Cd . (2.4b)

The disjoint unions vary over the set of diffeomorphism classes of smooth compact,
oriented manifolds and over real numbers a, ai . The embedding spaces are equipped
with the “convenient topology”, [42]; the action of the diffeomorphism groups is by
composition. The quotient maps are principal fibre bundles [42], and the embedding
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spaces are contractible, so the individual terms in (2.4) are homotopy equivalent to
B Diff(Md−1) and B Diff(Wd) � B Diff(Md−1), respectively. See also [46, §2].

The group of connected components π0BCd is equal to the cobordism group	d−1
of oriented closed (d − 1)-manifolds. This group has been tabulated for all d [78]. It
vanishes for d ≤ 4.

Proposition 2.3 ([22]). The classifying space BC2 has the same rational homology
as the classifying space BS of the Riemann surface category.

2.3. Thom spaces and embedded cobordisms. The Thom space Th(ξ) (sometimes
denotedXξ ) of a vector bundle ξ onX is a construction that has been of fundamental
importance in topology for more than fifty years. The homotopy theory of specific
Thom spaces has helped solve many geometric problems. Early results can be found
in [59], [60], [69], [70]. Our use of Thom spaces are not far from this original tradition.
The modern development is described in [35].

For a vector bundle ξ over a compact base space, Th(ξ) is the one point com-
pactification of its total space. Equivalently, it is the quotient of the projective bundle
P(ξ ⊕ R) by P(ξ).

Two geometric properties might help explain the usefulness of the construction.
First, the complement Th(ξ) − X of the zero section is contractible so that Th(ξ) is
a kind of homotopy theoretic localization of ξ near X. Second, if ξ is the normal
bundle of a submanifold Xm ⊂ Rm+k , then one has the Pontryagin–Thom collapse
map,

cX : Sm+k −→ Th(ξ),

by considering ξ to be an open tubular neighborhood of X in Rm+k .
On the algebraic side, we have the Thom isomorphism

Hi(X;Z) ∼= Hi+k(Th(ξ);Z)
provided that ξ is an oriented vector bundle of dimension k.

LetG(d, n) denote the Grassmannian of oriented d-dimensional linear subspaces
of Rd+n, and let

Ud,n = {(V , v) ∈ G(d, n)× Rd+n | v ∈ V },
U⊥d,n = {(V , v) ∈ G(d, n)× Rd+n | v ⊥ V }

be the two canonical vector bundles over it.
The restriction of U⊥d,n+1 to G(d, n) is the product R × U⊥d,n. Its inclusion into

U⊥d,n+1 is a proper map, so it induces a map εd,n of one point compactifications from

the suspension � Th(U⊥d,n) to Th(U⊥d,n+1).
At this point, it is convenient to introduce the concept of a prespectrum E =

{En, εn}. It consists of a sequence of pointed spaces En for n = 0, 1, . . . together
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with maps εn : �En→ En+1, where

�En = S1 × En/(∗ × En ∪ S1 × ∗).
The infinite loop space associated with E is defined to be

	∞E = hocolim(· · · → 	nEn
ε′n→ 	n+1En+1 → · · · )

with ε′n being the adjoint of εn. We shall also need its deloop 	∞−1E. This is the
homotopy colimit of 	n−1En.

The pairs {Th(U⊥d,n), εd,n} form the prespectrum G−d ; itsn’th space is Th(U⊥d,n−d)
if n ≥ d and otherwise a single point. The sphere prespectrum S has the n-sphere
as its n’th space and εn is the canonical identification �Sn = Sn+1. The associated
infinite loop spaces are

	∞S = hocolim	nSn, 	∞G−d = hocolim	n+d Th(U⊥d,n).

In both cases, the inclusion of then’th term into the limit space induces an isomorphism
on homology groups in a range of dimensions that tends to infinity with n. The space
G(2,∞) is homotopy equivalent to CP∞, and G−2 becomes homotopy equivalent to
the prespectrum CP∞−1. This has (2n+ 2)nd space equal to the Thom space Th(L⊥n )
of the complement L⊥n to the canonical line bundle over CPn. The associated infinite
loop spaces are homotopy equivalent,

	∞G−2 	 	∞CP∞−1. (2.5)

Theorem 2.4 ([22]). For d ≥ 0, BCd is homotopy equivalent to 	∞−1G−d .

A few words of explanation are in order. Suppose thatWd ⊂ [a0, a1]×Rn+d−1 is
a morphism of Cd . For each p ∈ W , the tangent space TpW is an element ofG(d, n)
and the normal space atp is precisely the fibre ofU⊥d,n at TpW . The Pontryagin–Thom
collapse map

[a0, a1] × (Sn+d−1,∞)→ (Th(U⊥d,n),∞)
defines a path in 	n+d−1 Th(U⊥d,n), and hence for n → ∞, a path in 	∞−1G−d .
More generally, an element ofNkCd gives a set of k composable paths in	∞−1G−d .

To any spaceX, one can associate the path category PathX. Its space of objects is
R×X, and a morphism from (a0, x0) to (a1, x1) is a path γ : [a0, a1] → X from x0
to x1. The classifying space of PathX is homotopy equivalent to X, B PathX 	 X.
In the situation above, this leads to a well-defined homotopy class

βd : BCd −→ B(Path	∞−1G−d) 	 	∞−1G−d,

and Theorem 2.4 is the statement that βd is a homotopy equivalence.
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I shall attempt to explain the strategy of proof of Theorem 2.4 by breaking it down
into its three major parts.

Let Td(R
n+d) be the space of oriented d-dimensional submanifolds Ed ⊂ Rn+d

contained in a tube R × Dn+d−1 as a closed subset. Let Td(R
∞+d) be the union of

these spaces.
We topologize Td(R

n+d), not by the Whitney embedding topology used above,
but by a coarser topology that allows manifolds to be pushed to infinity. The topology
we want has the property that a map from a k-dimensional manifoldXk into Td(R

n+d)
produces a submanifold Mk+d of Xk × R × Rn+d−1, such that the projection onto
X × R is proper and the projection on X is a submersion (and not necessarily a fibre
bundle).

There is a partially ordered set Dd associated with Td(R
∞+d). It consists of pairs

(a, E) with a ∈ R, E ∈ Td(R
∞+d), such that E intersects the wall a × R∞+d−1

orthogonally. The partial ordering is that (a0, E0) ≤ (a1, E1) if a0 ≤ a1 and E0 =
E1. A partially ordered set is a category with one arrow for each order relation
(a0, E0) ≤ (a1, E1).

Three maps connect the spaces involved:

r : Dd → Cd, s : Dd → Td(R
∞+d), t : Td(R∞+d)→ 	∞−1G−d .

The map r intersects Ed with the wall {a} × R∞+d−1, and the morphism (a0, E) ≤
(a1, E) with the strip [a0, a1] × R∞+d−1; s forgets the first coordinate, and t is the
Pontryagin–Thom collapse map. The proof is now to show that each of the induced
maps

r : BDd → BCd, (2.6a)

s : BDd → Td(R
∞+d), (2.6b)

t : Td(R∞+d)→ 	∞−1G−d (2.6c)

are a homotopy equivalences. It suffices to check on homotopy groups, i.e. that
πn(r), πn(s), and πn(t) are isomorphisms. This is done geometrically as in [47], by
interpreting the homotopy groups of the given spaces as cobordism classes of families
of the involved structures indexed by the sphere Sn.

It is (2.6c) that requires an h-principle from singularity theory. Given an element
of πn(	∞−1G−d) one uses transversality together with Phillips’ submersion theorem
[58] to obtain a cobordism class of triples (En+d, π, f ), where π : En+d → Sn is
a submersion, and f : En+d → R is a proper map. This represents an element of
πnTd(R

∞+d). Injectivity is proved by relative considerations.

Remark 2.5. The d-fold suspensions �dG−d fit together via maps �dG−d →
�d+1G−(d+1). Their homotopy colimit is the prespectrum MSO whose homotopy
groups are the cobordism groups 	∗, by [70].
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2.4. Consequences of Harer stability. For clarity, I begin with a discussion of ab-
stract stability in a topological category C, generalizing the group completion theorem.

Given a string of morphisms in C,

b1
β1 �� b2

β2 �� b3 �� · · · ,
we have functors

Fi : Cop → spaces; Fβ : Cop → spaces

with Fi(c) = C(c, bi), the space of morphisms from c to bi , and

Fβ(c) = hocolim(F1(c)
β1−→ F2(c)

β2−→ F3(c) −→ · · · ).
Lemma 2.6. Suppose BC is connected, and suppose for each morphism c1 → c2
in C that Fβ(c2) → Fβ(c1) is an integral homology isomorphism. Then there is an
integral homology isomorphism Fβ(c)→ 	BC for each object c of C.

This follows from [51]: Consider the category Fβ � C. Its objects are pairs (x, c)
with x ∈ Fβ(c), and it has the obvious morphisms. Its classifying space is contractible
because it is the homotopy colimit of the contractible spaces B(Fi � C)†. The map
π : B(Fβ � C)→ BC is a homology fibration. The fibre π−1(c) = Fβ(c) is therefore
homology equivalent to the homotopy fibre, which is 	BC.

The condition of Lemma 2.6 is not satisfied for the embedded surface category C2
of §2.3, but it is satisfied for a certain subcategory Cres

2 ⊂ C2, originally introduced
in [71] for that very reason.

The restricted category Cres
d ⊂ Cd has the same space of objects but a restricted

space of morphisms: A morphismWd ⊂ [a0, a1] ×R∞+d−1 of Cd belongs to Cres
d if

each connected component ofW has a non-empty intersection with {a1} ×R∞+d−1.

Theorem 2.7 ([22]). For d > 1, BCres
d → BCd is a homotopy equivalence.‡

The proof is, roughly speaking, to perform surgery (connected sum) on morphisms
of Cd to replace them with morphisms from Cres

d .
Given Theorem 2.4 and Theorem 2.7, and using the notation (2.5), we can adopt

Tillmann’s argument [71] to prove the generalized Mumford conjecture,

Theorem 2.8 ([47]). The space Z × B�+∞,1 is homotopy equivalent to the space
	∞CP∞−1.

We take C = Cres
2 and bi to be the object consisting of a standard circle in {i} ×

R∞+1. The morphism βi is the torus F1,2 with two boundary circles embedded in
[i, i + 1] × R∞+1 so that ∂βi = bi+1 � −bi . Then

Fβ(c) 	 Z× B�∞,|c|+1,

†Fi � C has the terminal object (bi , id).
‡The theorem is almost certainly valid also for d = 1, but the present proof works only for d > 1.
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where |c| is the number of components in the object c. Addendum 1.4 and Lemma 2.6
apply.

Remark 2.9. The analogue of Theorem 2.8 has been established for the spin mapping
class group, and for the non-orientable mapping class group in [21] and [73], respec-
tively. The stable cohomology in the spin case differs only from the orientable case in
2-torsion. In the non-orientable case, the stable rational cohomology is a polynomial
algebra in 4i-dimensional classes.

2.5. Cohomology of �∞G−d . The cohomology groups of a prespectrum E are
defined to be inverse limits of the cohomology of the individual terms

Hk(E) = lim←−
n

Hk+n(En; ∗), (2.7)

with the maps in the inverse limit induced by εn. Note thatHk(E)might be non-zero
also for negative values of k. For example we have

Hk(S) = Z for k = 0,

Hk(S) = 0 for k �= 0,
and

Hk(G−d) = Hk+d(G(d,∞)).
The homotopy groups and homology groups of E are the direct limits

πkE = colim πk+n(En; ∗), HkE = colimHk+n(En; ∗).
Given a spectrum E = {En, εn} and a space X, we can form the spectrum

E ∧X+ = {En ∧X+, ε ∧ idX} (En ∧X+ = En ×X/∗ ×X)

and its associated infinite loop space 	∞(E ∧X+). The homotopy groups

E∗(X) = π∗(E ∧X+)
form a generalized homology theory: they satisfy the axioms of usual homology,
save the dimensional axiom that Hk(pt) vanishes for k �= 0. We shall apply the
construction in §3.2 with E = CP∞−1.

The cohomology groups of	∞E and the cohomology groups of E, as defined in
(2.7), are related by the cohomology suspension homomorphism

σ ∗ : Hk(E)→ Hk(	∞0 E),

where	∞0 E denotes the component of the trivial loop†. The suspension σ ∗ is induced
from the evaluation map from �n	nEn to En.

†The components of 	∞E are all homotopy equivalent, because π0(	
∞E) is a group.
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The cohomology groups of 	∞E are usually a lot harder to calculate than the
cohomology groups of E, except if one takes cohomology with rational coefficients
where the relationship can be described explicitly, as follows:

Given a graded Q-vector space P ∗ = {P k | k > 0}, let A(P ∗) be the free, graded
commutative algebra generated byP ∗. It is a polynomial algebra ifP ∗ is concentrated
in even degrees, an exterior algebra if P ∗ is concentrated in odd degrees, and a tensor
product of the two in general. A graded basis forP ∗ serves as multiplicative generators
for A(P ∗). We give A(P ∗) a graded Hopf algebra structure by requiring that P ∗ be
the vector space of primitive elements, so that A(P ∗) is primitively generated. The
general theory of graded Hopf algebras [55] implies

Theorem 2.10. There is an isomorphism of Hopf algebras,

H ∗(	∞0 E;Q) ∼= A(H ∗>0(E;Q)).
For E = CP∞−1, the Thom isomorphism shows that H ∗(CP∞−1;Z) has one Z in

each even dimension ≥ −2, and hence by the theorem above that

H ∗(	∞0 CP∞−1;Q) = Q[κ1, κ2, . . .], deg κi = 2i.

In view of Theorem 2.8, this proves Corollary 1.3.
The κi are integral cohomology classes, namely the image under the cohomol-

ogy suspension of generators of H ∗(CP∞−1,Z). They correspond to the cohomology
classes defined in (1.3), cf. [23]. The main result of [23] is the following theorem
about their divisibility in the integral lattice of H ∗(B�∞;Q),

H ∗free(B�∞;Z) = H ∗(B�∞;Z)/Torsion.

Theorem 2.11 ([23]). LetDi be the maximal divisor of κi in the integral lattice. It is
given by the formulas

D2i = 2 and D2i−1 = denom(Bi/2i)

with Bi equal to the i’th Bernoulli number.

The maximal divisibility of κ2i−1 is what could be expected from the Riemann–
Roch theorem [57], [56]. The integral cohomology of 	∞CP∞−1, and thus of B�∞,
contains a wealth of torsion classes of all orders. This follows from [20] which
completely calculates H ∗(B�∞;Fp).

The action of the mapping class group on the first homology group of the underly-
ing surface defines a symplectic representation with kernel equal to the Torelli group.
In infinite genus, we get a fibration

BT∞,1
j−→ B�∞,1

π−→ B SP∞(Z). (2.8)

The rational cohomology ring of B SP∞(Z) is a polynomial algebra on (4i − 2)-
dimensional generators that map to non-zero multiples of the κ2i−1, cf. [9], [37].
In (2.8) however, the action of SP∞(Z) on H ∗(BT∞,1) is highly non-trivial, so one
cannot conclude that j∗(κ2i ) �= 0. Indeed, this is a wide open problem even for κ2!
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3. Auxiliary moduli spaces

This section presents two extensions of the material in §2. Section 3.1 is an ac-
count of the automorphism group of a free group, due entirely to S. Galatius [19].
Section 3.2 presents a topological variant of the Gromov–Witten moduli space of
pseudo-holomorphic curves in a background, following the joint work with R. Cohen
from [12].

3.1. The moduli space of graphs. Let Autn denote the automorphism group of a free
group on n letters and Outn its quotient of outer automorphisms. Using 3-manifold
techniques, Hatcher [29] proved that the homomorphisms

Hk(B Outn;Z)← Hk(B Autn;Z)→ Hk(B Autn+1;Z) (3.1)

are isomorphisms in a range that increases with n. See also [31]. The limit Aut∞ has
perfect commutator subgroup (of index 2), and

Z× B Aut+∞
	−→ 	B

( n⊔
B Autn

)
.

Theorem 3.1 ([19]). The space Z × B Aut+∞ is homotopy equivalent to the infinite
loop space 	∞S of the sphere spectrum.

We remember that 	∞S = 	∞S∞ is the homotopy colimit of 	nSn as n→∞.
Its homotopy groups are the stable homotopy groups of spheres; they are finite except
for the group of components [67]. The “standard conjecture” in this case:

Hk(B Aut∞;Q) = 0 for k > 0, (3.2)

is therefore an immediate consequence of Theorem 3.1.
In spirit, the proof of Theorem 3.1 is analogous to the proof of Theorem 2.8:

Graphs are 1-dimensional manifolds with singularities. Below, I shall outline the
similarities and the new ideas required to prove Theorem 3.1.

LetU be an open set of Rn+1. A graph Y inU is a closed subset with the following
property. Eachp ∈ U admits an open neighborhoodUp such that one of the following
three cases occurs:

(i) Y ∩ Up = ∅,
(ii) Y ∩ Up is the image of a smooth embedding (−ε, ε) ↪→ Up,

(iii) Y∩Up is the image of a continuous embedding of the one point union
∨k[0,∞),

k ≥ 3; the embedding is smooth on each branch and has transverse intersection
at the branch point.

The set �(U) of all graphs in U is topologized in a way that allows the (non-loop)
edges to shrink to a vertex and allows graphs to be pushed to infinity. The topology
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on�(U) is similar to the topology on the space Td(R
n+d from § 2.3. More precisely,

� is a space-valued sheaf on the category of open sets of Rn+1 and their embeddings.
It is an equivariant, continuous sheaf on Rn+1 in the terminology of [25, §2.2]. In
particular, the restriction �(Rn+1) → �(Bε(0)) onto an open ε-ball is a homotopy
equivalence.

Graphs in Rn+1 give rise to the embedded cobordism category G(Rn+1). Its objects
consist of a finite number of points in a slice {a} ×Rn. A morphism is a “graph with
legs (or leaves)” embedded in a strip [a0, a1] × Rn with the legs meeting the walls
orthogonally.

The restriction of a morphism to the open strip is an element of�((a0, a1)×Rn).
Define

G(Rn+1) = {Y ∈ �(Rn+1) | Y ⊂ R×Dn}.
The proofs of (2.4a) and (2.4b) can be adapted to graphs and show

BG(Rn+1) 	 G(Rn+1). (3.3)

Transversality and Phillips’submersion theorem, used in the proof of Theorem 2.8,
requires tangent spaces. This approach is not available for graphs, but instead we have
Gromov’s general h-principle from [25].

Galatius proves that the sheaf � is microflexible, and concludes from [25, §2.2]
that there is a homotopy equivalence

G(Rn+1) 	 	n�(Rn+1). (3.4)

The collection �(Rn), with the empty graph as basepoint, forms a spectrum �. The
structure maps are induced from the map

R×�(Rn)→ �(Rn+1)

that sends (t, Y ) to {t} × Y ⊂ R × Rn. It factors over ��(Rn). Let G = G(R∞+1)

be the union of the G(Rn+1). In the limit over n, (3.3) and (3.4) yield homotopy
equivalences

BG 	 G(R∞+1) 	 	∞−1�. (3.5)

Theorem 3.2 ([19]). The spectrum � is homotopy equivalent to the sphere spectrum S.
In particular 	BG 	 	∞S∞.

The proof uses the Handel’s theorem from [26] that the space exp(X) of finite
subsets of a connected space X is contractible.

Remark 3.3. One of the advantages of Gromov’s h-principle over Phillips’ submer-
sion theorem, even in the case of manifolds, is that it permits unstable information.
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Let Cd(R
n+d) be the category of d-dimensional cobordisms embedded in Rn+d for

fixed n. Its classifying space can be identified as

BCd(R
n+d) 	 	n+d−1�d(R

n+d),

where �(Rn+d) is a space of d-dimensional submanifolds in Rn+d , with a topology
similar to the above topology on�(Rn+1). Theorem 3.2 is replaced by �d(Rn+d) 	
Th(U⊥d,n), and we get the following unstable version of Theorem 2.4, valid for any
d ≥ 0 and n ≥ 0:

BCd(R
n+d) 	 	n+d−1 Th(U⊥d,n).

The final step is to prove that	BG is homotopy equivalent to Z×B Aut+∞. This is
very similar to the proof of Theorem 2.7 and Theorem 2.8 in the case of the mapping
class group. The contractibility of “outer space” [13], [37, ch. 8] identifies B Autn
and B Outn as components of morphism spaces of Gres. Instead of Harer’s stability
theorem, one uses the generalization [30], [31] of the homology isomorphisms (3.1).
The element βi needed to stabilize the morphism space is the graph

{i} × Rn {i + 1} × Rn

It is an obvious problem to generalize the above to other situations of manifolds
with singularities, for example to the case of orbifolds.

3.2. Surfaces in a background. Fix a background space X. What is the stable
homology type of the moduli space of pairs (�, f ) of a Riemann surface �, and a
continuous map f : �→ X?

Let Emb∞g,b denote the space of embeddings of a fixed differentiable surface F =
Fg,b into the strip [0, 1] × R∞+1 with boundary circles mapped to {0, 1} × R∞+1

when b > 0. The moduli space in question can be displayed as the orbit space

Sg,b(X) = Emb∞g,b×Diff(F,∂) Map(F,X)

of the free Diff(F, ∂) action on the Cartesian product of Emb∞g,b and the space
Map(F,X) of continuous mappings of F into X.

It fibres over the free loop space of Xb, π : Sg,b(X) → LXb. The space LX
is connected when X is simply connected, and in this case the fibres of π are all
homotopy equivalent to the space

Sg,b(X; x0) = Emb∞g,b×Diff(F ;∂F ) Map((F ; ∂F ), (X; x0)).
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Theorem 3.4 ([12]). For simply connected X and b > 0, the maps

Sg,b−1(X; x0)← Sg,b(X; x0)→ Sg+1,b(X; x0)

induce isomorphisms in integral homology in degrees less than or equal to g/2− 2.

Theorem 3.4 might appear a surprise from the following viewpoint: In the fibration

Map((F, ∂F ), (X; x0))→ Sg,b(X; x0)→ B Diff(F ; ∂F ),
the homology of the base is independent of the genus and of the number of boundary
components in a range, whereas the fibre grows in size with g and b. This would
seem to prevent stabilization. The explanation is, however, that the fundamental
group �g,b = π1B Diff(F ; ∂F ) acts very non-trivially on the homology of the fibre.

The proof of Theorem 3.4 adapts and generalizes ideas from [39] about stability
with twisted coefficients. The �(F)-module of twisted coefficients is

Vr(F ) = Hr(Map((F ; ∂F ), (X; x0));Z).
It is of “finite degree” [40], [39], precisely whenX is simply connected. This explains
the unfortunate assumption in Theorem 3.4 that X be simply connected.

Theorem 3.5. For simply connected X, there is a map

αX : Z× S∞,b(X; x0)→ 	∞(CP∞−1 ∧X+)
which induces isomorphism on integral homology.

Given Theorem 3.4, the proof of Theorem 3.5 can be deduced from section 7 of
[47]. Alternatively, one can adopt the strategy of §2 above. The categories Cd and Cred

d

are replaced by the categories Cd(X) and Cred
d (X) consisting of embedded cobordisms

together with a map from the cobordism into X. Theorem 2.4 and Theorem 2.7 are
valid for these categories,

BCd(X) 	 BCred
d (X) 	 	∞−1(G−d ∧X+). (3.6)

For d = 2, we can apply Lemma 2.6 to complete the proof of Theorem 3.5.
For applications of Theorem 3.5, e.g. in string topology, one needs versions with

marked points on the underlying surface. There are two cases: one in which the
marked points are allowed to be permuted by the diffeomorphisms, and one in which
the marked points are kept fixed. The first case is relevant to open-closed strings [3].

Here are some details. Given a surfaceF s = F sg,b with s interior marked points, let

Diff(F (s); ∂F (s)) be the group of oriented diffeomorphisms that keeps ∂F s pointwise
fixed and permute the marked points. The associated moduli space,

S
(s)
g,b(X; x0) = Emb∞g,b×Diff(F (s);∂F (s)) Map((F s; ∂F s); (X; x0)),
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fits into a fibration

π : S(s)g,b(X; x0)→ E�s ×�s (X × CP∞)s

with fibre Sg,b+s(X; x0), cf. (1.4). Here �s denotes the permutation group. There
are stabilization maps

S
(s)
g,b(X; x0)→ S

(s+1)
g+1,b(X; x0) (3.7)

that add F 1
1,2, a torus with two boundary circles and one marked point, to one of the

boundary circles.
Infinite loop space theory tells us that the homotopy colimit or telescope of

E�s×�s (X×CP∞)s as s →∞ is homology equivalent to	∞(S∧(X×CP∞)+) =
	∞S∞(X × CP∞+ ).

For the moduli space Ssg,b(X; x0), where the marked points are kept fixed by the
diffeomorphism group, the spaceE�s×�s (X×CP∞)s is replaced by (X×CP∞)s ,
and 	∞S∞(X × CP∞+ ) by 	S(X × CP∞+ ), cf. [18].

Addendum 3.6. There are homology equivalences

(i) Z× Z× S
(∞)
∞,b(X; x0)→ 	∞(CP∞−1 ∧X+)×	∞S∞(X × CP∞+ ),

(ii) Z× Z× S∞∞,b(X; x0)→ 	∞(CP∞−1 ∧X+)×	S(X × CP∞+ ).
It was the Gromov–Witten moduli space and the string topology spaces of M. Chas

and D. Sullivan [10], [68] that inspired us to consider the moduli spaces of Theorem 3.5
and Addendum 3.6. While our results are nice in their own right, the question remains
if they could be useful for a better understanding of Gromov–Witten invariants and
string topology.

The most obvious starting point would be to give a homotopical interpretation of
the Batalin–Vilkovsky structure on the chain groups of

⊔
Sg(M), [68], somewhat

similar to the homotopical definition in [11] of the Chas–Sullivan loop product.

4. Algebraic K-theory and trace invariants

Quillen’s algebraicK-theory spaceK(R) of a ringR [62], andWaldhausen’s algebraic
K-theory A(X) of a topological space X [74] are two special cases of algebraic K-
theory of “brave new rings”. A brave new ring is a ring spectrum whose category
of modules fits the axiomatic framework of K-theory laid down in [76]. There are
several good choices for the category of brave new rings; one such is Bökstedt’s
Functors with Smash Products, a closely related one is the more convenient category
of symmetric orthogonal spectra [49], [48]. In this category, both K-theory and its
companion TC(−;p) (the topological cyclic homology at p) works well, and one has
a good construction of the cyclotomic trace

trp : K(E)→ TC(E;p). (4.1)
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The topological cyclic homology and the trace map trp was introduced in joint work
with M. Bökstedt and W.-C. Hsing in order to give information about the p-adic
homotopy type of K(E), cf. [7].

The Eilenberg–MacLane spectrum H(R) of a ring R is a brave new ring; its
K-theory is equivalent to Quillen’s original K(R). The K-theory of the brave new
ring S ∧	X+ is Waldhausen’s A(X).

The product over all primes of thep-adic completion of TC(E;p) can be combined
with a version of negative cyclic homology forE⊗Q to define TC(E), [24]. There is
a trace map fromK(E) to TC(E) whose p-adic completion is the p-adic completion
of trp, and a map from TC(H(R)) to the usual negative cyclic homology of R ⊗Q.

4.1. A(X) and diffeomorphisms. I begin with Waldhausen’s definition of A(pt).
Let Sq be the category of length q “flags” of based, finite CW-complexes. An object
consists of a string

X1 �� �� X2 �� �� · · · �� �� Xq , (4.2)

where the arrows are based cellular inclusions (S0 = ∗). The morphisms in Sq are
the based homotopy equivalences of flags. There are face operators

di : Sq → Sq−1, i = 0, . . . , q,

where d0 divides out X1 in that it replaces (4.2) with the flag

X2/X1 �� �� · · · �� �� Xq/X1 ,

and di forgets Xi , when i > 0. This makes S. into a simplicial category.
The classifying spaces BSq with the induced di form a simplicial space BS., and

A(pt) is the loop space of its topological realization,

A(pt) = 	|BS.| = 	( ⊔
�k × BSk/∼

)
. (4.3)

(The definition of A(X) is similar; Sq is replaced with the set of flags

X �� �� X1 �� �� · · · �� �� Xq �� X,

whose composite is the identity map of X, and with (Xi;X) a finite relative CW-
complex). By definition,

BS1 =⊔
B Aut(Y )

where Y runs over finite CW-complexes and Aut(Y ) denotes the monoid of pointed
self-homotopy equivalences. The map from �1 × BS1 into |BS.| induces a map

B Aut(Y ) −→ A(pt), (4.4)

and one may view A(pt) as a kind of moduli space of finite CW-complexes.
Given the homotopy theoretic nature of the construction of A(pt) and more gen-

erally of A(X), the following theorem from [74] and [75] seems miraculous.
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Theorem 4.1 ([74]). There are homotopy equivalences

(i) A(pt) 	 hocolim	n(Topn+1 /Topn),

(ii) A(X) 	 	∞S∞(X+)×WhDiff(X),

(iii) 	2 WhDiff(X) 	 hocolimk Diff(X × I k+1;X × I k), provided X is a smooth
manifold.

In (i), Topn+1 denotes the topological group of homeomorphisms of Rn+1, and
Topn+1 /Topn is the associated homogenous space. The right-hand side of (iii) is
the homotopy colimit of the space of diffeomorphisms of X × I k+1 that induces the
identity on the submanifold X × I k of the boundary, the so called stable pseudo-
isotopy space of X. There is a stability range for pseudo-isotopy spaces in terms of
dim(X) due to K. Igusa [36], namely

Diff(X × I ;X × 0)→ hocolimk Diff(X × I k+1, X × I k) (4.5)

induces isomorphism on homotopy groups in degree i if 3i < dimX − 7.
Theorem 4.1 is the conclusion of a long development in geometric topology. See

the references in [75], where its proof was sketched out. The final details are due to
appear in [77].

4.2. Topological cyclic homology. There is a trace map, due to K. Dennis, from
K(R) into a space HH(R), whose homotopy groups are the Hochschild homology
groups of R with coefficients in the bimodule R itself, cf. [43, 8.4]. This was gener-
alized to brave new rings by M. Bökstedt who constructed the topological Hochschild
homology space THH(E) and a trace map from K(E) into it. THH(E) is a cyclic
space in the sense of Connes [43], so it comes equipped with a continuous action of the
circle group T. (Actually, THH(E) is a brave new ring with a T-action.) Topological
cyclic homology TC(E;p) is made out of the fixed sets THH(E)Cpn of the cyclic
subgroups of T.

The invariant (4.1) is the key tool for our present understanding ofA(X) and more
generally K(E). Consider a homomorphism ϕ : E → F of brave new rings and the
induced diagram

K(E) ��

��

TC(E;p)

��
K(F) �� TC(F ;p).

(4.6)

The following theorem of B. Dundas contains a basic relationship between K and
TC. The theorem was conjectured by T. Goodwillie in [24], and proved in a special
case by R. McCarthy in [50].

Theorem 4.2 ([14]). Suppose π0E→ π0F is a surjective ring homomorphism with
nilpotent kernel. Then (4.6) becomes homotopy Cartesian after p-adic completion.
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I will now turn to the calculation of TC(X;p), the topological cyclic homology
of the brave new ring S ∧	X+. There is a commutative diagram

TC(X;p) ��

��

	∞−1S∞(ET×T LX+)

trf
��

	∞S∞(LX+)
1−�p �� 	∞S∞(LX+),

(4.7)

where �p : LX → LX sends a loop λ(z) to λ(zp), z ∈ S1, and trf is the T-transfer
map (a fibrewise Pontryagin–Thom collapse map).

Theorem 4.3 ([7]). The diagram (4.7) becomes homotopy Cartesian after p-adic
completion.

When X is a single point, the theorem reduces to the statement

TC(pt;p) 	p 	∞S∞ ×	∞−1CP∞−1, (4.8)

with	p indicating that the two sides become homotopy equivalent after p-adic com-
pletion. In particular the two sides have the same mod p homotopy groups.

Theorem 4.2, applied to the case in which E is the sphere spectrum and F is
the Eilenberg–Maclane spectrum of the integers, tells us that the homotopy fibres of
A(pt)→ K(Z) and TC(pt;p)→ TC(Z;p) have the same p-adic completions. This
reduces the understanding of A(pt) to the understanding of K(Z) and the fibre of
TC(pt;p)→ TC(Z;p). The structure of TC(Z;p) is given in [8], [63].

If the ring R is finitely generated as an abelian group, then

TC(R;p) 	p TC(R ⊗ Zp;p).
The corresponding statement for K-theory is false, so the absolute invariant (4.1) is
effective mostly for p-complete rings. There is an extensive theory surrounding the
functor TC(R;p), developed in joint work with L. Hesselholt in [33], [34]. See also
[32]. The p-adic completion of TC(R;p) is explicitly known when R is the ring of
integers in a finite field extension of Q, and in this case (4.1) induces an equivalence

K(R ⊗ Zp) 	p TC(R;p).
For global rings, the motivic theory is the basic tool for calculations of K(R); see
F. Morel’s article in these proceedings.

In view of Theorem 4.2 and Theorem 4.3, it is of obvious interest to examine the
map from TC(X;p) to TC(Z[π1X];p), but essentially nothing is known about this
problem. Two special cases are of particular interest. The case X = pt is required
for the homotopical control of the fibre of A(pt)→ K(Z). The case X = S1 is, by
theorems of T. Farrell and L. Jones, related to the homotopical structure of the group
of homeomorphisms of negatively curved closed manifolds, cf. [45].
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Let K be the periodic spectrum whose 2n’th space is Z× BU and with structure
maps induced from Bott periodicity. It is believed that A(K) will be important in
the study of field theories, so one would like to understand the homotopy type of
TC(K;p). There are helpful partial results from [2], [1], but the problem seems to be
a very difficult one.

Finally, and maybe most important, there are reasons to believe that the moduli
space of Riemann surfaces is related to TC(pt;p), possibly via field theories. The
spectrum CP∞−1 occurs in both theories. It is a challenge to understand why.
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