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1 Introduction: Results and methods

1.1 Main result

Let F = Fg,b be a smooth, compact, connected and oriented surface of genus g > 1
with b ≥ 0 boundary circles. Let H (F ) be the space of hyperbolic metrics on F with
geodesic boundary and such that each boundary circle has unit length. The topological
group Diff(F ) of orientation preserving diffeomorphisms F → F which restrict to the
identity on the boundary acts on H (F ) by pulling back metrics. The orbit space

M (F ) = H (F )
/
Diff(F )

is the (hyperbolic model of the) moduli space of Riemann surfaces of topological type F .

The connected component Diff1(F ) of the identity acts freely on H (F ) with orbit space
T (F ), the Teichmüller space. The projection from H (F ) to T (F ) is a principal Diff1–
bundle [5], [6]. Since H (F ) is contractible and T (F ) ∼= R6g−b+2b , the subgroup Diff1(F )
must be contractible. Hence the mapping class group Γg,b = π0Diff(F ) is homotopy equiv-
alent to the full group Diff(F ), and BΓg,b ' BDiff(F ).

When b > 0 the action of Γg,b on T (F ) is free so that BΓg,b 'M (F ). If b = 0 the action
of Γg on T (F ) has finite isotropy groups and M (F ) has singularities. In this case

BΓg ' (EΓg ×T (F ))
/
Γg

and the projection BΓg →M (F ) is only a rational homology equivalence.
For b > 0, the standard homomorphisms

Γg,b → Γg+1,b , Γg,b → Γg,b−1 (1.1)

yield maps of classifying spaces that induce isomorphisms in integral cohomology in degrees
less than g/2 − 1 by the stability theorems of Harer [15] and Ivanov [18]. We let BΓ∞,b

denote the mapping telescope or homotopy colimit of

BΓg,b −→ BΓg+1,b −→ BΓg+2,b −→ · · · .

Then H∗(BΓ∞,b; Z) ∼= H∗(BΓg,b; Z) for ∗ < g/2−1, and in the same range the cohomology
groups are independent of b .
The mapping class groups Γg,b are perfect for g > 1, so we may apply Quillen’s plus
construction to their classifying spaces. By the above, the resulting homotopy type is
independent of b when g =∞ ; we write

BΓ+
∞ = BΓ+

∞,b .

The main result from [41] asserts that Z×BΓ+
∞ is an infinite loop space, so that homotopy

classes of maps to it form the degree 0 part of a generalized cohomology theory. Our main
theorem identifies this cohomology theory.
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Let G(d, n) denote the Grassmann manifold of oriented d–dimensional subspaces of Rd+n ,
and let Ud,n and U⊥

d,n be the two canonical vector bundles on G(d, n) of dimension d and
n , respectively. The restriction

U⊥
d,n+1|G(d, n)

is the direct sum of U⊥
d,n and a trivialized real line bundle. This yields an inclusion of their

associated Thom spaces,
S1 ∧ Th (U⊥

d,n) −→ Th (U⊥
d,n+1) ,

and hence a sequence of maps (in fact cofibrations)

· · · → Ωn+dTh (U⊥
d,n)→ Ωn+1+dTh (U⊥

d,n+1)→ · · ·

with colimit
Ω∞hV = colimn Ωn+dTh (U⊥

d,n). (1.2)

For d = 2, the spaces G(d, n) approximate the complex projective spaces, and

Ω∞hV ' Ω∞CP∞
−1 := colimn Ω2n+2Th (L⊥n )

where L⊥n is the complex n–plane bundle on CPn which is complementary to the tauto-
logical line bundle Ln .
There is a map α∞ from Z×BΓ+

∞ to Ω∞CP∞
−1 constructed and examined in considerable

detail in [22]. Our main result is the following theorem conjectured in [22]:

Theorem 1.1.1 The map α∞ : Z×BΓ+
∞ −→ Ω∞CP∞

−1 is a homotopy equivalence.

Since α∞ is an infinite loop map by [22], the theorem identifies the generalized cohomology
theory determined by Z × BΓ+

∞ to be the one associated with the spectrum CP∞
−1 . To

see that theorem 1.1.1 verifies Mumford’s conjecture we consider the homotopy fibration
sequence of [34],

Ω∞CP∞
−1

ω−−−−→ Ω∞S∞(CP∞
+ ) ∂−−−−→ Ω∞+1S∞ (1.3)

where the subscript + denotes an added disjoint base point. The homotopy groups of
Ω∞+1S∞ are equal to the stable homotopy groups of spheres, up to a shift of one, and are
therefore finite. Thus H∗(ω; Q) is an isomorphism. The canonical complex line bundle over
CP∞ , considered as a map from CP∞ to {1} ×BU, induces via Bott periodicity a map

L : Ω∞S∞(CP∞
+ ) −→ Z×BU,

and H∗(L; Q) is an isomorphism. Thus we have isomorphisms

H∗(Z×BΓ+
∞; Q) ∼= H∗(Ω∞CP∞

−1; Q) ∼= H∗(Z×BU; Q) .

Since Quillen’s plus construction leaves cohomology undisturbed this yields Mumford’s con-
jecture:

H∗(BΓ∞; Q) ∼= H∗(BU; Q) ∼= Q[κ1, κ2, . . . ] .
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Miller, Morita and Mumford [24], [28], [29], [30] defined the classes κi ∈ H2i(BΓ∞; Q) by
integration (Umkehr) of the (i+ 1)–th power of the tangential Euler class in the universal
smooth Fg,b–bundles. In the above setting κi = α∗∞L

∗(i! chi).
We finally remark that the cohomology H∗(Ω∞CP∞

−1; Fp) has been calculated in [9] for all
primes p . The result is quite complicated.

1.2 A geometric formulation

Let us first consider smooth proper maps q : Md+n → Xn of smooth manifolds without
boundary, of fixed relative dimension d ≥ 0, and equipped with an orientation of the (stable)
relative tangent bundle TM − q∗TX . Two such maps q0 : M0 → X and q1 : M1 → X are
concordant (traditionally, cobordant) if there exists a similar map qR : W d+n+1 → X × R
transverse to X×{0} and X×{1} , and such that the inverse images of X×{0} and X×{1}
are isomorphic to q0 and q1 (with all the relevant vector bundle data), respectively. The
Pontryagin–Thom theory, cf. particularly [32], equates the set of concordance classes of such
maps over fixed X with the set of homotopy classes of maps from X into the degree −d
term of the universal Thom spectrum,

Ω∞+dMSO = colimn Ωn+dTh (Un,∞) .

The geometric reformulation of theorem 1.1.1 is similar in spirit.

We consider smooth proper maps q : Md+n → Xn much as before, together with a vector
bundle epimorphism δq from TM × Ri to q∗TX × Ri , where i � 0, and an orientation
of the d–dimensional kernel bundle of δq . (Note that δq is not required to agree with dq ,
the differential of q .) Again, the Pontryagin–Thom theory equates the set of concordance
classes of such pairs (q, δq) over fixed X with the set of homotopy classes of maps

X −→ Ω∞hV ,

with Ω∞hV as in (1.2). For a pair (q, δq) as above which is integrable, δq = dq , the map q
is a proper submersion with target X and hence a bundle of smooth closed d–manifolds on
X by Ehresmann’s fibration lemma [3, 8.12]. Thus the set of concordance classes of such
integrable pairs over a fixed X is in natural bijection with the set of homotopy classes of
maps

X −→
∐

BDiff(F d)

where the disjoint union runs over a set of representatives of the diffeomorphism classes
of closed, smooth and oriented d–manifolds. Comparing these two classification results we
obtain a map

α :
∐

BDiff(F d) −→ hV

which for d = 2 is closely related to the map α∞ of theorem 1.1.1. The map α is not a
homotopy equivalence (which is why we replace it by α∞ when d = 2). However, using
submersion theory we can refine our geometric understanding of homotopy classes of maps
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to hV and our understanding of α .
We suppose for simplicity that X is closed. As explained above, a homotopy class of maps
from X to hV can be represented by a pair (q, δq) with a proper q : M → X , a vector
bundle epimorphism δq : TM × Ri → q∗TX × Ri and an orientation on ker(δq). We set

E = M × R

and let q̄ : E → X be given by q̄(x, t) = q(x). The epimorphism δq determines an epi-
morphism δq̄ : TE ×Ri → q̄ ∗TX ×Ri . In fact, obstruction theory shows that we can take
i = 0, so we write δq̄ : TE → q̄ ∗TX . Since E is an open manifold, the submersion theo-
rem of Phillips [31], [14], [13] applies, showing that the pair (q̄, δq̄) is homotopic through
vector bundle surjections to a pair (π, dπ) consisting of a submersion π : E → X and its
differential dπ : TE → π∗TX . Let f : E → R be the projection. This is obviously proper;
consequently (π, f) : E → X × R is proper.
The vertical tangent bundle T πE = ker(dπ) of π is identified with ker(δp) ∼= ker(δq)×TR ,
so has a trivial line bundle factor. Let δf be the projection to that factor. In terms of the
vertical 1–jet bundle

p1
π : J1

π(E,R) −→ E

whose fiber at z ∈ E consists of all affine maps from the vertical tangent space (T πE)z to
R , the pair (f, δf) amounts to a section f̂ of p1

π such that f̂(z) : (T πE)z → R is surjective
for every z ∈ E .

We introduce the notation hV(X) for the set of pairs (π, f̂), where π : E → X is a smooth
submersion with (d + 1)-dimensional oriented fibers and f̂ : E → J1

π(E,R) is a section of
p1
π with underlying map f : E → R , subject to two conditions: for each z ∈ E the affine

map f̂(z) : (T πE)z → R is surjective, and (π, f) : E → X × R is proper.
Concordance defines an equivalence relation on hV(X). Let hV[X] be the set of equivalence
classes. The arguments above lead to a natural bijection

hV[X] ∼= [X,Ω∞hV] . (1.4)

We similarly define V(X) as the set of pairs (π, f) where π : E → X is a smooth submersion
as before and f : E → R is a smooth function, subject to two conditions: the restriction
of f to any fiber of π is regular (= nonsingular), and (π, f) : E → X × R is proper. Let
V[X] be the correponding set of concordance classes. Since elements of V(X) are bundles
of closed oriented d–manifolds over X × R , we have a natural bijection

V[X] ∼= [X,
∐

BDiff(F d)].

On the other hand an element (π, f) ∈ V(X) with π : E → X determines a section j1πf of
the projection J1

πE → E by fiberwise 1–jet prolongation. The map

V(X) −→ hV(X) ; (π, f) 7→ (π, j1πf) (1.5)

respects the concordance relation and so induces a map V[X]→ hV[X] , which corresponds
to α in (1.2).
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1.3 Outline of proof

The main tool is a special case of the celebrated “first main theorem” of V.A. Vassiliev [42],
[43] which can be used to approximate (1.5).
We fix d ≥ 0 as above. For smooth X without boundary we enlarge the set V(X) to the
set W(X) consisting of pairs (π, f) with π as before but with f : E → R a fiberwise Morse
function rather than a fiberwise regular function. We keep the condition that the combined
map (π, f) : E → X × R be proper. There is a similar enlargement of hV(X) to a set
hW(X). An element of hW(X) is a pair (π, f̂) where f̂ is a section of “Morse type” of the
fiberwise 2–jet bundle J2

πE → E with an underlying map f such that (π, f) : E → X ×R
is proper. In analogy with (1.5), we have the 2–jet prolongation map

W(X) −→ hW(X) ; (π, f) 7→ (π, j2πf) . (1.6)

Dividing out by the concordance relation we get representable functors:

W[X] ∼= [X, |W| ] , hW[X] ∼= [X, |hW| ] (1.7)

and (1.6) induces a map j2π : |W| → |hW| . Vassiliev’s first main theorem is a main ingre-
dient in our proof (in section 4) of

Theorem 1.3.1 The jet prolongation map |W| → |hW| is a homotopy equivalence.

There is a commutative square
|V| //

��

|W|

��
|hV| // |hW| .

(1.8)

We need information about the horizontal maps. This involves introducing “local” versions
Wloc(X) and hWloc(X) where we focus on the behavior of functions f and jet bundle
sections f̂ near the fiberwise singularity set:

Σ(π, f) = {z ∈ E | dfz = 0 on (T πE)z} ,
Σ(π, f̂) = {z ∈ E | linear part of f̂(z) vanishes}.

Technically the localization is easiest to achieve as follows. Elements of Wloc(X) are defined
like elements (π, f) of W(X), but we relax the condition that (π, f) : E → X×R be proper
to the condition that its restriction to Σ(π, f) be proper. The definition of hWloc(X)
is similar, and we obtain spaces |Wloc| and |hWloc| which represent the corresponding
concordance classes, together with a commutative diagram

|V| //

j2π
��

|W| //

j2π
��

|Wloc|

j2π
��

|hV| // |hW| // |hWloc|.

(1.9)

The next two theorems are proved in section 3. They are much easier than theorem 1.3.1.
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Theorem 1.3.2 The jet prolongation map |Wloc| → |hWloc| is a homotopy equivalence.

Theorem 1.3.3 The maps |hV| → |hW| → |hWloc| define a homotopy fibration sequence
of infinite loop spaces.

The spaces |hW| and |hWloc| are, like |hV| = Ω∞hV , colimits of certain iterated loop
spaces of Thom spaces. Their homology can be approached by standard methods from
algebraic topology.
The three theorems above are valid for any choice of d ≥ 0. This is not the case for the final
result that goes into the proof of theorem 1.1.1, although many of the arguments leading
to it are valid in general.

Theorem 1.3.4 For d = 2 , the homotopy fiber of |W| → |Wloc| is the space Z×BΓ+
∞ .

In conjunction with the previous three theorems this proves theorem 1.1.1:

Z×BΓ+
∞ ' |hV| ' Ω∞hV ' Ω∞CP∞

−1 .

The proof of theorem 1.3.4 is technically the most demanding part of the paper. It rests
on compatible stratifications of |W| and |hW| , or more precisely on homotopy colimit
decompositions

|W| ' hocolimR |WR| , |Wloc| ' hocolimR |Wloc,R| (1.10)

where R runs through the objects of a certain category of finite sets. The spaces |WR|
and |Wloc,R| classify certain bundle theories WR(X) and Wloc,R(X). The proof of (1.10) is
given in section 5, and is valid for all d ≥ 0. (Elements of WR(X) are smooth fiber bundles
Mn+d → Xn equipped with extra fiberwise “surgery data”. The maps WS(X) → WR(X)
induced contravariantly by morphisms R → S in the indexing category involve fiberwise
surgeries on some of these data.)
The homotopy fiber of |WR| → |Wloc,R| is a classifying space for smooth fiber bundles
Mn+d → Xn with d–dimensional oriented fibers F d , each fiber having its boundary iden-
tified with a disjoint union ∐

r∈R
Sµr × Sd−µr−1

where µr depends on r ∈ R . The fibers F d need not be connected, but in section 6 we intro-
duce a modification Wc,R(X) of WR(X) to enforce this additional property, keeping (1.10)
almost intact. Again this works for all d ≥ 0.

When d = 2 the homotopy fiber of |Wc,R| → |Wloc,R| becomes homotopy equivalent to∐
g BΓg,2|R| . A second modification of (1.10) which we undertake in section 7 allows us to

replace this by Z×BΓ∞,2|R|+1 , functorially in R . It follows directly from Harer’s theorem
that these homotopy fibers are “independent” of R up to homology equivalences. Using an
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argument from [23] and [41] we conclude that the inclusion of any of these homotopy fibers
Z × BΓ∞,2|R|+1 into the homotopy fiber of |W| → |Wloc| is a homology equivalence. This
proves theorem 1.3.4.

The paper is set up in such a way that it proves analogues of theorem 1.1.1 for other classes
of surfaces, provided that Harer type stability results have been established. This includes
for example spin surfaces. See also [8].

2 Families, sheaves and their representing spaces

2.1 Language

We will be interested in families of smooth manifolds, parametrized by other smooth man-
ifolds. In order to formalize pullback constructions and gluing properties for such families,
we need the language of sheaves. Let X be the category of smooth manifolds (without
boundary, with a countable base) and smooth maps.

Definition 2.1.1 A sheaf on X is a contravariant functor F from X to the category
of sets with the following property. For every open covering {Ui|i ∈ Λ} of some X in X ,
and every collection (si ∈ F (Ui))i satisfying si|Ui ∩ Uj = sj |Ui ∩ Uj for all i, j ∈ Λ , there
is a unique s ∈ F (X) such that s|Ui = si for all i ∈ Λ .

In definition 2.1.1, we do not insist that all of the Ui be nonempty. Consequently F(∅)
must be a singleton. For a disjoint union X = X1 t X2 , the restrictions give a bijection
F(X) ∼= F(X1) × F(X2). Consequently F is determined up to unique natural bijections
by its behavior on connected nonempty objects X of X .

For the sheaves F that we will be considering, an element of F(X) is typically a family of
manifolds parametrized by X and with some additional structure. In this situation there is
usually a sensible concept of isomorphism between elements of F(X), so that there might
be a temptation to regard F(X) as a groupoid. We do not include these isomorphisms
in our definition of F(X), however, and we do not suggest that elements of X should be
confused with the corresponding isomorphism classes (since this would destroy the sheaf
property). This paper is not about “stacks”. All the same, we must ensure that our
pullback and gluing constructions are well defined (and not just up to some sensible notion
of isomorphism which we would rather avoid). This forces us to introduce the following
purely set–theoretic concept. We fix, once and for all, a set Z whose cardinality is at least
that of R .

Definition 2.1.2 A map of sets S → T is graphic if it is a restriction of the projection
Z × T → T . In particular, each graphic map with target T is determined by its source,
which is a subset S of Z × T .
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Clearly, a graphic map f with target T is equivalent to a map from T to the power set P (Z)
of Z , which we may call the adjoint of f . Pullbacks of graphic maps are now easy to define:
If g : T1 → T2 is any map and f : S → T2 is a graphic map with adjoint fa : T → P (Z),
then the pullback g∗f : g∗S → T1 is, by definition, the graphic map with adjoint equal to
the composition

T1
g // T2

fa
// P (Z). (2.1)

If g is an identity, then g∗S = S and g∗f = f ; if g is a composition, g = g2g1 , then
g∗S = g1

∗g2
∗S and g∗f = g1

∗g2
∗f . Thus, with the above definitions, base change is

associative.

Definition 2.1.3 Let pr : X×R→ X be the projection. Two elements s0, s1 of F(X) are
concordant if there exist s ∈ F(X ×R) which agrees with pr∗s0 on an open neighborhood
of X× ] −∞, 0] in X × R , and with pr∗s1 on an open neighborhood of X × [1,+∞[ in
X × R . The element s is then called a concordance from s0 to s1 .

It is not hard to show that “being concordant” is an equivalence relation on the set F(X),
for every X . We denote the set of equivalence classes by F [X] . Then X 7→ F [X] is still
a contravariant functor on X . It is practically never a sheaf, but it is representable in the
following weak sense. There exists a space, denoted by |F| , such that homotopy classes of
maps from a smooth X to |F| are in natural bijection with the elements of F [X] . This
follows from very general principles expressed in Brown’s representation theorem [2]. An
explicit and more functorial construction of |F| will be described later. To us, |F| is more
important than F itself. We define F in order to pin down |F| .

Elements in F(X) can usually be regarded as families of elements in F(?), parametrized
by the manifold X . The space |F| should be thought of as a space which classifies families
of elements in F(?).

2.2 Families with analytic data

Let E be a smooth manifold, without boundary for now, and π : E → X a smooth map to
an object of X . The map π is a submersion if its differentials TEz → TXπ(z) for z ∈ E
are all surjective. In that case, by the implicit function theorem, each fiber Ex = π−1(x)
for x ∈ X is a smooth submanifold of E , of codimension equal to dim(X). We remark
that a submersion need not be surjective and a surjective submersion need not be a bundle.
However, a proper smooth map π : E → X which is a submersion is automatically a smooth
fiber bundle by Ehresmann’s fibration lemma [3, thm. 8.12].

In this paper, when we informally mention a family of smooth manifolds parametrized by
some X in X , what we typically mean is a submersion π : E → X . The members of the
family are then the fibers Ex of π . The vertical tangent bundle of such a family is the vector
bundle T πE → E whose fiber at z ∈ E is the kernel of the differential dπ : TEz → TXπ(z) .
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To have a fairly general notion of orientation as well, we fix a space Θ with a right action
of the infinite general linear group over the real numbers: Θ × GL → Θ . For an n–
dimensional vector bundle W → B let Fr(W ) be the frame bundle, which we regard as a
principal GL(n)–bundle on B with GL(n) acting on the right.

Definition 2.2.1 By a Θ–orientation of W we mean a section of the associated bundle
(Fr(W )×Θ)/GL(n) −→ B .

This includes a definition of a Θ–orientation on a finite dimensional real vector space,
because a vector space is a vector bundle over a point.

Example 2.2.2 If Θ is a single point, then every vector bundle has a unique Θ–orienta-
tion. If Θ is π0(GL) with the action of GL by translation, then a Θ–orientation of a vector
bundle is simply an orientation. (This choice of Θ is the one that will be needed in the
proof of the Mumford conjecture.) If Θ is π0(GL)×Y for a fixed space Y , where GL acts
by translation on π0(GL) and trivially on the factor Y , then a Θ–orientation on a vector
bundle W → B is an orientation on W together with a map B → Y .
Let S̃L(n) be the universal cover of the special linear group SL(n). If Θ = colimnΘn where
Θn is the pullback of

EGL(n) // BGL(n) BS̃L(n) ,oo

then a Θ–orientation on a vector bundle W amounts to a spin structure on W . Here
EGL(n) can be taken as the total space of the frame bundle associated with the universal
n–dimensional vector bundle on BGL(n).

We also fix an integer d ≥ 0. (For the proof of the Mumford conjecture, d = 2 is the
right choice.) The data Θ and d will remain with us, fixed but unspecified, throughout the
paper, except for section 7 where we specialize to d = 2 and Θ = π0GL.

Definition 2.2.3 For X in X , let V(X) be the set of pairs (π, f) where π : E → X is
a graphic submersion of fiber dimension d+ 1, with a Θ–orientation of its vertical tangent
bundle, and f : E → R is a smooth map, subject to the following conditions.

(i) The map (π, f) : E → X × R is proper.
(ii) The map f is fiberwise nonsingular, i.e., the restriction of f to any fiber Ex of π is

a nonsingular map.

For (π, f) ∈ V(X) with π : E → X , the map z 7→ (π(z), f(z)) from E to X × R is
a proper submersion and therefore a smooth bundle with d–dimensional fibers. The Θ–
orientation on the vertical tangent bundle of π is equivalent to a Θ–orientation on the
vertical tangent bundle of (π, f) : E → X×R , since T πE ∼= T (π,f)E×R . Consequently 2.2.3
is another way of saying that an element of V(X) is a bundle of smooth closed d–manifolds
on X × R with a Θ–orientation of its vertical tangent bundle. We prefer the formulation
given in definition 2.2.3 because it is easier to vary and generalize, as illustrated by our next
definition.
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Definition 2.2.4 For X in X , let W(X) be the set of pairs (π, f) as in definition 2.2.3,
subject to condition (i) as before, but with condition (ii) replaced by the weaker condition

(iia) the map f is fiberwise Morse.

Recall that a smooth function N → R is a Morse function precisely if its differential, viewed
as a smooth section of the cotangent bundle TN∗ → N , is transverse to the zero section [10,
II§6]. This extends to families of smooth manifolds and Morse functions. In other words, if
π : E → X is a smooth submersion and f : E → R is any smooth map, then f is fiberwise
Morse if and only if the fiberwise differential of f , a section of the vertical cotangent bundle
T πE∗ on E , is transverse to the zero section. This has the following consequence for the
fiberwise singularity set Σ(π, f) ⊂ E of f .

Lemma 2.2.5 Suppose that f : E → R is fiberwise Morse. Then Σ(π, f) is a smooth
submanifold of E and the restriction of π to Σ(π, f) is a local diffeomorphism, alias étale
map, from Σ(π, f) to X .

Proof The fiberwise differential viewed as a section of the vertical cotangent bundle is
transverse to the zero section. In particular Σ = Σ(π, f) is a submanifold of E , of the
same dimension as X . But moreover, the fiberwise Morse condition implies that for each
z ∈ Σ , the tangent space TΣz has trivial intersection in TEz with the vertical tangent space
T πEz . This means that Σ is transverse to each fiber of π , and also that the differential
of π|Σ at any point z of Σ is an invertible linear map TΣz → TXπ(z) , and consequently
that π|Σ is a local diffeomorphism.

Definition 2.2.6 For X in X let Wloc(X) be the set of pairs (π, f), as in definition 2.2.3,
but replacing conditions (i) and (ii) by

(ia) the map Σ(π, f)→ X × R defined by z 7→ (π(z), f(z)) is proper,

(iia) f is fiberwise Morse.

2.3 Families with formal–analytic data

Let E be a smooth manifold and pk : Jk(E,R)→ E the k -jet bundle, where k ≥ 0. Its fiber
Jk(E,R)z at z ∈ E consists of equivalence classes of smooth map germs f : (E, z) → R ,
with f equivalent to g if the k -th Taylor expansions of f and g agree at z (in any local
coordinates near z ). The elements of Jk(E,R) are called k–jets of maps from E to R .
The k -jet bundle pk : Jk(E,R)→ E is a vector bundle.

Let u : TEz → E be any exponential map at z , that is, a smooth map such that u(0) = z
and the differential at 0 is the identity TEz → TEz . Then every jet t ∈ Jk(E,R)z can be
represented by a unique germ (E, z)→ R whose composition with u is the germ at 0 of a
polynomial function tu of degree ≤ k on the vector space TEz . The constant part (a real
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number) and the linear part (a linear map TEz → R) of tu do not depend on u . We call
them the constant and linear part of t , respectively. If the linear part of t vanishes, then
the quadratic part of tu , which is a quadratic map TEz → R , is again independent of u .
We then call it the quadratic part of t .

Definition 2.3.1 A jet t ∈ Jk(E,R) is nonsingular (assuming k ≥ 1) if its linear part
is nonzero. The jet t is Morse (assuming k ≥ 2) if it has a nonzero linear part or, failing
that, a nondegenerate quadratic part.

A smooth function f : E → R induces a smooth section jkf of pk , which we call the k -jet
prolongation of f , following e.g. Hirsch [17]. (Some writers choose to call it the k -jet of
f , which can be confusing.) Not every smooth section of pk has this form. Sections of the
form jkf are called integrable. Thus a smooth section of pk is integrable if and only if it
agrees with the k -jet prolongation of its underlying smooth map f : E → R .

We need a fiberwise version Jkπ (E,R) of Jk(E,R), fiberwise with respect to a submersion
π : Ej+r → Xj with fibers Ex for x ∈ X . In a neighborhood of any z ∈ E we may choose
local coordinates Rj × Rr so that π becomes the projection onto Rj and z = (0, 0). Two
smooth map germs f, g : (E, z) → R define the same element of Jkπ (E,R)z if their k -th
Taylor expansions in the Rr coordinates agree at (0, 0). Thus Jkπ (E,R)z is a quotient of
Jk(E,R)z and Jkπ (E,R)z is identified with Jk(Eπ(z),R). There is a short exact sequence
of vector bundles on E ,

π∗Jk(X,R) −→ Jk(E,R) −→ Jkπ (E,R).

Sections of the bundle projection pkπ : Jkπ (E,R) → E will be denoted f̂ , ĝ , ..., and their
underlying functions from E to R by the corresponding letters f , g , and so on. Such a
section f̂ is nonsingular, resp. Morse, if f̂(z), viewed as an element of Jk(Eπ(z),R), is
nonsingular, resp. Morse, for all z ∈ E .

Definition 2.3.2 The fiberwise singularity set Σ(π, f̂) is the set of all z ∈ E where f̂(z)
is singular (assuming k ≥ 1). Equivalently,

Σ(π, f̂) = f̂−1(Σπ(E,R)) ,

where Σπ(E,R) ⊂ J2
π(E,R) is the submanifold consisting of the singular jets, i.e., those

with vanishing linear part.

Again, any smooth function f : E → R induces a smooth section jkπf of pkπ , which we call
the fiberwise k -jet prolongation of f . The sections of the form jkπf are called integrable. If
k ≥ 1 and f̂ is integrable with f̂ = jkπf , then

Σ(π, f̂) = Σ(π, f).

Definition 2.3.3 For an object X in X , let hV(X) be the set of pairs (π, f̂) where
π : E → X is a graphic submersion of fiber dimension d + 1, with a Θ–orientation of its
vertical tangent bundle, and f̂ is a smooth section of p2

π : J2
π(E,R) → E , subject to the

following conditions:
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(i) (π, f) : E → X × R is proper.
(ii) f̂ is fiberwise nonsingular.

Definition 2.3.4 For X in X let hW(X) be the set of pairs (π, f̂), as in definition 2.3.3,
which satisfy condition (i), but where condition (ii) is replaced by the weaker condition

(iia) f̂ is fiberwise Morse.

Definition 2.3.5 For X in X let hWloc(X) be the set of pairs (π, f̂), as in defini-
tion 2.3.3, but with conditions (i) and (ii) replaced by the weaker conditions

(ia) the map Σ(π, f̂)→ X × R ; z 7→ (π(z), f(z)) is proper,
(iia) f̂ is fiberwise Morse.

The six sheaves which we have so far defined, together with the obvious inclusion and jet
prolongation maps, constitute a commutative square

V //

j2π
��

W //

j2π
��

Wloc

j2π
��

hV // hW // hWloc.

(2.2)

2.4 Concordance theory of sheaves

Let F be a sheaf on X and let X be an object of X . In 2.1.3, we defined the concordance
relation on F(X) and introduced the quotient set F [X] . It is necessary to have a relative
version of F [X] . Suppose that A ⊂ X is a closed subset, where X is in X . Let s ∈
colimUF(U) where U ranges over the open neighborhoods of A in X . Note for example
that any z ∈ F(?) gives rise to such an element, namely s = {p∗U (z)} where pU : U → ? .
In this case we often write z instead of s .

Definition 2.4.1 Let F(X,A; s) ⊂ F(X) consist of the elements t ∈ F(X) whose germ
near A is equal to s . Two such elements t0 and t1 are concordant relative to A if they are
concordant by a concordance whose germ near A is the constant concordance from s to s .
The set of equivalence classes is denoted F [X,A; s] .

We now construct the representing space |F| of F and list its most important properties.

Let ∆ be the category whose objects are the ordered sets n := {0, 1, 2, . . . , n} for n ≥ 0,
with order preserving maps as morphisms. For n ≥ 0 let ∆n

e ⊂ Rn+1 be the extended
standard n-simplex,

∆n
e := {(x0, x1, . . . , xn) ∈ Rn+1 | Σxi = 1}.
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An order-preserving map m → n induces a map of affine spaces ∆m
e → ∆n

e . This makes
n 7→ ∆n

e into a covariant functor from ∆ to X .

Definition 2.4.2 The representing space |F| of a sheaf F on X is the geometric realiza-
tion of the simplicial set n 7→ F(∆n

e ).

An element z ∈ F(?) gives a point z ∈ |F| and F [?] = π0|F| . In appendix A we prove
that |F| represents the contravariant functor X 7→ F [X] . Indeed we prove the following
slightly more general

Proposition 2.4.3 For X in X , let A ⊂ X be a closed subset and z ∈ F(?) . There is a
natural bijection ϑ from the set of homotopy classes of maps (X,A)→ ( |F|, z) to the set
F [X,A; z] .

Taking X = Sn and A equal to the base point, we see that the homotopy group πn(|F|, z)
is identified with the set of concordance classes F [Sn, ?; z] . We introduce the notation

πn(F , z) := F [Sn, ?; z] .

A map v : E → F of sheaves induces a map |v| : |E| → |F| of representing spaces. We call
v a weak equivalence if |v| is a homotopy equivalence.

Proposition 2.4.4 Let v : E → F be a map of sheaves on X . Suppose that v induces a
surjective map

E [X,A; s] −→ F [X,A; v(s)]

for every X in X with a closed subset A ⊂ X and any germ s ∈ colimUE(U) , where U
ranges over the neighborhoods of A in X . Then v is a weak equivalence.

Proof The hypothesis implies easily that the induced map π0E → π0F is onto and that,
for any choice of base point z ∈ E(?), the map of concordance sets πn(E , z)→ πn(F , v(z))
induced by v is bijective. Indeed, to see that v induces a surjection πn(E , z)→ πn(F , v(z)),
simply take (X,A, s) = (Sn, ?, z). To see that an element [t] in the kernel of this surjection is
zero, take X = Rn+1 , A = {z ∈ Rn+1 | ‖z‖ ≥ 1} and s = p∗t where p : Rn+1 r{0} → Sn is
the radial projection. The hypothesis that [t] is in the kernel amounts to a null–concordance
for v(t) which can be reformulated as an element of F [X,A; v(s)]. Our assumption on v
gives us a lift of that element to E [X,A; s] which in turn can be interpreted as a null–
concordance of t .

Applying the representing space construction to the sheaves displayed in diagram (2.2), we
get the commutative diagram (1.9) from the introduction.
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2.5 Some useful concordances

Lemma 2.5.1 (Shrinking lemma.) Let (π, f) be an element of V(X) , W(X) or Wloc(X) ,
with π : E → X and f : E → R . Let e : X × R→ R be a smooth map such that, for any
x ∈ X , the map ex : R→ R defined by t 7→ e(x, t) is an orientation preserving embedding.
Let E(1) = {z ∈ E | f(z) ∈ eπ(z)(R)} . Let π(1) = π|E(1) and

f (1)(z) = eπ(z)
−1f(z)

for z ∈ E(1) . Then (π, f) is concordant to (π(1), f (1)) .

Proof Choose an ε > 0 and a smooth family of smooth embeddings u(x,t) : R→ R , where
t ∈ R and x ∈ X , such that u(x,t) = id whenever t < ε and u(x,1) = ex whenever t > 1−ε .
Let

E(R) =
{
(z, t) ∈ E × R

∣∣ f(z) ∈ u(π(z),t)(R)
}
.

Then (z, t) 7→ (π(z), t) defines a smooth submersion π(R) from E(R) to X × R , and

z 7→ u(π(z),t)
−1f(z)

defines a smooth map f (R) : E(R) → R . Now (π(R), f (R)) is a concordance from (π, f) to
(π(1), f (1)), modulo some simple re–labelling of the elements of E(R) to ensure that π(R)

is graphic. (As it stands, E is a subset of Z × X , compare 2.1.2, and E(R) is a subset
of (Z × X) × R . But we want E(R) to be a subset of Z × (X × R); hence the need for
relabelling.)

Lemma 2.5.1 has an obvious analogue for the sheaves hV , hW and hWloc , which we do
not state explicitly.

Lemma 2.5.2 Every class in W[X] or hW[X] has a representative (π, f) , resp. (π, f̂) ,
in which f : E → R is a bundle projection, so that

E ∼= f−1(0)× R .

Proof We concentrate on the first case, starting with an arbitrary (π, f) ∈ W[X] . We
do not assume that f : E → R is a bundle projection to begin with. However, by Sard’s
theorem we can find a regular value c ∈ R for f . The singularity set of f (not to be
confused with the fiberwise singularity set of f ) is closed in E . Therefore its image under
the proper map (π, f) : E → X×R is closed. (Proper maps between locally compact spaces
are closed maps). The complement of that image is an open neighborhood U of X×{c} in
X ×R containing no critical points of f . It follows easily that there exists e : X ×R→ R
as in lemma 2.5.1, with e(x, 0) = c for all x and (x, e(x, t)) ∈ U for all x ∈ X and t ∈ R .
Apply lemma 2.5.1 with this choice of e . In the resulting (π(1), f (1)) ∈ W(X), the map
f (1) : E(1) → R is nonsingular and proper, hence a bundle projection. (It is not claimed
that f (1) is fiberwise nonsingular.)
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We now introduce two sheaves W0 and hW0 on X . They are weakly equivalent to W
and hW , respectively, but better adapted to Vassiliev’s integrability theorem, as we will
explain in section 4.

Definition 2.5.3 For X in X let W0(X) be the set of all pairs (π, f) as in definition 2.2.4,
replacing however condition (iia) there by the weaker

(iib) f is fiberwise Morse in some neighborhood of f−1(0).

Definition 2.5.4 For X in X let hW0(X) be the set of all pairs (π, f̂) as in defini-
tion 2.3.4, replacing however condition (iia) by the weaker

(iib) f̂ is fiberwise Morse in some neighborhood of f−1(0).

From the definition, there are inclusions W → W0 and hW → hW0 . There is also a jet
prolongation map W0 → hW0 which we may regard as an inclusion, the inclusion of the
subsheaf of integrable elements.

Lemma 2.5.5 The inclusions W →W0 and hW → hW0 are weak equivalences.

Proof We will concentrate on the first of the two inclusions, W → W0 . Fix (π, f) in
W0(X), with π : E → X and f : E → R . We will subject (π, f) to a concordance ending
in W(X). Choose an open neighborhood U of f−1(0) in E such that, for each x ∈ X ,
the critical points of fx = f |Ex on Ex ∩ U are all nondegenerate. Since E r U is closed
in E and the map (π, f) : E → X × R is proper, the image of E r U under that map is
a closed subset of X × R which has empty intersection with X × 0. Again it follows that
a map e : X × R → R as in 2.5.1 can be constructed such that e(x, 0) = 0 for all x and
(x, e(x, t)) ∈ U for all (x, t) ∈ X × R . As in the proof of lemma 2.5.1, use e to construct
a concordance from (π, f) to some element (π(1), f (1)) which, by inspection, belongs to
W(X). If the restriction of (π, f) to an open neighborhood Y1 of a closed A ⊂ X belongs
to W(Y1), then the concordance can be made relative to Y0 , where Y0 is a smaller open
neighborhood of A in X .

3 The lower row of diagram (1.9)

This section describes the homotopy types of the spaces in the lower row of (1.9) in bordism–
theoretic terms. One of the conclusions is that the lower row is a homotopy fiber sequence,
proving theorem 1.3.3. We also show that the jet prolongation map |Wloc| → |hWloc| is a
homotopy equivalence (the fact as such does not belong in this section, but its proof does).
In the standard case where d = 2 and Θ = π0(GL), the space |hV| will be identified with
Ω∞CP∞

−1 .
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3.1 A cofiber sequence of Thom spectra

Let GW(d + 1, n) be the space of triples (V, `, q) consisting of a Θ–oriented (d + 1)-
dimensional linear subspace V ⊂ Rd+1+n , a linear map ` : V → R and a quadratic form
q : V → R , subject to the condition that if ` = 0, then q is nondegenerate. GW(d+ 1, n)
classifies (d+ 1)-dimensional Θ–oriented vector bundles whose fibers have the above extra
structure, i.e., each fiber V comes equipped with a Morse type map ` + q : V → R and
with a linear embedding into Rd+1+n .

The tautological (d + 1)-dimensional vector bundle Un on GW(d+ 1, n) is canonically
embedded in a trivial bundle GW(d+ 1, n)× Rd+1+n . Let

U⊥
n ⊂ GW(d+ 1, n)× Rd+1+n

be the orthogonal complement, an n-dimensional vector bundle on GW(d+ 1, n). The
tautological bundle Un comes equipped with the extra structure consisting of a map from
(the total space of) Un to R which, on each fiber of Un , is a Morse type map. (The fiber of
Un over a point (V, q, `) ∈ GW(d+ 1, n) is identified with the (d + 1)-dimensional vector
space V and the map can then be described as `+ q .)

Let S(Rd+1) be the vector space of quadratic forms on Rd+1 (or equivalently, symmetric
(d+ 1)× (d+ 1) matrices) and ∆ ⊂ S(Rd+1) the subspace of the degenerate forms (not a
linear subspace). The complement Q(Rd+1) = S(Rd+1) r ∆ is the space of non-degenerate
quadratic forms on Rd+1 . Since quadratic forms can be diagonalized,

Q(Rd+1) =
d+1∐
i=0

Q(i, d+ 1− i)

where Q(i, d+ 1− i) is the connected component containing the form qi given by

qi(x1, x2, . . . , xd+1) = −(x2
1 + · · ·+ x2

i ) + (x2
i+1 + · · ·+ x2

d+1).

The stabilizer O(i, d+1− i) of qi for the (transitive) action of GL(d+1) on Q(i, d+1− i)
has O(i)×O(d+ 1− i) as a maximal compact subgroup and GL(d+ 1) has O(d+ 1) as a
maximal compact subgroup. Hence the inclusion

(O(i)×O(d+ 1− i))
∖
O(d+ 1) −→ Q(i, d+ 1− i) ; coset of g 7→ qig

is a homotopy equivalence, and therefore the subspace

Q0(Rd+1) = {q0, q1, . . . , qd+1} ·O(d+ 1)
∼=

∐d+1
i=0 (O(i)×O(d+ 1− i))

∖
O(d+ 1)

(3.1)

of Q(Rd+1) is a deformation retract, Q(Rd+1) ' Q0(Rd).

For the submanifold Σ(d+1, n) ⊂ GW(d+1, n) consisting of the triples (V, `, q) with ` = 0
we have

Σ(d+ 1, n) ∼=
(
O(d+ 1 + n)/O(n)×Q(Rd+1)×Θ

)/
O(d+ 1) . (3.2)

19



The restriction of Un to Σ(d+1, n) comes equipped with the extra structure of a fiberwise
nondegenerate quadratic form. There is a canonical normal bundle for Σ(d + 1, n) in
GW(d + 1, n) which is easily identified with the dual bundle U∗

n|Σ(d + 1, n). Hence there
is a homotopy cofiber sequence

GV(d+ 1, n) � � // GW(d+ 1, n) // Th (U∗
n|Σ(d+ 1, n))

where GV(d + 1, n) = GW(d + 1, n) r Σ(d + 1, n) and Th (. . . ) denotes the Thom space.
This leads to a homotopy cofiber sequence of Thom spaces

Th (U⊥
n |GV(d+ 1, n)) −→ Th (U⊥

n ) −→ Th (U⊥
n ⊕ U∗

n|Σ(d+ 1, n)).

(A homotopy cofiber sequence is a diagram A → B → C of spaces, where C is pointed,
together with a nullhomotopy of the composite map A → B such that the resulting map
from cone(A→ B) to C is a weak homotopy equivalence.)
We view the space Th (U⊥

n ) as the (n+ d)–th space in a spectrum hW , and similarly for
the other two Thom spaces. Then as n varies the sequence above becomes a homotopy
cofiber sequence of spectra

hV −→ hW −→ hWloc.

We then have the corresponding infinite loop spaces

Ω∞hV = colimn Ωd+nTh (U⊥
n |GV(d+ 1, n)) ,

Ω∞hW = colimn Ωd+nTh (U⊥
n ) ,

Ω∞hWloc = colimn Ωd+nTh (U⊥
n ⊕ U∗

n|Σ(d+ 1, n)).

(We use CW–models for the spaces involved. For example, Ωd+nTh (U⊥
n ) can be considered

as the representing space of the sheaf on X which to a smooth X associates the set of
pointed maps from X+ ∧ Sd+n to Th (U⊥

n ). The representing space is a CW–space.)

The homotopy cofiber sequence of spectra above yields a homotopy fiber sequence of infinite
loop spaces

Ω∞hV −→ Ω∞hW −→ Ω∞hWloc , (3.3)

that is, Ω∞hV is homotopy equivalent to the homotopy fiber of the right-hand map. (A
homotopy fiber sequence is a diagram of spaces A→ B → C , where C is pointed, together
with a nullhomotopy of the composite map A → C such that the resulting map from A
to hofiber(B → C) is a weak homotopy equivalence.) In particular there is a long exact
sequence of homotopy groups associated with diagram (3.3) and a Leray-Serre spectral
sequence of homology groups.

Suppose that a topological group G acts on a space Q from the right. We use the notation
QhG for the “Borel construction” or homotopy orbit space Q×G EG .

Lemma 3.1.1 There is a homotopy equivalence of infinite loop spaces

Ω∞hWloc ' Ω∞S1+∞(Σ(d+ 1,∞)+)
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where (Σ(d+ 1,∞) is a disjoint union of homotopy orbit spaces,

Σ(d+ 1,∞) '
d+1∐
i=0

ΘhO(i,d+1−i).

Proof Since Un|Σ(d+1, n) comes equipped with a fiberwise nondegenerate quadratic form,
U∗
n|Σ(d+ 1, n) is canonically identified with Un|Σ(d+ 1, n). Consequently the restriction

U⊥
n ⊕ U∗

n

∣∣Σ(d+ 1, n)

is trivialized, so that Th (U⊥
n ⊕ U∗

n

∣∣Σ(d+ 1, n)) ' Sd+1+n(Σ(d+ 1, n)+) . Hence

Ω∞hWloc ' Ω∞S1+∞(Σ(d+ 1,∞)+)

where Σ(d + 1,∞) =
⋃
Σ(d + 1, n). Using the description (3.2) of Σ(d + 1, n) and the

equivariant homotopy equivalence Q(Rd+1) ' Q0(Rd+1), see (3.1), we get

Σ(d+ 1, n) '
(
O(d+ 1 + n)/O(n))×Q0(Rd+1)×Θ

)/
O(d+ 1).

The union
⋃
n O(d+1+n)/O(n) is a contractible free O(d+1)-space, so that Σ(d+1,∞)

is homotopy equivalent to the homotopy orbit space of the canonical right action of O(d+1)
on the space

Q0(Rd+1)×Θ ∼=

(
d+1∐
i=0

(O(i)×O(d+ 1− i))
∖
O(d+ 1)

)
×Θ .

That in turn is homotopy equivalent to the disjoint union over i of the homotopy orbit spaces
of O(i)×O(d+1−i) ' O(i, d+1−i) acting on the left of (O(d+1)×Θ)

/
O(d+1) ∼= Θ .

Let G(d, n;Θ) be the space of d–dimensional Θ–oriented linear subspaces in Rd+n . It can
be identified with a subspace of GV(d + 1, n) = GW(d + 1, n) r Σ(d + 1, n), consisting of
the (V, `+ q) where V contains the subspace R× 0× 0 of R× Rd × Rn , and `+ q is the
linear projection to that subspace (so that q = 0). The injection is covered by a fiberwise
isomorphism of vector bundles

T⊥n −→ U⊥
n

∣∣GV(d+ 1, n)

where T⊥n is the standard n-plane bundle on G(d, n;Θ).

Lemma 3.1.2 The induced map of Thom spaces Th (T⊥n ) −→ Th (U⊥
n |GV(d + 1, n)) is

(d+ 2n− 1)–connected. Hence

Ω∞hV ' colimn Ωd+nTh (T⊥n ) .

Proof It is enough to show that the inclusion of G(d, n;Θ) in GV(d+1, n) is (d+n−1)–
connected. Viewing both of these spaces as total spaces of certain bundles with fiber Θ
reduces the claim to the case where Θ is a single point. Note also that GV(d + 1, n) has
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a deformation retract consisting of the pairs (V, ` + q) with q = 0 and ‖`‖ = 1. This
deformation retract is homeomorphic to the coset space

O(d)×O(n)
∖
O(1 + d+ n),

assuming Θ = ? . We are therefore looking at the inclusion of (O(d)×O(n))
∖
O(d+ n) in

(O(d)×O(n))
∖
O(1 + d+ n), which is indeed (d+ n− 1)–connected.

In the standard case where d = 2 and Θ = π0GL, we may compare the Grassmannian of
oriented planes G(2, 2n;Θ) with the complex projective n–space. The map

CPn −→ G(2, 2n;Θ)

that forgets the complex structure is (2n− 1)–connected. The pullback of T⊥2n under this
map is the realification of the tautological complex n–plane bundle L⊥n and the associated
map of Thom spaces is (4n− 1)–connected. The spectrum CP∞

−1 with (2n+ 2)–nd space
Th (L⊥n ) is therefore weakly equivalent to the Thom spectrum hV . We can now collect the
main conclusions of this section, 3.1, in

Proposition 3.1.3 For d = 2 and Θ = π0GL , the homotopy fiber sequence (3.3) is
homotopy equivalent to

Ω∞CP∞
−1 −→ Ω∞hW −→ Ω∞S1+∞(( 3∐

i=0

BSO(i, 3− i)
)
+

)
.

3.2 The spaces |hW| and |hV|

In section 2.3 we described the jet bundle J2(E,R) and its fiberwise version as certain
spaces of smooth map germs (E, z) → R , modulo equivalence. For our use in this section
and the next it is better to view it as a construction on the tangent bundle. For a vector
space V , let J2(V ) denote the vector space of maps

f̂ : V → R , f̂(v) = c+ `(v) + q(v)

where c ∈ R is a constant, ` ∈ V ∗ and q : V → R is a quadratic map. This is a contra-
variant continuous functor on vector spaces, so extends to a functor on vector bundles with
J2(F )z = J2(Fz) when F is a vector bundle over E .

When F = TE is the tangent bundle of a manifold E , then there is an isomorphism of
vector bundles

J2(E,R) ∼= J2(TE).

Indeed after a choice of a connection on TE , the associated exponential map induces a
diffeomorphism germ expz : (TEz, 0)→ (E, z). Composition with expz is an isomorphism
from J2(E,R)z to J2(TEz).
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Lemma 3.2.1 Let π : E → X be a smooth submersion. Any choice of connection on the
vertical tangent bundle T πE induces an isomorphism

J2
π(E,R) −→ J2(T πE).

This is natural under pullbacks of submersions.

Proof In addition to choosing a connection on T πE , we may choose a smooth linear
section of the vector bundle surjection dπ : TE → π∗TX and a connection on TX . This
leads to a splitting

TE ∼= T πE ⊕ π∗TX
and determines a direct sum connection on TE . The associated exponential diffeomorphism
germ exp: (TEz, 0) −→ (E, z) is fiberwise, i.e., it restricts to a diffeomorphism germ

((T πE)z, 0)→ (Eπ(z), z) (3.4)

for each z ∈ E . Indeed, the chosen connection on T πE restricts to a connection on
the tangent bundle of Eπ(z) , and any geodesic in Eπ(z) for that connection is clearly a
geodesic in E as well. The argument also shows that the diffeomorphism germ (3.4), and
the isomorphism J2

π(E,R)z −→ J2(T πE)z which it induces, depend only on the choice of
a connection on T πE , but not on the choice of a splitting of dπ : TE → π∗TX and a
connection on TX . (However, making use of all the choices, we arrive at a commutative
diagram of vector bundles

J2(TE) i∗ // //

∼=
��

J2(T πE)

∼=
��

J2(E,R) i∗ // // J2
π(E,R)

where the horizontal epimorphisms are induced by inclusions.) Finally, if

ϕ∗E
ϕ̄ //

ϕ∗π

��

E

π

��

Y
ϕ // X

is a pullback diagram of submersions, then a choice of connection on T πE determines a
connection on ϕ̄∗T πE ∼= Tϕ

∗πϕ∗E . The resulting exponential diffeomorphism germs are
related by a commutative diagram

((Tϕ
∗πϕ∗E)z, 0) //

dπϕ̄
��

(ϕ∗Eϕ∗π(z), z)

ϕ̄

��

((T πE)ϕ̄(z), 0) // (Eπϕ̄(z), ϕ̄(z)) .
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This proves the naturality claim.

We can re–define hW(X) in definition 2.3.4 as the set of certain pairs (π, f̂) much as before,
with π : E → X , where f̂ is now a section of J2(T πE). The above lemma tells us that the
new definition of hW is related to the old one by a chain of two weak equivalences. (In the
middle of that chain is yet another variant of hW(X), namely the set of triples (π, f̂ ,∇)
where π and f̂ are as in definition 2.3.4, while ∇ is a connection on T πE .)

Our object now is to construct a natural map

τ : hW[X] −→ [X,Ω∞hW]. (3.5)

Here [ , ] in the right-hand side denotes a set of homotopy classes of maps.

We assume familiarity with the Pontryagin-Thom relationship between Thom spectra and
their infinite loop spaces on the one hand, and bordism theory on the other. One direction
of this relies on transversality theorems, the other uses collapse maps to normal bundles of
submanifolds in euclidean spaces. See [40] and especially [32]. Applied to our situation this
identifies [X,Ω∞hW] with a group of bordism classes of certain triples (M, g, ĝ). Here M
is smooth without boundary, dim(M) = dim(X) + d , and g, ĝ together constitute a vector
bundle pullback square

TM × R× Rj
ĝ //

��

TX × U∞ × Rj

��
M

g // X ×GW(d+ 1,∞)

(3.6)

such that the X –coordinate of g is a proper map M → X . The Rj factor in the top row,
with unspecified j , is there for stabilization purposes. The map ĝ should be thought of
as a stable vector bundle map from TM × R to TX × U∞ , covering g , where U∞ is the
tautological vector bundle of fiber dimension d+ 1 on GW(d+ 1,∞).

Let now (π, f̂) ∈ hW(X), where f̂ is a section of J2(T πE) → E with underlying map
f : E → R . See definition 2.3.4. After a small deformation which does not affect the
concordance class of (π, f̂), we may assume that f is transverse to 0 ∈ R (not necessarily
fiberwise) and get a manifold M = f−1(0) with dim(M) = dim(X) + d . The restriction of
π to M is a proper map M → X , by the definition of hW(X). The section f̂ yields for
each z ∈ E a map

f̂(z) = f(z) + `z + qz : (T πE)z → R

with the property that the quadratic term qz is nondegenerate when the linear term `z
is zero. For z ∈ M the constant f(z) is zero, so the restriction T πE|M is a (d + 1)–
dimensional vector bundle on M with the extra structure considered in section 3.1. Thus
T πE|M is classified by a map from M to the space GW(d + 1,∞): there is a bundle
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diagram
T πE|M //

��

U∞

��
M

κ // GW(d+ 1,∞).

Let g : M −→ X ×GW(d+ 1,∞) be the map z 7→ (π(z), κ(z)). We now have a canonical
vector bundle map

ĝ : TM × R ∼= TE|M ∼= π∗TX|M ⊕ T πE|M −→ TX × U∞

and we get a triple (M, g, ĝ) which represents an element of [X,Ω∞hW] in the bordism-
theoretic description. It is easily verified that the bordism class of (M, g, ĝ) depends only
on the concordance class of the pair (π, f̂). Thus we have defined the map τ of (3.5).

Theorem 3.2.2 The natural map τ : hW[X] → [X,Ω∞hW] is a bijection when X is a
closed manifold.

Proof We define a map σ in the other direction by running the construction τ back-
wards. We use the bordism group description (3.6) of [X,Ω∞hW] . Let (M, g, ĝ) be a
representative, with g : M → X ×GW(d+ 1,∞) and

ĝ : TM × R× Rj −→ TX × U∞ × Rj .

By obstruction theory, see lemma 3.2.3 below, we can suppose that j = 0. We write
E = M × R and πE : E → X for the composition of the projection E →M with the first
component of g . The map ĝ , now with j = 0, has a first component TM ×R→ TX . We
(pre–)compose it with the evident vector bundle map from TE ∼= TM × TR to TM × R
which covers the projection from E ∼= M ×R to M . The result is a map of vector bundles

π̂E : TE −→ TX,

covering πE and surjective in the fibers. Since E is an open manifold, Phillips’ submersion
theorem [31], [13], [14] applies to show that (πE , π̂E) is homotopic through fiberwise surjec-
tive bundle maps to a pair (π, dπ) where π : E → X is a submersion and dπ : TE → TX
is its differential.
This homotopy lifts to a homotopy of vector bundle maps which are isomorphic on the
fibers, starting with ĝ : TE → TX × U∞ and ending with a map TE → TX × U∞ which
refines the differential dπ : TE → TX . Its restriction to T πE ⊂ TE is a vector bundle
map T πE → U∞ , still isomorphic on the fibers, which equips each fiber (T πE)z of T πE
with a Morse type map

`z + qz : (T πE)z → R.

Let f : E → R be the projection onto the R factor, and let

f̂(z) = f(z) + `z + qz ∈ J2(T πE).
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The map f is proper, since X and hence M are compact. Consequently the pair (π, f̂)
represents an element in hW[X] . Its concordance class depends only on the bordism class
of (M, g, ĝ); the verification uses a relative version of lemma 3.2.3. This describes a map

σ : [X,Ω∞hW] −→ hW[X].

It is obvious from the constructions that τ ◦ σ = id. In order to evaluate the composition
σ ◦ τ , it suffices by lemma 2.5.2 to evaluate it on an element (π, f̂) where f : E → R is
regular, so that E ∼= M × R with M = f−1(0). For (y, r) ∈M × R , the map

f̂(y, r) : (T π(M × R))(y,r) −→ R
is a second degree polynomial of Morse type. The homotopy

f̂t(y, r) = f̂(y, tr) + (1− t)r ,
suitably reparametrized, shows that (π, f̂) is concordant to (π, f̂0), which represents the
image of (π, f̂) under σ ◦ τ . Therefore σ ◦ τ = id.

Lemma 3.2.3 Let T and U be k -dimensional vector bundles over a manifold M . Let
iso(T,U) → M be the fiber bundle on M whose fiber at x ∈ M is the space of linear
isomorphisms from Tx to Ux . The stabilization map iso(T,U)→ iso(T ×R, U ×R) induces
a map of section spaces which is (k − dim(M)− 1)–connected.

Proof We use the following general principle. Suppose that Y → M and Y ′ → M are
fibrations and that f : Y → Y ′ is a map over M . Suppose that for each x ∈ M , the
restriction Yx → Y ′

x of f to the fibers over x is c–connected. Then the induced map of
section spaces, Γ (Y )→ Γ (Y ′), is (c−m)–connected where m = dim(M).
The proof of this proceeds as follows: Fix s ∈ Γ (Y ′). The homotopy fiber of Γ (Y )→ Γ (Y ′)
over s is easily identified with the section space Γ (Y ′′) of another fibration Y ′′ → M ,
defined by

Y ′′
x = hofibers(x) (Yx → Y ′

x) .

By assumption each Y ′′
x is (c − 1)–connected. Hence by obstruction theory or a simple

induction over skeletons, Γ (Y ′′) is (c−1−m)–connected. Since this holds for arbitrary s , all
homotopy fibers of Γ (Y )→ Γ (Y ′) are (c−1−m)–connected. Consequently Γ (Y )→ Γ (Y ′)
is (c−m)–connected.
Now for the application: The inclusion GL(k) → GL(k + 1) is (k − 1)–connected. Hence
the stabilization map iso(T,U)→ iso(T ×R, U ×R) is (k−1)–connected on the fibers, and
so induces a ((k − 1)−m)–connected map of section spaces.

The following concept will be useful in a fiberwise version of the Pontryagin-Thom con-
struction which we will need in a moment.

Definition 3.2.4 Let p : Y → X be a smooth submersion. Let C be a smooth submani-
fold of Y and suppose that p|C is still a submersion. A vertical tubular neighborhood for
C in Y consists of a smooth vector bundle q : N → C with zero section s , and an open
embedding e : N → Y such that es = inclusion: C → Y and pe = pqe : N → X .
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Now we give a detailed description of a map |hW| → Ω∞hW which induces (3.5). It relies
entirely on the Pontryagin–Thom collapse construction.

We begin by describing a variant hW(r) of hW , depending on an integer r > 0. Fix X in
X . An element of hW(r)(X) is a quadruple (π, f̂ , w,N) where π : E → X and f̂ are as
in definition 2.3.4. The remaining data are a smooth embedding

w : E −→ X × R× Rd+r

which covers (π, f) : E → X ×R , and a vertical tubular neighborhood N for the subman-
ifold w(E) of X ×R×Rd+r , so that the projection N → w(E) is a map over X ×R . The
forgetful map taking an element (π, f̂ , w,N) to (π, f̂) is a map of sheaves

hW(r) −→ hW
on X . This is highly connected if r is large, by Whitney’s embedding theorem and the
tubular neighborhood theorem, so that the resulting map from colimr hW(r) to hW is a
weak equivalence of sheaves. (The sequential direct limit is formed by sheafifying the “naive”
direct limit, which is a presheaf on X . It is easy to verify that passage to representing
spaces commutes with sequential direct limits up to homotopy equivalence.)
Let Z(r) be the sheaf taking an X in X to the set of maps

X × R −→ Ωd+rTh (U⊥
r ).

Then the representing space of Z(r) approximates Ω∞hW , that is, colimr |Z(r)| ' Ω∞hW .
The Pontryagin-Thom collapse construction gives us a map of sheaves

τ (r) : hW(r) −→ Z(r). (3.7)

In detail: let (π, f̂ , w,N) be an element of hW(r)(X), where f̂ is a section of J2(T πE)→ E ,
see lemma 3.2.1. The differential dw determines, for each z ∈ E , a triple (Vz, `z, qz) ∈
GW(d+ 1, r). Here Vz is dw((T πE)z), viewed as a subspace of the vertical tangent space
at w(z) of the projection

X × R× Rd+r −→ X ,

which we in turn may identify with Rd+1+r , and `z+qz is the non-constant part of f̂(z). In
particular z 7→ (Vz, `z, qz) defines a map κ : E → GW(d + 1, r). This extends canonically
to a pointed map

Th (N) −→ Th (U⊥
r )

because N is identified with κ∗U⊥
r . But Th (N) is a quotient of X × R× Sd+r where we

regard Sd+r as the one-point compactification of Rd+r . Thus we have constructed a map

X × R× Sd+r −→ Th (U⊥
r )

or equivalently, a map X × R −→ Ωd+rTh (U⊥
r ). Viewed as an element of Z(r)(X), that

map is the image of (π, f̂ , w,N) under τ (r) in (3.7). Taking colimits over r , we therefore
have a diagram

|hW| colimr |hW(r)|'oo // colimr |Z(r)| ' // Ω∞hW

which we informally describe as a map τ : |hW| → Ω∞hW .
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Theorem 3.2.5 The map τ : |hW| → Ω∞hW is a homotopy equivalence.

Proof This follows from theorem 3.2.2 and the fact that τ can be taken to be a map
between spaces with a monoid structure up to homotopy. Informally, the monoid structure
on |hW| is induced by a monoid structure on W itself given by “disjoint union”:

W(X)×W(X)
µ−→W(X) ; ((π, f̂), (ψ, ĝ)) 7→ (π t ψ, f̂ t ĝ)

where the source of π tψ is the disjoint union of the sources of π and ψ . (See the remark
just below.)
To make the monoid structure explicit in the case of the target, we introduce hW ∨ hW
and the corresponding infinite loop space

Ω∞(hW ∨ hW) = colimn Ωd+n
(
Th (U⊥

n ) ∨ Th (U⊥
n )
)
.

The two maps from hW ∨ hW to hW which collapse one of the two wedge summands
lead to a weak equivalence Ω∞(hW ∨ hW) ' Ω∞(hW) × Ω∞(hW) and the fold map
hW∨hW→ hW induces an addition map from Ω∞(hW)×Ω∞(hW) ' Ω∞(hW∨hW)
to Ω∞(hW).
It is clear that τ can be upgraded to respect the additions. Now theorem 3.2.2 with X = ?
implies that τ induces a bijection

π0|hW| −→ π0(Ω∞hW)

and consequently that π0|hW| is a group, since π0(Ω∞hW) is. Next, we use theorem 3.2.2
with X = Sn . The monoid structures imply the isomorphisms

πn|hW| ∼= [Sn, |hW| ]
/
[?, |hW| ] , πn(Ω∞hW) ∼= [Sn,Ω∞hW]

/
[?,Ω∞hW]

for arbitrary choices of base points. Thus the map τ induces an isomorphism of homotopy
groups, and Whitehead’s theorem implies that it is a homotopy equivalence, since we are
in a CW–situation.

Remark. To avoid set–theoretical problems related to disjoint unions, one should regard µ
in the above proof as a map from a certain subsheaf W×̄W of W ×W to W . An element
((π, f̂), (ψ, ĝ)) of (W×W)(X) belongs to (W×̄W)(X) if the sources E(π) and E(ψ) of π
and ψ , respectively, are disjoint. Let µ take ((π, f̂), (ψ, ĝ)) to (π ∪ ψ, f̂ ∪ ĝ) with

π ∪ ψ : E(π) ∪ E(ψ) −→ X .

Note that the inclusion W×̄W −→W ×W is a weak equivalence.

The arguments above work in a completely similar fashion to identify |hV| . In fact the map
τ in theorem 3.2.5 restricts to a map from |hV| to Ω∞hV and the analogue of theorem 3.2.2
holds. Keeping the letter τ for this restriction, we therefore have

Theorem 3.2.6 The map τ : |hV| → Ω∞hV is a homotopy equivalence.
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3.3 The space |hWloc|

We start with a description of [X,Ω∞hWloc] as a bordism group. This is very similar to
the description of [X,Ω∞hW] used in the construction of the map (3.5).

Lemma 3.3.1 For X in X , the group [X,Ω∞hWloc] can be identified with the group of
bordism classes of triples (M, g, ĝ) consisting of a smooth M without boundary, dim(M) =
dim(X) + d , and a vector bundle pullback square

TM × R× Rj
ĝ //

��

TX × U∞ × Rj

��
M

g // X ×GW(d+ 1,∞)

with j � 0 , such that the map g−1(X ×Σ(d+ 1,∞))→ X induced by g is proper.

Proof The standard bordism group description of the homotopy set [X,Ω∞hWloc] has
representatives which are vector bundle pullback squares

TY × R× Rk
ĝY //

��

TX ×Σ(d+ 1,∞)× Rk

��
Y

gY // X ×Σ(d+ 1,∞)

(3.8)

for some k � 0, where the map Y → X determined by gY is proper, ∂Y = ∅ and
dim(Y ) = dim(X)−1. See lemma 3.1.1. We produce reciprocal maps relating this bordism
group to the one in lemma 3.3.1.
We first identify U∞|Σ(d+ 1,∞) with its dual using the canonical quadratic form q , and
then with the normal bundle N of Σ(d+1,∞) in GW(d+1,∞). Let (M, g, ĝ) be a triple
as above, lemma 3.3.1. We may assume that g is transverse to X × Σ(d + 1,∞). Then
Y = g−1(X × Σ(d + 1,∞)) is a smooth submanifold of M , of codimension d + 1, with
normal bundle NY . Restriction of g and ĝ yields a vector bundle pullback square

(TY ⊕NY )× R× Rj //

��

TX ×N × Rj

��
Y // X ×Σ(d+ 1,∞) .

But since NY is also identified with the pullback of N , this amounts to a vector bundle
pullback square as in (3.8).
Conversely, given data Y , gY and ĝY as in (3.8), let M be the (total space of the) pullback
of N to Y . There is a canonical map from M to N ⊂ GW(d+1,∞), and another from M
to X , hence a map g : M → X×GW(d+1,∞). Moreover ĝY determines the ĝ in a triple
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(M, g, ĝ) as above. It is easy to verify that the two maps of bordism groups so constructed
are well defined and that they are reciprocal isomorphisms.

We now turn to the construction of a localized version of (3.5), namely, a natural map

τ loc : hWloc[X] −→ [X,Ω∞hWloc]. (3.9)

Let (π, f̂) ∈ hWloc(X), where π : E → X is a submersion with (d+ 1)-dimensional fibers
and f̂ is a section of J2(T πE)→ E with underlying map f : E → R . See definition 2.3.5
and 3.2.1. We may assume that f is transverse to 0 and get a manifold M = f−1(0).
Proceeding exactly as in the construction of the map (3.5), we can promote this to a triple
(M, g, ĝ) where (g, ĝ) is a vector bundle pullback square

TM × R× Rj
ĝ //

��

TX × U∞ × Rj

��
M

g // X ×GW(d+ 1,∞) .

This time, however, we cannot expect that the X -component of g , which is π|M , is proper.
But its restriction to

g−1(X ×Σ(d+ 1,∞)) = Σ(π, f̂) ∩M

is proper, thanks to condition (ia) in definition 2.3.5. Therefore (M, g, ĝ) represents an
element in [X,Ω∞hWloc] . This is the image of (π, f̂) under τ loc .

Theorem 3.3.2 For compact X in X , the natural map τ loc : hWloc[X]→ [X,Ω∞hWloc]
is a bijection.

Proof There is a map σ loc in the other direction. The construction of σ loc is analogous
to that of σ in the proof of theorem 3.2.2. It is clear that τ loc ◦ σ loc is the identity. The
verification of σ loc ◦ τ loc = id uses lemma 3.3.3 below.

Lemma 3.3.3 Let (π, f̂) ∈ hWloc(X) , with π : E → X . Let U be an open neighborhood
of Σ(π, f̂) in E . Then (π|U, f̂ |U) ∈ hWloc(X) is concordant to (π, f̂) .

Proof The concordance that we need is an element (π], f̂ ]) in hWloc(X × R). Let E] ⊂
E × R be the union of E× ]−∞, 1/2[ and U × R . Let π](z, t) = (π(z), t) and f̂ ](z, t) =
(f̂(z), t) for (z, t) ∈ E] . Some renaming of the elements of E] is required to ensure that
π] is graphic.

Next we give a short description of a map |hWloc| → Ω∞hWloc which induces (3.9). This
is analogous to the construction of the map named τ in theorem 3.2.5.

Fix an integer r > 0 and X in X . To the data (π, f̂) in definition 2.3.5, with π : E → X
and f : E → R , we add the following: a smooth embedding

w : E −→ X × R× Rd+r
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which covers (π, f) : E → X × R , a vertical tubular neighborhood N for the submanifold
w(E) of X × R × Rd+r , and a smooth function ψ : E → [0, 1] such that ψ(z) = 1 for all
z ∈ Σ(π, f̂). We require that the restriction of (π, f) : E → X ×R to the support of ψ be
a proper map.
Making X into a variable now, we can interpret the forgetful map taking (π, f̂ , w,N, ψ) to
(π, f̂) as a map of sheaves

hW(r)
loc −→ hWloc

on X . This map is highly connected if r is large. Let Z(r)
loc be the sheaf taking an X in

X to the set of maps

X × R −→ Ωd+rcone
(
Th (U⊥

r |GV(d+ 1, r)) ↪→ Th (U⊥
r )
)
.

Here the cone is a reduced mapping cone, regarded as a quotient of a subspace of

Th (U⊥
r )× [0, 1] ,

with Th (U⊥
r )×{1} corresponding to the base of the cone. The Pontryagin-Thom collapse

construction gives us a map of sheaves

τ
(r)
loc : hW(r)

loc −→ Z
(r)
loc . (3.10)

In detail: let (π, f̂ , w,N, ψ) be an element of hW(r)
loc (X). We assume that f̂ is a section

of J2(T πE) → E , see 3.2.1. The differential dw determines, for each z ∈ E , a triple
(Vz, `z, qz) ∈ GW(d+ 1, r), as in the proof of theorem (3.2.5). This gives us a map

κ : E → GW(d+ 1, r)× [0, 1] ,

with first coordinate determined by dw and second coordinate equal to ψ . The map κ fits
into a vector bundle pullback square

N
κ̂ //

��

U⊥
r × [0, 1]

��
E

κ // GW(d+ 1, r)× [0, 1].

Now we obtain a map from X × R× Sd+r to the mapping cone

cone
(
Th (U⊥

r |GV(d+ 1, r)) ↪→ Th (U⊥
r )
)
,

viewed as a subquotient of Th (U⊥
r )× [0, 1], by z 7→ κ̂(z) for z ∈ N and z 7→ ? for z /∈ N .

It can also be written in the form

X × R −→ Ωd+rcone
(
Th (U⊥

r |GV(d+ 1, r)) ↪→ Th (U⊥
r )
)

so that it is an element of Z(r)
loc (X). This defines the map τ

(r)
loc . Taking colimits over r , we

therefore have a diagram

|hWloc| colimr |hW(r)
loc |

'oo // colimr |Z(r)
loc |

' // Ω∞hWloc
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which we informally describe as a map τ loc : |hWloc| → Ω∞hWloc . The following is a
straightforward consequence of theorem 3.3.2 (cf. the proof of theorem 3.2.5):

Theorem 3.3.4 The map τloc : |hWloc| → Ω∞hWloc is a homotopy equivalence.

The combination of theorems 3.3.4, 3.2.5, 3.2.6 and proposition 3.1.3 amounts to a proof of
theorem 1.3.3 from the introduction.

Remark 3.3.5 We are left with the task of saying exactly how the lower row of dia-
gram (1.9) should be regarded as a homotopy fiber sequence. Define a sheaf hVloc on
X by copying definition 2.3.3, the definition of hV , but leaving out condition (i). Then
|hVloc| is contractible by an application of proposition 2.4.3. Any choice of nullhomotopy
for the inclusion |hV| → |hVloc| determines a nullhomotopy for |hV| → |hWloc| , since
|hVloc| ⊂ |hWloc| . A nullhomotopy for |hV| → |hWloc| constructed like that is understood
in theorem 1.3.3.

3.4 The space |Wloc|

The goal is to prove theorem 1.3.1, i.e., to show that the inclusion of Wloc in hWloc is a
weak equivalence. We begin with the observation that the analogue of lemma 3.3.3 holds
for Wloc :

Lemma 3.4.1 Let (π, f) ∈ Wloc(X) , with π : E → X . Let U be an open neighborhood
of Σ(π, f) in E . Then (π|U, f |U) ∈ Wloc(X) is concordant to (π, f) .

Corollary 3.4.2 For X in X , there are natural bijections between Wloc[X] and either
of the two sets below:

(i) the set of bordism classes of triples (Σ, p, g) , where Σ is a smooth manifold without
boundary, p : Σ → X × R is a proper smooth map whose X -coordinate Σ → X is
an étale map (= local diffeomorphism), and g is a map from Σ to Σ(d+ 1,∞) ;

(ii) the set of bordism classes of triples (Σ0, v, c) where Σ0 is a smooth manifold without
boundary, v : Σ0 → X is a proper smooth codimension 1 immersion with oriented
normal bundle and c is a map from Σ0 to Σ(d+ 1,∞) .

The bordism relation in both cases involves certain maps to X × [0, 1]: étale maps in the
case of (i), and codimension one immersions in the case of (ii).

Proof An element (π, f) of Wloc(X) determines by lemma 2.2.5 a triple (Σ, p, g) as in
(i), where Σ is Σ(π, f) and p(z) = (π(z), f(z)) for z ∈ Σ ⊂ E . The map g classifies
the vector bundle T πE|Σ together with the nondegenerate quadratic form determined by
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(one-half) the fiberwise Hessian of f . Conversely, given a triple (Σ, p, g) we can make an
element (π, f) in Wloc(X). Namely, let E → Σ be the (d+ 1)-dimensional vector bundle
classified by g , with the canonical quadratic form q : E → R . Let (π, f) : E → X × R
agree with q+ p̄ , where p̄ denotes the composition of the vector bundle projection E → Σ
with p : Σ → X ×R . The resulting maps from Wloc[X] to the bordism set in (i), and from
the bordism set in (i) to Wloc[X] , are inverses of one another: One of the compositions is
obviously an identity, the other is an identity by lemma 3.4.1.
Next we relate the bordism set in (i) to that in (ii). A triple (Σ, p, g) as in (i) gives
rise to a triple (Σ0, v, c) as in (ii) provided p is transverse to X × 0. In that case we
set Σ0 = p−1(X × 0) and define v and c as the restrictions of p and g , respectively.
Conversely, a triple (Σ0, v, c) as in (ii) does of course determine a triple (Σ, p, g) as in (i)
with Σ = Σ0 × R . The resulting maps from the bordism set in (i) to that in (ii), and vice
versa, are inverses of one another: One of the compositions is obviously an identity, the
other is an identity by a shrinking lemma analogous to (but easier than) lemma 2.5.2.

It is well-known that the bordism set (ii) in corollary 3.4.2 is in natural bijection with

[X,Ω∞S1+∞(Σ(d+ 1,∞)+)] ∼= [X,Ω∞hWloc].

Indeed, Pontryagin-Thom theory allows us to represent elements of the homotopy set
[X,Ω∞S1+∞(Σ(d+1,∞)+)] by quadruples (Σ0, v, v̂, c) where Σ0 is smooth without bound-
ary, dim(Σ0) = dim(X)− 1, the maps v and v̂ constitute a vector bundle pullback square

TΣ0 × R× Rj v̂ //

��

TX × Rj

��
Σ0

v // X

(for some j � 0) with proper v , and c is any map from Σ0 to Σ(d+1,∞). By lemma 3.2.3
we can take j = 0 and by immersion theory [39], [16], [14] we can assume v̂ = dv , that is,
v is an immersion and v̂ is its (total) differential.

Consequently Wloc[X] is in natural bijection with [X,Ω∞hWloc] . It is easy to verify that
this natural bijection is induced by the composition

|Wloc| � � // |hWloc|
τ loc // Ω∞hWloc

where τ loc is the map of (3.10), (3.9) and theorem 3.3.4. We conclude that the composition
is a homotopy equivalence (cf. the proof of theorem 3.2.5). Since τloc itself is a homotopy
equivalence, it follows that the inclusion |Wloc| ↪→ |hWloc| is a homotopy equivalence. This
is theorem 1.3.2 from the introduction.

4 Application of Vassiliev’s h-principle

This section contains the proof of theorem 1.3.1. It is based upon a special case of Vassiliev’s
first main theorem, [42, ch.III] and [43].

33



Let A ⊂ J2(Rr,R) denote the space of 2-jets represented by f : (Rr, z)→ R with f(z) = 0,
df(z) = 0 and det(d2f(z)) = 0, where d2f(z) denotes the Hessian. This set has codimension
r + 2 and is invariant under diffeomorphisms Rr → Rr .
Let N r be a smooth compact manifold with boundary and let ψ : N → R be a fixed smooth
function with j2ψ(z) /∈ A for z in a neighborhood of the boundary. (Use local coordinates
near z . The condition means that near ∂N , all singularities of ψ with value 0 are of Morse
type, i.e., nondegenerate.) Define spaces

Φ(N,A, ψ) = {f ∈ C∞(N,R) | f = ψ near ∂N, j2f(z) /∈ A for z ∈ N},
hΦ(N,A, ψ) = {f̂ ∈ ΓJ2(N,R) | f̂ = j2ψ near ∂N, f̂(z) /∈ A for z ∈ N},

where ΓJ2(N,R) denotes the space of smooth sections of the jet bundle J2(N,R) → N .
Both are equipped with the standard C∞ topology. The special case of Vassiliev’s theorem
that we need is the statement that the map

j2 : Φ(N,A, ψ) −→ hΦ(N,A, ψ) (4.1)

induces an isomorphism in cohomology with arbitrary untwisted coefficients. (Equivalently
by the universal coefficient theorem, it induces an isomorphism in integral homology.)

We briefly indicate how (4.1) relates to the jet prolongation map |W| → |hW| or equiv-
alently (by lemma 2.5.5) to the map |W0| → |hW0| . Let (N,ψ) be as above with
dim(N) = d + 1. We assume in addition that ψ(N) ⊂ A and ψ(∂N) ⊂ ∂A , where
A ⊂ R is a compact interval with 0 ∈ int(A), and that ψ is nonsingular near ∂A . For X
in X , let W0

ψ(X) ⊂ W0(X) consist of the pairs (π, f) as in 2.5.3, with π : E → X , such
that E contains an embedded copy of N × X , the map f agrees with (z, x) 7→ ψ(z) on
a neighborhood of ∂N × X in N × X , and f−1(0) ⊂ N × X . Restricting f to N × X
defines a map from W0

ψ(X) to the set of smooth maps X → Φ(N,ψ,A). Making X into a
variable, we have a map of sheaves which easily leads to a weak homotopy equivalence

|W0
ψ| ' Φ(N,ψ,A).

Analogous definitions, with W0 replaced by hW0 and ψ by its jet prolongation j2πψ , lead
to a weak homotopy equivalence

|hW0
ψ| ' hΦ(N,ψ,A).

Arranging these two homotopy equivalences in a commutative square, we deduce from (4.1)
that the jet prolongation map |W0

ψ| → |hW0
ψ| is a homology equivalence.

Given an element (π, f) ∈ W0(X) with π : E → X , it is of course not always possible to
find a pair (N,ψ) and an embedding N ×X → E over X with the good properties above.
However, the problem can always be solved locally. Namely, each x ∈ X has an open
neighborhood U in X such that π−1(U) admits such an embedding, N ×U → π−1(U), for
suitable (N,ψ). This fact, its analogue for the sheaf hW0 and a general gluing technique,
developed in section 4.1 below, allow us then to conclude that |W0| → |hW0| induces an
isomorphism in homology.
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4.1 Sheaves with category structure

Our goal here is to develop an abstract gluing principle, summarized in proposition 4.1.6 and
relying on definition 4.1.1. It is a translation into the language of sheaves of something which
homotopy theorists are very familar with: the homotopy invariance property of homotopy
colimits. See section B.2 for background and motivation. Since it is relatively easy to
reduce the homotopy colimit concept to the classifying space construction for categories,
our translation effort begins with a discussion of sheaves taking values in the category of
small categories, and a “classifying sheaf” construction for such sheaves.

Let F : X → C at be a sheaf with values in small categories. Taking nerves defines a sheaf
with values in the category of simplicial sets,

N•F : X → Sets•

with N0F = ob(F) the sheaf of objects and N1F = mor(F) the sheaf of morphisms.
We have the associated bisimplicial set N•F(∆•

e) and recall [33] that the realization of its
diagonal is homeomorphic to either of its double realizations,

| k 7→ NkF(∆k
e) | ∼=

∣∣ ` 7→ | k 7→ NkF(∆`
e) |
∣∣ =

∣∣ ` 7→ B(F(∆`
e))
∣∣

∼=
∣∣ k 7→ | ` 7→ NkF(∆`

e) |
∣∣ =

∣∣ k 7→ |NkF|
∣∣ . (4.2)

There is a topological category |F| with object space |N0F| and morphism space |N1F| .
(To be quite precise, |F| is a category object in the category of compactly generated Haus-
dorff spaces.) Since |NkF| = Nk|F| by A.2.1, the last of the five expressions in (4.2) is the
classifying space B|F| of the topological category |F| .

We next give another construction of B|F| related to Steenrod’s coordinate bundles (i.e.,
bundles viewed as 1-cocycles). We shall consider locally finite open covers Y = (Yj)j∈J of
spaces X in X , indexed by a fixed infinite set J . The local finiteness condition means
that each x ∈ X has a neighborhood U such that {j ∈ J | Yj ∩ U 6= ∅} is a finite
subset of J . We use a fixed indexing set J , independent of X in X , to ensure good
gluing properties: suppose that X is the union of two open subsets, X = X ′ ∪ X ′′ , with
intersection A = X ′ ∩ X ′′ , and that (Y ′

j )j∈J and (Y ′′
j )j∈J are open coverings of X ′ and

X ′′ , respectively. The coverings agree on A if Y ′
j ∩ A = Y ′′

j ∩ A for all j ∈ J . In that
case, (Y ′

j ∪Y ′′
j )j∈J is an open covering of X which induces the open coverings (Y ′

j )j∈J and
(Y ′′
j )j∈J of X ′ and X ′′ , respectively.

For each finite nonempty subset S ⊂ J we write

YS =
⋂
j∈S

Yj .

Associated to the cover Y there is a topological category, denoted XY in [38, §4], with

ob(XY ) =
∐
S

YS , mor(XY ) =
∐
R

∐
S⊃R

YS ,
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source map given by the identities YS → YS and target map given by the inclusions YS → YR
for S ⊃ R . A continuous functor from XY to a topological group G , viewed as a topological
category with one object, is equivalent to a collection of maps

ϕRS : YS −→ G ,

one for each pair R ⊂ S of finite subsets of J , subject to certain cocycle conditions. The
cocycle conditions are listed in definition 4.1.1 below, but in the more general setting where
the group of maps from YS to G is replaced by the category F(YS).

Definition 4.1.1 For X in X an element of βF(X) is a pair (Y , ϕ••) where Y is
a locally finite open cover of X , indexed by J , and ϕ•• associates to each pair of finite,
nonempty subsets R ⊂ S of J a morphism ϕRS ∈ N1F(YS) subject to the following cocycle
conditions:

(i) every ϕRR is an identity morphism;

(ii) for R ⊂ S ⊂ T , we have ϕRT = (ϕRS |YT ) ◦ ϕST .

Condition (ii) includes the condition that the right-hand composition is defined ; in partic-
ular, taking S = T one finds that the source of ϕRS is the object ϕSS , and taking R = S
one finds that the target of ϕST is ϕSS |YT .

The sets βF(X) define a sheaf βF : X → Sets and hence a space |βF| . The following key
theorem is one of our main tools used in the proof of both theorem 1.3.1 and theorem 1.3.4.
Its proof is deferred to appendix A.

Theorem 4.1.2 The spaces |βF| and B|F| are homotopy equivalent.

Consider the example where F(X) is the set of continuous maps from X to a topological
group G , made into a group by pointwise multiplication. An element (Y , ϕ••) of βF(X)
is a collection of gluing data for a principal G–bundle P → X with chosen trivializations
over each YR . Namely,

P =
∐
R

{R} × YR ×G
/
∼

where R runs through the finite nonempty subsets of J , and the equivalence relation iden-
tifies (R, x, g1) with (S, x, g2) if R ⊂ S and ϕRS(x)g2 = g1 .
The topological category |F| is a topological group and comes with a continuous homo-
morphism |F| → G which is clearly a weak homotopy equivalence. So B|F| ' BG . Thus
theorem 4.1.2 reduces to the well–known statement that concordance classes of principal
Steenrod G–bundles are classified by BG .

Consider next the case where F(X) = map(X,C ) for a small topological category C .
That is, ob(F(X)) and mor(F(X)) are the sets of continuous maps from X to ob(C ) and
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mor(C ), respectively. Then an element of β(F(X)) is a covering Y of X together with a
continuous functor from XY to C . If k 7→ NkC is a good simplicial space in the sense of
[36], then the canonical map B|F| → BC is a weak equivalence since it is induced by weak
equivalences Nk|F| ∼= |NkF| → NkC . Therefore theorem 4.1.2 applied to this situation
implies that homotopy classes of maps X → BC are in natural bijection with concordance
classes of pairs consisting of a covering Y and a continuous functor from XY to C . This
statement may have folklore status. It appears explicitly in lectures given by tom Dieck in
1972, but it seems that tom Dieck attributes it to Segal. (We are indebted to R. Vogt who
kindly sent us copies of a few pages of lecture notes taken by himself at the time.)

In our applications of theorem 4.1.2, the categories F(X) will typically be partially ordered
sets or will have been obtained from a functor

F• : C op −→ sheaves on X ,

where C is a small (discrete) category. Given such a functor one can define a category
valued sheaf C op∫F• on X . Its value on a connected manifold X is the category whose
objects are pairs (c, ω) with c ∈ ob(C ), ω ∈ Fc(X) and where a morphism (b, τ)→ (c, ω)
is a morphism f : b→ c in C with f∗(ω) = τ . Then

|β(C op∫F•) | ' B|C op∫F•| ' hocolim
c∈C

|Fc|

(see section B.2 for details).

Definition 4.1.3 The sheaf β(C op∫F•) : X −→ Cat will be written hocolim
c∈C

Fc .

Spelled out, an element of (hocolimcFc)(X) consists of

(i) a covering Y of X indexed by J ,

(ii) a functor θ from the poset of pairs (S, z), where S ⊂ J is finite nonempty and
z ∈ π0(YS), to C ,

(iii) and finally elements ωS,z ∈ Fθ(S,z)(YS,z), where YS,z denotes the connected compo-
nent of YS corresponding to z ∈ π0(YS). The elements ωS,z are related to each other
via the maps

Fθ(T,z)(YT,z) −→ Fθ(S,z̄)(YT,z)←− Fθ(S,z̄)(YS,z̄)

for each S ⊂ T and z ∈ π0(YT ) with image z̄ ∈ π0(YS).

We close with an application of theorem 4.1.2 which will be used below to extend the special
case of Vassiliev’s theorem mentioned earlier.
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Definition 4.1.4 Let E ,F : X → Cat be sheaves and g : E → F a map between them.
We say that g is a transport projection, or that it has the unique lifting property for
morphisms, if the following square is a pullback square of sheaves on X :

N1E
d0 //

g

��

N0E
g

��
N1F

d0 // N0F

where d0 is the source operator.

Definition 4.1.5 A natural transformation u : F → G of sheaves on X has the con-
cordance lifting property if, for X in X and s ∈ F(X), any concordance h ∈ G(X × R)
starting at u(s) lifts to a concordance H ∈ F(X × R) starting at s .

Let g : E → F be a map of set-valued sheaves on X . An element a ∈ F(?) gives rise to
an element again denoted a ∈ F(X) for each X ∈ X . The fiber of g over a is the sheaf
Ea defined by

Ea(X) = {s ∈ E(X) | g(s) = a}.

Proposition 4.1.6 Let g : E → F and g′ : E ′ → F be transport projections and let
u : E → E ′ be a map of sheaves over F which respects the category structures. Suppose
that the maps N0E → N0F and N0E ′ → N0F obtained from g and g′ have the concordance
lifting property and that, for each object a of F(?) , the restriction N0Ea → N0E ′a of u to
the fibers over a is a weak equivalence (resp. induces an integral homology equivalence of
the representing spaces). Then βu : βE → βE ′ is a weak equivalence (resp. induces an
integral homology equivalence of the representing spaces).

Proof According to theorem 4.1.2 it suffices to prove that u induces a homotopy (homol-
ogy) equivalence from B|E| to B|E ′| . By (4.2) and lemma B.1.1 it is then also enough to
show that

Nk(u) : NkE −→ NkE ′

becomes a homotopy equivalence (homology equivalence) after passage to representing
spaces, for each k ≥ 0. We note that the simplicial spaces obtained from a bisimplicial
set by realizing in either direction are good in the sense of [36].
Since g and g′ are transport projections, an obvious inductive argument shows that, for
each k , the diagrams

NkE //

g

��

N0E
g

��
NkF // N0F

NkE ′ //

g′

��

N0E ′

g′

��
NkF // N0F
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are pullback squares. Passage to representing spaces therefore turns them into homotopy
cartesian squares by A.2.4, since the maps N0E → N0F and N0E ′ → N0F have the
concordance lifting property. Hence it suffices to consider the case k = 0,

N0u : N0E −→ N0E ′.

Again, N0E → N0F and N0E ′ → N0F have the concordance lifting property and N0u
induces a weak equivalence (homology equivalence) of the fibers. By A.2.4, the fibers turn
into homotopy fibers upon passage to representing spaces. Consequently N0u : N0E → N0E ′
is a homotopy equivalence (homology equivalence).

4.2 Armlets

We begin by defining sheaves WA and hWA on X with values in partially ordered sets,
and natural transformations

Posets

forget

��
��

X

WA 22

W0 -- Sets

Posets

forget

��
��

X

hWA 22

hW0 -- Sets

where W0 and hW0 are the sheaves introduced in section 2.5, weakly equivalent to W and
hW , respectively.

Definition 4.2.1 An armlet for an element (π, f) ∈ W0(X) is a compact interval A ⊂ R
such that 0 ∈ int(A) and f is fiberwise transverse to the endpoints of A .

Definition 4.2.2 An armlet for an element (π, f̂) ∈ hW0(X) is a compact interval A ⊂ R
such that 0 ∈ int(A) and

(i) f is fiberwise transverse to the endpoints of A ;

(ii) f̂ is integrable on an open neighborhood of f−1(R r int(A)).

We introduce a partial ordering on elements of W0(X) or hW0(X) equipped with armlets,
namely for elements of W0(X):

(π, f,A) ≤ (π′, f ′, A′) if (π, f) = (π′, f ′) and A ⊂ A′

and similarly for elements of hW0(X).
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Definition 4.2.3 For a connected X in X we let WA (X) denote the partially ordered
set of elements (π, f,A) with A an armlet for (π, f) ∈ W0(X). Similarly, hWA (X) is the
partially ordered set of elements (π, f̂ , A) where (π, f̂) ∈ hW0(X) and A is an armlet for
(π, f̂). If X is not connected we (must) define

WA (X) =
∏
iWA (Xi) , hWA (X) =

∏
i hWA (Xi)

where the Xi are the path components of X .

Any sheaf F : X → Sets can be considered to be a sheaf with a trivial category structure,
so that each F(X) is the object set of a category which has only identity morphisms. In
this case an element (Y , ϕ••) of βF(X) reduces to a pair consisting of a locally finite open
covering of X , indexed by J , and a single element ϕ ∈ F(X), namely, the unique element
restricting to ϕSS ∈ F(YS) for every finite nonempty subset S of J . Thus βF ∼= β? ×F
where ? denotes the terminal sheaf, again viewed as a sheaf with category values. In
particular there is a forgetful projection βF −→ F which is a weak equivalence, since |β ? |
is contractible by theorem 4.1.2.

Proposition 4.2.4 The forgetful maps βWA →W0 and βhWA → hW0 are weak equiv-
alences of sheaves.

The proof of proposition 4.2.4 will be broken up into the following three lemmas.

Lemma 4.2.5 Let X be in X and (π, f) ∈ W0(X) . Every x ∈ X has an open neigh-
borhood U in X such that the image of (π, f) in W0(U) admits an armlet.

Proof Write π : E → X and Ex = π−1(x). By Sard’s theorem, we can find numbers
a < 0 and b > 0 such that fx : Ex → R is transverse to a and b (in other words, a and b
are regular values of fx ). Let A = [a, b] . Let C ⊂ E be the closed subset consisting of all
z ∈ E where f has a fiberwise singularity and f(z) = a or f(z) = b . Then π|C is proper
and so π(C) is a closed subset of X . Let U = X r π(C).

Lemma 4.2.6 With the assumptions of lemma 4.2.5, there exists an element of βWA (X)
mapping to (π, f) under the forgetful transformation βWA →W0 .

Proof Choose a locally finite covering of X by open subsets Yj , where j ∈ J , such that
the restriction of (π, f) to each Yj admits an armlet Aj ⊂ R . For a finite nonempty subset
S ⊂ J with nonempty YS let AS =

⋂
j∈S Aj . Then AS is an armlet for the restriction of

(π, f) to YS . Therefore, given nonempty finite R,S ⊂ J with R ⊂ S and YS 6= ∅ , we can
define ϕRS ∈ N1WA (YS) to be the relation

(π, f,AS)|YS ≤ (π, f,AR)|YS .
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The data ϕRS then constitute an element of βWA (X) which clearly projects to (π, f) ∈
W0(X).

It follows from the two previous lemmas that the forgetful map βWA [X] → W0[X] is
surjective for any X in X . What we really need in order to prove the first half of propo-
sition 4.2.4 is the relative surjectivity as in proposition 2.4.4. This comes from the next
lemma, in which we assume that our fixed indexing set J is uncountable. (The assumption
is not needed in proposition 4.2.4 because the homotopy type of |β...| is independent of the
cardinality of J as long as J is infinite.)

Lemma 4.2.7 For X in X , let (π, f) ∈ W0(X) . Let C be a closed subset of X and
suppose that a germ of lifts of (π, f) across βWA −→W0 has been specified near C . Then
there exists an element in βWA (X) which lifts (π, f) ∈ W(X) and extends the prescribed
germ of lifts near C .

Proof Let U be a sufficiently small open neighborhood of C in X so that the prescribed
germ of lifts is represented by an actual lift of (π, f)|U across βWA (U) −→W0(U). This
gives us a locally finite covering Y ′ of U , and for each nonempty finite S ⊂ J and each
z ∈ π0(Y ′

S), a compact interval A′S,z ⊂ R such that 0 ∈ int(A′S,z). We have A′S,z ⊂ A′R,z̄ if
R ⊂ S and z̄ is the image of z under π0(Y ′

S) → π0(Y ′
R). Making U smaller if necessary,

we can assume that the covering Y ′ is locally finite in the strong sense that every x ∈ X
has a neighborhood in X which intersects only finitely many of the Y ′

j .
Now we make a locally finite covering of X by open subsets Yj as follows. For j ∈ J such
that Y ′

j is nonempty, let Yj = Y ′
j . For all other j ∈ J (and there are many such since J

is uncountable) define Yj in such a way that Yj avoids a fixed neighborhood of C and the
restriction of (π, f) to each path component z ∈ π0(Yj) admits an armlet Aj,z .
It remains to find enough armlets. We need one armlet AS,z ⊂ R for each nonempty finite
S ⊂ J and every component z ∈ π0(YS). These armlets must satisfy AS,z ⊂ AR,z̄ if
R ⊂ S and z̄ is the image of z under π0(YS) → π0(YR). But, reasoning as in the proof
of lemma 4.2.6, we find that it is enough to say what AS,z = Aj,z should be when S is a
singleton {j} . We have already said it in the cases where Yj 6= Y ′

j ; in the other cases we
say Aj,z := A′j,z .

The proof of the second half of proposition 4.2.4 goes like the proof of the first half, except
for one additional observation which is related to condition (ii) in definition 4.2.2. For X
in X let hcW0(X) consist of all (π, f̂) ∈ hW0(X), with π : E → X etc., such that f̂ is
integrable on some open U ⊂ E and π restricted to E r U is proper.

Lemma 4.2.8 The inclusion of sheaves hcW0 ↪→ hW0 is a weak equivalence.

Proof Let (π, f̂) ∈ hW0(X), with π : E → X . Choose an open U ⊂ E such that π
restricted to E r U is proper and such that the closure of U has empty intersection with
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f−1(0). Using the convexity of the fibers of J2
π(E,R) → E , especially over points z ∈ U ,

one may deform f̂ (leaving f unchanged) in such a way that it becomes integrable on U .
This shows that hcW0[X]→ hW0[X] is surjective. The argument can easily be refined to
prove a relative statement as in the hypothesis of proposition 2.4.4.

4.3 Proof of theorem 1.3.1

According to lemma 2.5.5 and proposition 4.2.4 it remains to show that

j2π : βWA → βhWA

is a weak equivalence. To this end we introduce a new sheaf

T A : X −→Posets.

Suppose given a smooth submersion π : E → X with (d + 1)–dimensional fibers and a
Θ–orientation on T πE , as in definition 2.2.3 and 2.2.4. We consider pairs (ψ,A) where
ψ : E → R is a smooth function such that (π, ψ) : E → X×R is proper, A ⊂ R is a compact
interval with 0 ∈ int(A), and ψ is fiberwise transverse to ∂A . There is no restriction on
the fiberwise singularities that ψ might have.

Definition 4.3.1 For connected X in X , the set T A (X) consists of triples (π, ψ,A) as
above, modulo the equivalence relation which has (π, ψ,A) ∼ (π, ζ, A) if ψ−1(A) = ζ−1(A)
and the support of ψ − ζ is contained in the interior of ψ−1(A).

As for WA , we get T A : X →Posets . Moreover there is an obvious commutative diagram
of sheaves

WA
j2π //

p
��=

==
==

==
hWA

q
����

��
��

�

T A

(4.3)

where p(π, f,A) and q(π, f̂ , A) are the equivalence classes of (π, f,A); in the second case
f is the underlying function of f̂ .

Let (π, ψ,A) be a representative of an element of T A (X) with π : E → X , ψ : E → R
and A ⊂ R . The manifold ψ−1(A) is independent of the choice of representative for the
equivalence class, and π|ψ−1(A) is a proper submersion, hence a smooth fiber bundle by
Ehresmann’s fibration lemma [3]. Moreover, near the boundary ∂ψ−1(A) = ψ−1(∂A), the
function ψ is independent of the choice of representative.

Lemma 4.3.2 The maps p and q in (4.3) have the concordance lifting property.
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Proof We only give the proof for p , since the proof for q is much the same. Suppose given
a concordance [π, ψ,A] ∈ T A (X ×R) and a lift to WA (X × 0) of its restriction to X × 0.
The projection

ψ−1(A) π // X × R (4.4)

is a smooth manifold bundle. Hence there exists a diffeomorphism N × R ∼= ψ−1(A) over
X × R , where N = ψ−1(A) ∩ π−1(X × 0). But what we need here is a diffeomorphism

u : N × R −→ ψ−1(A)

over X × R such that ψ(u(z, t)) = ψ(u(z, 0)) for all (z, t) near ∂N × R , and of course
u(z, 0) = z for all z ∈ N . Constructing such a diffeomorphism u is equivalent to construct-
ing a smooth vector field ξ = du/dt on ψ−1(A) which

(i) covers the vector field (x, t) 7→ (0, 1) ∈ TXx × TRt on X × I ,

(ii) satisfies 〈dψ, ξ〉 ≡ 0 near ψ−1(∂A).

(Actually ξ is also prescribed on a neighborhood of ψ−1(X ×C) where C = Rr ]0, 1[ , due
to the details in definition 2.1.3.) This problem has local solutions which can be pieced
together by means of a partition of unity on ψ−1(A). Hence u with the required properties
exists.
Now we define the lifted concordance (π, f,A) ∈ WA (X×I) in such a way that f(u(z, t)) =
f(u(z, 0)) for (z, t) ∈ N × R , bearing in mind that f(u(z, 0)) = f(z) is prescribed for all
z ∈ N and f must equal ψ outside u(N × I) = ψ−1(A).

Proposition 4.3.3 The fiberwise jet prolongation map

j2π : |βWA | −→ |βhWA |

induces an isomorphism on integral homology.

Proof This will be deduced from proposition 4.1.6 and diagram (4.3). Both maps p and
q in (4.3) are transport projections in the sense of 4.1.4. We must determine the fibers of
p and q and check that j2π induces a homology equivalence between fibers over the same
point.
We first determine the fiber p−1(τ) of

p : WA −→ T A

over an element τ = [F,ψ,A] ∈ T A (?). That is, for each X in X we are interested in
the subset of WA (X) which maps to the element [π, ψ ◦ prF , A] ∈ T A (X) where π and
prF are the projections F ×X → X and F ×X → F , respectively. This subset consists of
(π, f,A) ∈ WA (X) with π and A as above, where f : F ×X → R satisfies the conditions

(i) supp(f − ψ ◦ prF ) ⊂ int(ψ−1(A))×X ,

(ii) f(ψ−1(A)×X) ⊂ A .
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Because of (i), we can identify the fiber of p over τ with a subsheaf of the sheaf taking X
in X to the set of smooth maps from X to

Φ(ψ−1(A),A, ψ),

using the notation of (4.1). Similarly, the fiber q−1(τ) of q in (4.3) over the same element
τ ∈ T A (?) can be identified with a subsheaf of the sheaf taking X in X to the set of
smooth maps from X to

hΦ(ψ−1(A),A, ψ).

The inclusions of these subsheaves are weak equivalences by inspection. (That is to say,
condition (ii) means nothing after passage to concordance classes.) Thus the represent-
ing spaces |p−1(τ)| and |q−1(τ)| have canonical comparison maps to Φ(ψ−1(A),A, ψ) and
hΦ(ψ−1(A),A, ψ), respectively, which are homotopy equivalences. With these as identifica-
tions, the jet prolongation map from |p−1(τ)| to |q−1(τ)| turns into a special case of (4.1),
and so is a homology equivalence by Vassiliev’s first main theorem.

Combining lemma 2.5.5, proposition 4.2.4 and proposition 4.3.3, we get that

j2π : |W| −→ |hW|

induces an isomorphism in homology. Both |W| and |hW| are spaces with a monoid
structure up to homotopy (cf. the proof of theorem 3.2.5) and j2π respects this additional
structure. The target |hW| is an infinite loop space by theorem 3.2.5, hence it is group
complete. (That is, the monoid π0|hW| is a group.) Since H∗(j2π; Z) is an isomorphism,
especially when ∗ = 0, the source |W| is also group complete. It is well known that the
connected components of a space with a group complete monoid structure up to homotopy
are simple, and that a map between simple spaces is a homology equivalence if and only if
it is a homotopy equivalence. This completes the proof of theorem 1.3.1.
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5 Some homotopy colimit decompositions

The organization and the main results of this section can be summarized in a commutative
diagram of sheaves on X and maps of sheaves

W //Wloc

Wµ

'

OO

//Wµ
loc

'

OO

'
��

L //

'

OO

Lloc

hocolim
T in K

LT

'

OO

'
��

// hocolim
T in K

Lloc,T

'

OO

'
��

hocolim
T in K

WT // hocolim
T in K

Wloc,T .

(5.1)

The symbol ' indicates weak equivalences. The homotopy colimits in the diagram are
homotopy colimits in the category of sheaves on X , as in definition 4.1.3. But their
representing spaces can be regarded as homotopy colimits in the category of spaces according
to lemma B.2.6. The top row of diagram (5.1) is the inclusion map W →Wloc . The bottom
row is what we eventually want to substitute for the top row in order to prove theorem 1.3.4.

The following preliminary remarks about (5.1) might help the reader through this rather
demanding section.

The elements of W(X) and Wloc(X) are families parametrized by X of (d+ 1)–manifolds
Ex equipped with, among other things, Morse functions fx : Ex → R . The same description
applies to Wµ(X), Wµ

loc(X), L(X) and Lloc(X) in the second and third row of (5.1), except
that we ask for more structure around the critical points. In particular, in the important case
of L(X) we insist on proper Morse functions fx whose critical points z ∈ Ex are separately
enclosed in certain standard neighborhoods. Each of these standard neighborhoods Nz ⊂
Exr∂Ex is a (d+1)–manifold with boundary; the restricted map fx|Nz is proper, regular
on ∂Nz and has no critical points in the interior of Nz except z . These data will enable
us later on to move the critical values of f up or down, independently of each other.
In going from the third row of (5.1) to the fourth row, we are adding “local” decisions
which, for each critical point in sight, specify whether the corresponding critical value
should eventually be moved towards −∞ , +∞ or 0. For more precision, suppose that
we are dealing with a family (π, f) : E → X × R of (d + 1)–manifolds and proper Morse
functions, plus standard neighborhoods for the critical points, i.e., an element of L(X).
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Let Σ(π, f) be the fiberwise singularity set. Recall that the projection Σ(π, f) → X is
étale. On some connected components (alias sheets) of Σ(π, f), the map f might neither
be bounded above nor below. This makes a reasonable partition of Σ(π, f) into a positive,
a negative and a neutral part globally impossible. But the problem can be solved locally in
X . Namely, for any x ∈ X there exist an open neighborhood Ux of x in X , and a partition
of Σ(π, f)∩π−1(Ux) into three closed parts: a “positive” part where f is bounded below, a
“negative” part where f is bounded above, and a “neutral” part where f is bounded below
and above. (The partition is usually not unique.) The neutral part will always be a finite
covering space of Ux and, by making Ux smaller, we can assume that it is trivialized, i.e.
identified with T ×Ux for a finite set T with some extra structure. By fixing T and adding
these trivialization and partition data to the definition of L(X) or Lloc(X), we obtain the
definitions of LT (X) and Lloc,T (X). The local existence statement just described translates
into homotopy colimit decompositions, i.e., the equivalence between third and fourth row
of (5.1). This should not come as a surprise, since our definition of the sheaf-theoretic
homotopy colimit, definition 4.1.3, involves open coverings and therefore obviously has a
“local” flavor.
Finally to pass from the fourth row in (5.1) to the fifth, we produce concordances which
remove critical point sheets labelled positive or negative and which move the remaining
critical values towards 0. By considering a regular level, we are led to weak equivalences
LT ' WT and Lloc,T ' Wloc,T where WT (X) and Wloc,T (X) are defined in terms of
bundles of closed d–manifolds on X and fiberwise surgery data.

5.1 Description of main results

We now give a description of the lower row in diagram (5.1). This begins with a definition
of the category K by which the homotopy colimits are indexed.

Definition 5.1.1 An object of K is a finite set S equipped with a map to the set
{0, 1, 2, . . . , d + 1} . A morphism from S to T is a pair (k, ε) where k is an injective
map, over {0, 1, . . . , d + 1} , from S to T and ε is a function T r k(S) → {−1,+1} . The
composition of two morphisms (k1, ε1) : S → T and (k2, ε2) : T → U is (k2k1, ε3) : S → U
where ε3 agrees with ε2 outside k2(T ) and with ε1 ◦ k2

−1 on k2(T r k1(S)).

Definition 5.1.2 Let T be an object of K . For X in X , let Wloc,T (X) be the set of
smooth, riemannian (d + 1)-dimensional vector bundles ω : V −→ T × X equipped with
a fiberwise linear isometric involution % and a Θ–orientation, all subject to the following
conditions.

(i) For (t, x) ∈ T × X , the dimension of the fixed point space of −% acting on the fiber
V(t,x) is equal to the label of t in {0, 1, . . . , d+ 1} ;
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(ii) The composition V → T ×X → X is a graphic map.

A smooth map g : X → Y induces a map Wloc,T (Y ) → Wloc,T (X), given by pullback of
vector bundles along id× g : T ×X → T × Y . This makes Wloc,T into a sheaf on X .

In definition 5.1.2, the involution on V leads to an orthogonal vector bundle splitting
V = V %⊕V −% , where V % consists of the vectors fixed by % and V −% consists of the vectors
fixed by −% . We write D(V %) and S(V −%) for the disk and sphere bundles associated with
V % and V −% , respectively. The vertical tangent bundle of the projection

D(V %) ×T×X S(V −%) −→ X

inherits a preferred Θ–orientation from V , described in detail at the end of section 5.5.

Definition 5.1.3 For T in K , a sheaf WT on X is defined as follows. For X in X , an
element of WT (X) consists of

(i) a smooth graphic bundle q : M → X of closed d–manifolds, with a Θ–orientation of
its fiberwise tangent bundle;

(ii) an element (V, %) of Wloc,T (X);

(iii) a smooth embedding over X respecting the fiberwise tangential Θ–orientations,

e : D(V %) ×T×X S(V −%) −→ M .

The sheaves in definitions 5.1.2 and 5.1.3 depend contravariantly on the variable T in K .
This is clear in the case of definition 5.1.2: A morphism (k, ε) : S → T in K induces a map
from Wloc,T (X) to Wloc,S(X) given by pullback of vector bundles along the map k×id from
S ×X to T ×X . (More precisely, for (V, %) ∈ Wloc,T (X) we define (k, ε)∗(V, %) = (V ′, %′)
where V ′ is the restriction of V to k(S)×X viewed as a vector bundle on S ×X , and %′

is the restriction of % . This ensures that the projection V ′ → X is still a graphic map.)
The case of definition 5.1.3 is much more interesting. Let (k, ε) : S → T be a morphism in
K . If k is bijective, there is an obvious identification WT

∼= WS and this is the induced
map. Therefore we may assume that k is an inclusion S ↪→ T . Then we can reduce to the
case where T r S has exactly one element, a . This case has two subcases: ε(a) = +1 and
ε(a) = −1.

Definition 5.1.4 Let (k, ε) : S → T be a morphism in K where k is an inclusion and
T r S = {a} with ε(a) = +1. We describe the induced map

WT (X) −→WS(X).

Let (q, V, %, e) be an element of WT (X), with q : M → X . Map this to an element of
WS(X) by keeping q : M → X , restricting V to S×X and restricting % and e accordingly.
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Definition 5.1.5 Let (k, ε) : S → T be a morphism in K where k is an inclusion and
T r S = {a} with ε(a) = −1. For X in X , the induced map

WT (X) −→WS(X)

is defined as follows. Let (q, V, %, e) be an element of WT (X), with q : M → X . Map this
to the element (q[, V [, %[, e[) of WS(X) where

(i) q[ : M [ → X is the bundle obtained from q : M → X by fiberwise surgery on
the embedded bundle of thickened spheres e

(
D(V %|Xa)×Xa S(V −%|Xa)

)
, where Xa

means a×X ;

(ii) (V [, %[) is the restriction of (V, %) to S ×X ;

(iii) e[ is obtained from e by restriction.

Remark 5.1.6 For now, the main point is that the fiberwise surgery in (i) amounts to
removing the interior of the embedded thickened sphere bundle and gluing in a copy of
D(V −%|Xa) ×Xa S(V %|Xa) instead. More details will be given later. Note that when
V −% = 0, the embedded thickened sphere bundle whose interior we have to remove is
empty. In this case the fiberwise surgery consist in adding a (disjoint) copy of the sphere
bundle S(V )|Xa to M .

There is a forgetful map of sheaves WT →Wloc,T . It has the concordance lifting property,
so that by corollary A.2.6, the representing spaces of its fibers are the homotopy fibers of
the induced map or representing spaces

|WT | → |Wloc,T |.

It is easy to see that the representing space of any fiber of WT → Wloc,T is a classifying
space for certain bundles of compact Θ–oriented d–manifolds with a prescribed boundary.

5.2 Morse singularities, Hessians and surgeries

We begin by recalling some well known facts about elementary and multi-elementary Morse
functions. The reader is referred to [26, ch.I] and [27] for more details in the non-parame-
trized situation. By an elementary Morse function we shall mean a proper smooth map
E → R which is regular on ∂E and has exactly one critical point in E r ∂E which is
nondegenerate. By a multi-elementary Morse function we mean a proper smooth map
E → R which is regular on ∂E and has finitely many critical points in E r ∂E , all
nondegenerate and all with the same critical value.

Fix a finite dimensional real vector space V with an inner product (i.e., a positive definite
bilinear form) and a linear isometric involution % : V → V . It is convenient to have a name
for such a triple: we call it a Morse vector space. The function fV : V → R given by

fV (v) = 〈v, %v〉 (5.2)
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is a Morse function on V with exactly one critical point. If we write V = V % ⊕ V −% , then
the fomula for fV becomes

fV (v) = ‖v+‖2 − ‖v−‖2

where v+ and v− are the components of v in V % and V −% , respectively. The gradient
of fV on V is everywhere perpendicular to the gradient of v 7→ ‖v+‖2‖v−‖2 , so that the
latter function is constant on the trajectories of the gradient flow of fV . This motivates
the following definition.

Definition 5.2.1 saddle(V, %) = {v ∈ V
∣∣ ‖v+‖2‖v−‖2 ≤ 1} .

If V % = 0 or V −% = 0, then saddle(V, %) = V . In the remaining cases, the formula

v 7→ (‖v−‖v+, ‖v−‖−1v−, fV (v)) (5.3)

defines a smooth embedding of saddle(V, %)rV % in D(V %)×S(V −%)×R , with complement
0 × S(V −%) × [0,∞[ . It respects boundaries and it is a map over R , where we use the
restriction of fV on the source and the function (x, y, t) 7→ t on the target.
Dually, the formula

v 7→ (‖v+‖v−, ‖v+‖−1v+, fV (v)) (5.4)

defines a smooth embedding of saddle(V, %)rV −% in D(V −%)×S(V %)×R , with complement
0× S(V %)× ]−∞, 0]. It respects boundaries and it is a map over R .

The map fV in (5.2) restricted to saddle(V, %) is a good local model for elementary Morse
functions. Let M be any smooth compact manifold and let

e : D(V %)× S(V −%)→M r ∂M (5.5)

be a codimension zero embedding (“surgery data”), assuming dim(V ) = dim(M)+1. Then
in M ×R we have an embedded copy of D(V %)× S(V −%)×R . We can remove its interior
and glue in saddle(V, %) instead, using formula (5.3) to identify the boundary of saddle(V, %)
with the boundary of D(V %) × S(V −%) × R . The result is a smooth manifold trace(e) of
dimension dim(M) + 1. More precisely:

Definition 5.2.2 The long trace of e , denoted trace(e), is the pushout of the two smooth
codimension zero embeddings

saddle(V, %) r V % (e×id)◦(5.3) // (M × R) r e(0× S(V −%))× [0,∞[ ,
saddle(V, %) r V % � � // saddle(V, %).

(5.6)

For example, if V −% = 0, then saddle(V, %) = V and saddle(V, %) r V % is empty, so that
trace(e) becomes the disjoint union of M ×R and V = V % . Note that M can be empty in
this case. If V % = 0, then M contains a codimension zero copy of S(V ). The long trace
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is obtained by removing S(V ) × [0,∞[ from the copy of S(V ) × R in M × R and adding
a single point instead, so that trace(e) becomes the disjoint union of (M r im(e))×R and
V = V −% .

The description 5.2.2 determines a structure of smooth manifold on trace(e) and shows that
trace(e) comes with a (smooth) elementary Morse function, the height function, which is
the projection to R on the complement of V % and equal to v 7→ 〈v, %v〉 on the glued-in copy
of saddle(V, %). The unique critical point is the origin of V % ⊂ trace(e). The corresponding
critical value is 0.

Conversely, suppose that N is any smooth manifold with boundary and g : N → R is an
elementary Morse function, with critical value 0 and unique critical point z ∈ N r ∂N .
Choose a Morse vector space V , a codimension zero embedding h : (V, 0) → (N, z) and
δ > 0 such that gh(v) = fV (v) for all v ∈ V with 〈v, v〉 < δ . This is possible by the
Morse-Palais lemma; see for example [20]. At the price of replacing g by 3δ−1g , we can
assume δ = 3, so that gh agrees with fV on a neighborhood of D(V %) × D(V −%). Now
choose a smooth vector field ξ on N which extends h∗(grad(gh)) on h(D(V %)×D(V −%)),
is tangential to ∂N and satisfies 〈dg, ξ〉 > 0 on N r z . We then have a unique smooth
embedding ι : saddle(V, %)→ N which extends h on D(V %)×D(V −%), maps gradient flow
trajectories of fV to flow trajectories of ξ and satisfies g ◦ ι = fV on saddle(V, %). This
identifies N with a long trace.

The long trace construction has some obvious generalizations. For example, we can allow
simultaneous surgeries on a finite number of pairwise disjoint thickened spheres. In this
case the surgery data consist of a finite set T , a riemannian vector bundle V on T with an
isometric involution % , where dim(V ) = dim(M) + 1, and a smooth embedding

e : D(V %)×T S(V %) −→M r ∂M .

Then trace(e) is defined as the manifold obtained from M × R by deleting the embedded
copy of

D(V %
t )× S(V −%

t )× R

for each t ∈ T , and substituting saddle(Vt, %) for it using formula (5.3) to do the gluing.
There is a canonical height function on trace(e). It is a Morse function with one critical
point for each t ∈ T . The only critical value is 0 (if T 6= ∅).
We shall use a parametrized version of the previous construction. Let q : M → X be a
bundle of smooth compact n-manifolds, let V → T ×X be a riemannian vector bundle of
fiber dimension n+ 1 with isometric involution % , and let

e : D(V %)×T×X S(V −%) −→M r ∂M

be a smooth embeding over X . We can regard e as a family of embeddings ex for x ∈ X ,
each from a disjoint union of finitely many thickened spheres to a fiber Mx of q . The
manifolds trace(ex) for x ∈ X are the fibers of a smooth bundle

E = trace(e) −→ X . (5.7)
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It comes equipped with a smooth height function f : trace(e) −→ R which is fiberwise
Morse; if T 6= ∅ , then the unique critical value is 0.

So far we have looked at ways to create nondegenerate critical points, starting with a regular
function such as a projection M × R → R . For us the opposite process, that of removing
or “regularizing” nondegenerate critical points of a Morse function N → R , will be more
important. One approach to this is to go through the long trace construction in reverse,
but this method is unfortunately not very practical when the tangent bundle TN carries a
Θ–orientation. We will therefore use another method.
Assuming that f : N → R is an elementary Morse function with unique critical value 0,
we look for a Morse vector space V and a codimension zero embedding λ : saddle(V, %)→
Nr∂N with the property fλ = fV . In addition to that, we choose a proper regular smooth
function

f+
V : saddle(V, %) r V % −→ R

which agrees with fV on some open subset of saddle(V, %) containing the entire boundary
and the subset {w ∈ saddle(V, %) | fV (w) ≤ −1} . It will be shown in a moment that such a
function exists and that it is essentially unique. Then we let N rg = N r λ(V %) and define

f rg : N rg → R

by f rg(x) = f(x) for x /∈ im(λ) and f rg(λ(w)) = f+
V (w) for w ∈ saddle(V, %) r V % . The

function f rg is smooth, proper and regular. Any Θ–orientation on TN can obviously be
restricted to TN rg .

A fairly explicit construction of an f+
V is as follows. Choose a diffeomorphism ψ from R

to ]−∞, 0 [ such that ψ(t) = t for t < −1/2. Choose a smooth non-decreasing function
ϕ : [0, 1]→ [0, 1] such that ϕ(x) = x for x close to 0 and ϕ(x) = 1 for x close to 1. Let

ψx(t) = ϕ(x)t+ (1− ϕ(x))ψ(t)

for x ∈ [0, 1]. Then ψ0 = ψ embeds R in R with image ]−∞, 0 [, whereas each ψx for
x > 0 is a diffeomorphism R→ R . Hence we can define f+

V by

f+
V (v) = ψ−1

x (t) (5.8)

where t = fV (v) and x = ‖v−‖2‖v+‖2 . This choice of x and t is suggested by the
identification (5.3). Similarly, the formula

f+
V (v) = −ψ−1

x (−t) (5.9)

where t = fV (v) and x = ‖v−‖2‖v+‖2 defines a proper, smooth regular function from
saddle(V, %) r V −% to R . This agrees with fV on a neighborhood of the boundary and on
a neighborhood of {v ∈ saddle(V, %) | fV (v) ≥ +1} .

We point out that there are diffeomorphisms

σ+
V : saddle(V, %) r V % −→ D(V %)× S(V −%)× R

σ−V : saddle(V, %) r V −% −→ D(V −%)× S(V %)× R
(5.10)
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analogous to (5.3) and (5.4). The formulae are

σ+
V (v) = (‖v−‖v+, ‖v−‖−1v−, f

+
V (v)) , σ−V (v) = (‖v+‖v−, ‖v+‖−1v+, f

−
V (v)).

Remark 5.2.3 Let V = (V, %) be a Morse vector space. The space of smooth, proper,
regular functions on saddle(V, %) r V % which agree with fV on and near ∂(saddle(V, %))
and {w ∈ saddle(V, %) | fV (w) ≤ −1} is contractible. (This space can be defined as the
representing space of a sheaf on X .) We will not use this result anywhere and leave the
proof to the reader.

We finish this section with a useful naturality property of saddle(V, %).

Proposition 5.2.4 Suppose given a smooth map e : R → R and a, b ∈ R such that
e(a) = b . Assume 0 < e′(x) ≤ 1 for all x ∈ R . Then there is a smooth embedding
τ : saddle(V, %)→ saddle(V, %) with τ(0) = 0 and τ ′(0) =

√
e′(a) · idV such that

(fV + b) ◦ τ = e ◦ (fV + a).

Proof Without loss of generality, a = b = 0; otherwise replace e by e1 where e1(x) =
e(x+a)−b , note that e1(0) = 0 and that fV ◦τ = e1 ◦fV implies (fV +b)◦τ = e◦(fV +a).
Assuming e(0) = 0 therefore, we have to define τ in such a way that fV ◦ τ = e ◦ fV . We
remark that e is an orientation preserving embedding since e′(x) > 0 for all x .
First define u : R → R by u(x) = e(x)/x for x 6= 0 and u(0) = e′(0). Then u is smooth,
as can be seen from

e(x) =
∫ x

0
e′(t) dt = x

∫ 1

0
e′(xs) ds .

We have 0 < u(x) ≤ 1 for x ∈ R and e(x) = u(x) · x . Let

τ(w) = (u(fV (w)))1/2w

for w ∈ saddle(V, %). Then fV (τ(w)) = u(fV (w)) · fV (w) = e(fV (w)), so fV ◦ τ = e ◦ fV .
It remains to show that τ is an embedding. Write q(w) = (u(fV (w)))1/2 so that τ(w) =
q(w) · w . The product rule gives

τ ′(w)(h) = (q′(w)(h)) · w + q(w) · h
for h in the tangent space TwV . For w = 0 and h 6= 0 the right–hand side is clearly
nonzero. For w 6= 0 the right–hand side can only vanish if h is a scalar multiple of w . It
is therefore enough to try h = w . This gives τ ′(w)(w) in the left–hand side, which is the
derivative of t 7→ τ(tw) at 1 ∈ R . If this vanishes, then the derivative of

t 7→ fV (τ(tw))

at 1 ∈ R also vanishes. But fV (τ(tw)) = e(fV (tw)), and since e′ is everywhere nonzero,
it follows that f ′V (w)(w) = 0 by the chain rule. Since fV is a quadratic form, this forces
fV (w) = fV (tw) = 0. But then τ(tw) = (u(0))1/2tw which, as a function of t , certainly
has a nonzero derivative at 1 ∈ R , contradiction. Hence τ ′(w) is invertible for every w .
Since τ also maps each line segment through 0 ∈ V to itself, it follows immediately that τ
is an embedding.
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5.3 Right–hand column

In this and the next sections we shall use vector bundles V → Y equipped with a fiberwise
inner product 〈 , 〉 and a fiberwise linear isometric involution % : V → V . We call a vector
bundle with this additional structure a Morse vector bundle.

Our most important examples of Morse vector bundles are as follows. Let (π, f) be an
element of Wloc(X), with π : E → X . The restriction of the vertical tangent bundle T πE
to the fiberwise singularity set Σ = Σ(π, f) comes with an everywhere nondegenerate sym-
metric bilinear form 1

2H , where H is the vertical Hessian of f , that is, the second derivative
in the fiber direction. See [26, I,§2]. We can choose an orthogonal direct sum decomposition
of T πE|Σ into a positive definite subbundle and a negative definite subbundle. (The choice
is usually not unique, but the space of all such choices is contractible.) By changing the sign
of 1

2H on the negative definite subbundle, we make T πE|Σ into a Morse vector bundle,
with an isometric involution which is −id on the preferred negative definite summand and
+id on the positive definite summand. Note in addition that π|Σ is an étale map Σ → X
and that the restriction of (π, f) to Σ is a proper map from Σ to X × R .

Definition 5.3.1 Let Lloc be the following sheaf on X . For X in X , an element of
Lloc(X) is a triple (p, g, V ) where

(i) p is a graphic and étale map from some smooth Y to X ;

(ii) g is a smooth function Y → R ;

(iii) V
ω−→ Y is a (d+ 1)-dimensional Morse vector bundle with a Θ–orientation.

Conditions: The map (p, g) : Y → X × R is proper and pω : V → X is a graphic map.

Definition 5.3.2 An element of Wµ
loc(X) consists of an element (π, f) of Wloc(X) with

π : E → X , an element (p, g, V ) of Lloc(X) with p : Y → X , and an isomorphism over X
of the vector bundle V → Y with the vector bundle T πE|Σ(π, f) → Σ(π, f). Condition:
the vector bundle isomorphism preserves the Θ–orientations and carries the function fV
on V to w 7→ 1

2H(w,w) on T πE|Σ(π, f).

Lemma 5.3.3 The forgetful map Wµ
loc →Wloc is a weak equivalence.

Proof This is a straightforward application of proposition 2.4.4.

There is also a forgetful map Wµ
loc → Lloc . We now describe a homotopy inverse for this.

Fix X in X and let (p, g, V ) be an element of Lloc(X), with p : Y → X . Let E = V and
let π : E → R agree with the composition V → Y → X . Let f : E → R be given by

f(v) = g(y) + fV (v), fV (v) = 〈v, %v〉 (5.11)

for y ∈ Y and v in the fiber of V over y . Then (π, f) is an element of Wµ
loc(X) with

Σ(π, f) ∼= Y . There are obvious identifications of Σ(π, f) with Y and of T πE|Σ(π, f)
with V . The rule (p, g, V ) 7→ (π, f, p, g, V, ...) is therefore a map Lloc(X)→Wµ

loc(X).
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Proposition 5.3.4 The map Lloc →Wµ
loc so defined is a weak equivalence; consequently

the forgetful map Wµ
loc → Lloc of is also a weak equivalence.

Proof We are going to use the relative surjectivity criterion of proposition 2.4.4. To
deal with the absolute case first, we assume given X in X and (π, f) ∈ Wµ

loc(X), with
π : E → R and f : E → R . Let Σ = Σ(π, f) be the fiberwise singularity set of f . Choose
a vertical tubular neighborhood V of Σ in E (see definition 3.2.4 and lemma 2.2.5). Note
that V is identified with the normal bundle of Σ in E , which is identified with T πE|Σ ; so
V has the structure of a Morse vector bundle. In turn, by proposition 3.4.1, the element
(π, f) in Wµ

loc(X) is concordant to (π(1), f (1)) where π(1) and f (1) are the restrictions of
π and f to V , respectively. The next step is to improve f (1) .
Let ψ : R → [0, 1] be a smooth non-increasing function such that ψ(t) = 1 for t < 1 + ε
and ψ(t) = 0 for t > 2− ε , for some small ε > 0. For t ∈ R let f (t) be given by

v 7→
{
fp(v) + ψ(t)−2(f(ψ(t)v)− fp(v)) for ψ(t) > 0 and v ∈ V

fp(v) + 1
2H(pv)(v, v) for ψ(t) = 0 and v ∈ V

where H(pv) denotes the vertical Hessian of f at p(v). Let π(t) = π(1) for convenience.
Then t 7→ (π(t), f (t)) defines a concordance from (π(1), f (1)) to (π(2), f (2)). Now (π(2), f (2))
has a canonical lift to an element of Lloc(X), since V is a Morse vector bundle. We have
now established the absolute case of the relative surjectivity condition of 2.4.4 for our map
Lloc →Wloc . The relative case is not much more difficult and we leave it to the reader.

We next come to the homotopy colimit decompositions of the right–hand column of (5.1),
based on the following key observation.

Lemma 5.3.5 Let (p, g, V ) ∈ Lloc(X) , with p : Y → X . For every x ∈ X and every
b > 0 there exist a neighborhood U of x in X such that, on every component of p−1(U) ,
the function g is either bounded below by −b or bounded above by b .

Proof Chose a descending sequence of open balls Ui for i = 0, 1, 2, 3, . . . forming a neigh-
borhood basis for x in X . If the statement is false, then there exists b > 0 and connected
subsets Ki ⊂ Y for i = 0, 1, 2, 3, . . . such that p(Ki) ⊂ Ui and g(Ki) ⊃ [−b, b] for all
i . Choose zi ∈ Ki such that g(zi) = 0. The sequence z0, z1, z2, . . . in Y must have a
convergent (infinite) subsequence, because (p, g) : Y → X ×R is proper and the two image
sequences in X and R converge. Let z∞ ∈ Y be the point which the subsequence converges
to. Then p(z∞) = x and g(z∞) = 0. Now p : Y → X is étale. Hence, for sufficiently large
i , there are unique neighborhoods U ′

i of z∞ in Y such that p maps U ′
i diffeomorphically to

Ui . It follows that zi ∈ U ′
i for infinitely many i and hence Ki ⊂ U ′

i for infinitely many i .
But it is also clear that the diameter of g(U ′

i) tends to zero as i tends to infinity; hence the
lim inf of the diameters of the intervals g(Ki) is zero, which contradicts our assumption.
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Definition 5.3.6 Fix S in K . We define a sheaf Lloc,S on X . For X in X , an element
of Lloc,S(X) is an element (p, g, V ) of Lloc(X), where p has source Y , together with a
continuous function δ : Y −→ {−1, 0,+1} , and a diffeomorphism

h : S ×X −→ δ−1(0) ⊂ Y

over {0, 1, . . . , d+1}×X . Condition: Every x ∈ X has a neighborhood U in X such that
g admits a lower bound on p−1(U) ∩ δ−1(+1) and an upper bound on p−1(U) ∩ δ−1(−1).

In definition 5.3.6, the function δ clearly has to be constant on each component of Y . Note
that the Morse vector bundle structure on V → Y determines a map Y → {0, 1, . . . , d+ 1}
given by the Morse index: y 7→ dim(V −%

y ). This is what we mean when referring to Y as a
space over {0, , 1, . . . , d+1}×X . The local boundedness condition on g has an alternative
“global” formulation as follows: a continuous function b : X → R must exist such that
−bp ≤ g on δ−1(+1) and bp ≥ g on δ−1(−1). (We do not ask for a constant bound b
because we need to ensure that Lloc,S is a sheaf.)

A morphism (k, ε) : R → S in K induces a map Lloc,S → Lloc,R taking an element
(p, g, V, δ, h) of Lloc,S(X) to (p, g, V ′, δ′, h′) where V ′ is obtained from V by pulling back,
h′(r, x) = h(k(r), x) for (r, x) ∈ R×X and

δ′(y) =
{
ε(s) if y = h(s, x) where s ∈ S r k(R), x ∈ X
δ(y) otherwise.

(5.12)

This makes the rule T 7→ Lloc,T into a contravariant functor from K to the category of
sheaves on X . Moreover, for each T in K there is a forgetful map Lloc,T → Lloc , and the
maps Lloc,T → Lloc,S induced by morphisms S → T in K are over Lloc . This leads to a
canonical map of sheaves

v : hocolim
T in K

Lloc,T −→ Lloc . (5.13)

Proposition 5.3.7 The map v in (5.13) is a weak equivalence.

Proof Let Lδloc be the following sheaf on X with category structure. An object of Lδloc(X)
is an element (p, g, V ) of Lloc(X), with p : Y → X , together with a continuous function
δ : Y → {−1, 0,+1} subject to the following condition:

Every x ∈ X has a neighborhood U in X such that g admits a lower bound on
p−1(U) ∩ δ−1(+1), an upper bound on p−1(U) ∩ δ−1(−1), and both an upper and a
lower bound on p−1(U) ∩ δ−1(0).

Given two such objects, (p, g, V, δa) and (p, g, V, δb) with the same underlying (p, g, V ), we
write (p, g, V, δa) ≤ (p, g, V, δb) if δ−1

a (+1) ⊂ δ−1
b (+1) and δ−1

a (−1) ⊂ δ−1
b (−1). In this

situation there is a unique morphism from (p, g, V, δa) to (p, g, V, δb), otherwise there is
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none. Thus the category Lδloc(X) is a poset.
The map v in (5.13) can now be factorized as follows:

hocolim
T in K

Lloc,T
v1 // βLδloc

v2 // Lloc (5.14)

Here v2 is induced by the forgetful map Lδloc → Lloc . (Compare proposition 4.2.4.) To
describe v1 we recall that hocolimT Lloc,T was defined as

β(K op∫Lloc,•).

An object in (K op∫Lloc,•)(X) consists of an object T in K and an element a in Lloc,T (X).
A morphism from (T, a) to (S, b) is a morphism S → T in K taking a to b . An ob-
ject (T, a) in (K op∫Lloc,•)(X) with a = (p, g, V, δ, h) determines an object (p, g, V, δ) in
Lδloc(X). This canonical association is a functor, for each X , and as such induces v1 . The
next two lemmas complete the proof.

Lemma 5.3.8 The map v1 of (5.14) is a weak equivalence.

Proof We show that the functor (K op∫Lloc,•)(X) −→ Lδloc(X) is an equivalence of cate-
gories when X is simply connected. Indeed for an object (p, g, V, δ) of Lδloc(X), the subset
Y0 = δ−1(0) of Y is closed and g : Y0 → R is locally bounded. Thus p : Y0 → X is a
proper étale map, hence a covering. Since X is simply connected there is a diffeomorphism
h : S ×X → Y0 , giving an object of (K op∫Lloc,•)(X).
In particular, we have an equivalence of categories for the extended simplices, X = ∆k

e

where k ≥ 0. It follows that |K op∫Lloc,•)| −→ |Lδloc| is a weak homotopy equivalence, cf.
section 4.1.

Lemma 5.3.9 The map v2 of (5.14) is a weak equivalence.

Proof The proof is completely analogous to the proof of proposition 4.2.4. We note that
given objects (p, g, V, δ1) and (p, g, V, δ2) in Lδloc(X) with the same underlying (p, g, V ) ∈
Lloc(X), there always exists an object (p, g, V, δ3) in Lδloc(X) such that

(p, g, V, δ3) ≤ (p, g, V, δ1)
(p, g, V, δ3) ≤ (p, g, V, δ2).

Namely, let δ3(z) = +1 if and only if δ1(z) = +1 = δ2(z); let δ3(z) = −1 if and only if
δ1(z) = −1 = δ2(z), and let δ3(z) = 0 in the remaining cases.
Now we apply proposition 2.4.4 to v2 . Given (p, g, V ) ∈ Lloc(X), we can by lemma 5.3.5
find a locally finite covering of X by open subsets Uj , where j ∈ J , such that (p, g, V ) |U
has a lift ϕjj to ob(Lδloc)(Uj) for all j . With the observation just above, it is easy to extend
the collection of the ϕjj to a collection of objects ϕRR ∈ ob(Lδloc)(UR), in such a way that
ϕRR ≤ ϕQQ|UR whenever Q ⊂ R . The collection of these ϕRR is then an element of
βLδloc(X). This establishes the absolute case of the hypothesis in 2.4.4, and the verification
is much the same in the relative case.
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Definition 5.3.10 Fix T in K . We define a map from Lloc,T to Wloc,T by

Lloc,T (X) 3 (p, g, V, δ, h) 7→ h∗(V ) ∈ Wloc,T (X).

There is an equally simple map in the other direction, Wloc,T → Lloc,T . Indeed, we can
identify Wloc,T (X) with the subset of Lloc,T (X) consisting of the elements (p, g, V, δ, h) ∈
Lloc,T (X) which have h = idT×X and δ ≡ 0, g ≡ 0.

Lemma 5.3.11 The inclusion Wloc,T → Lloc,T is a weak equivalence.

Proof We use proposition 2.4.4. Given (p, g, V, δ, h) ∈ Lloc,T (X) with p : Y → X , choose
a smooth ψ : [0, 1/2[→ [0,∞[ such that ψ(s) = 0 for s close to 0 and ψ(s) tends to +∞
for s→ 1/2. Choose another smooth ϕ : [0, 1]→ [0, 1] such that ϕ(s) = 1 for s close to 0
and ϕ(s) = 0 for s close to 1. Then define a concordance

(p̄, ḡ, V̄ , δ̄, h̄) ∈ Lloc,T (X × R)

in the following way. The source of p̄ is the union of Y× ]−∞, 1/2[ and h(T ×X)× ]0,∞[ .
The formula for p̄ is p̄(y, s) = (p(y), s). (To ensure that p̄ is graphic, we should define
the source of p̄ and ḡ as a subset of the pullback of p : Y → X along the projection
X× ]0, 1 [−→ X . See definition 2.1.2.) The formula for ḡ is ḡ(y, s) := g(y) · ϕ(s) if
y is in h(T × X) and ḡ(y, s) := g(y) + δ(y)ψ(s) otherwise. The vector bundle V̄ is
the pullback of V under the projection. The formula for h̄ is h̄(t, x, s) := (h(t, x), s)
and the formula for δ̄ is δ̄(y, s) = δ(y). By inspection, (p̄, ḡ, V̄ , δ̄, h̄) is a concordance
from (p, g, V, δ, h) ∈ Lloc,T (X) to an element (p[, g[, V [, δ[, h[) ∈ Lloc,T (X) where h[ is a
homeomorphism and g[ ≡ 0. With some renaming we can arrange h[ to be an identity
map, so that (p[, g[, V [, δ[, h[) ∈ Wloc,T (X). If a closed subset C of X is given, and the
restriction of (p, g, V, δ, h) to some open neighborhood U of C is already in Wloc,T (U), then
the concordance just constructed is constant on U , giving the relative surjectivity condition
in proposition 2.4.4.

Corollary 5.3.12 The map Lloc,T →Wloc,T of definition 5.3.10 is a weak equivalence.

Proof The composite map, from Wloc,T to Lloc,T and back to Wloc,T , is clearly a weak
equivalence.

Summarizing, we have established the weak equivalences of the right hand column of dia-
gram (5.1), and conclude:

Theorem 5.3.13 There is a homotopy equivalence |Wloc| ' hocolim
T in K

|Wloc,T | .
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5.4 Upper left hand column: Couplings

Definition 5.4.1 An element of Wµ(X) is an element (π, f, p, g, V, . . . ) of Wµ
loc(X) such

that (π, f) ∈ W(X).

Definition 5.4.2 A coupling between an element (π, f) of W(X) with π : E → X and an
element (p, g, V ) of Lloc(X) with ω : V → Y is a smooth embedding λ : saddle(V, %)→ E
which satisfies fλ(v) = fV (v) + g(ω(v)) for v ∈ saddle(V, %), has im(λ) ⊃ Σ(π, f) and
respects Θ–orientations of the vertical tangent bundles along fiberwise singularity sets.

Remarks, explanations and reminders. The condition fλ(v) = fV (v) + g(ω(v)) implies
that the embedding λ takes the zero section of V to the fiberwise singularity set Σ(π, f).
The condition im(λ) ⊃ Σ(π, f) forces an identification of the vector bundle ω : V → Y
with T πE|Σ(π, f) −→ Σ(π, f). These are the vertical tangent bundles along fiberwise
singularity sets referred to in definition 5.4.2. Both are Θ–oriented vector bundles.

Remark 5.4.3 The embedding λ : saddle(V )→ E need not have a closed image, because
the étale map Y → X need not be a closed map. But im(λ) is locally compact, therefore
locally closed in E .

Definition 5.4.4 For X in X , an element of L(X) is a triple consisting of an element
in W(X), an element in Lloc(X) and a coupling λ between the two.

Proposition 5.4.5 The forgetful map L → Wµ is a weak equivalence.

Proof Again we use the relative surjectivity criterion of proposition 2.4.4 and again we
begin with the absolute case. Fix X in X and (π, f) ∈ Wµ(X), with π : E → X . We want
to lift the concordance class of (π, f) to a class in L[X] . As in the proof of proposition 5.3.4,
we begin by choosing a vertical tubular neighborhood V ⊂ E of Σ = Σ(π, f), with vector
bundle projection

ω : V → Σ

over X . Then V is canonically identified with T πE|Σ , and so is a Morse vector bundle
with quadratic function fV : V → R , corresponding to half the Hessian on T πE|Σ . By the
Morse-Palais lemma [20], we can set up the vector bundle structure on V in such a way
that f(v) = fV (v) + fω(v) in a neighborhood U of the zero section of V . Without loss
of generality, the neighborhood U contains all v ∈ saddle(V, %) for which |fω(v)| ≤ 1 and
|fV (v)| ≤ 2. (If not, replace f by ψf where ψ : E → [1,∞[ is a suitable smooth function
which factors through π : E → X . Multiply the inner product on V by ψ , too. The pairs
(π, f) and (π, ψf) are clearly concordant.)
Now choose a smooth embedding e : R → R with im(e) = ] − 1, 1[ and 0 < e′ ≤ 1
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throughout. Then (π, f) is concordant to (π], f ]), where π] is the restriction of π to
E] = f−1(im(e)) and f ] is e−1f on E] . Let Σ] = Σ ∩ E] and V ] = V |Σ] . Let

K =
{
v ∈ saddle(V ], %)

∣∣ |fV (v) + fω(v)| < 1
}
.

For v ∈ K we have |fω(v)| < 1 and |fV (v)| < 2, so K ⊂ U by our assumptions and
consequently f |K = fV |K + fω|K . It follows that K ⊂ E] . Using proposition 5.2.4, but
writing λ for τ , we can construct an embedding

λ : saddle(V ], %) −→ K

relative to and over Σ] , such that (fV + fω) ◦ λ = e ◦ (fV + e−1fω) = e ◦ (fV + f ]ω). This
can also be viewed as an embedding of saddle(V ], %) in E] . We have

f ]λ = e−1fλ = e−1(fV + fω)λ = e−1e(fV + f ]ω) = fV + f ]ω

on saddle(V ], %). That is, λ is a coupling, in the sense of definition 5.4.2, of (π], f ]) ∈ W(X)
with (p, g, V ]) ∈ Lloc(X) where p = π]|Σ] and g = f ]|Σ] . Note that λ identifies V ] with
T πE|Σ] , as explained in the remarks following definition 5.4.2, so that V ] inherits a Morse
vector bundle structure and a Θ–orientation from T πE|Σ] . (The new Morse structure on
V ] does not quite agree with the restriction of the Morse structure on V wich we used
earlier in this proof. In fact the two structures agree up to a scalar factor given by a strictly
positive function Σ] → R .) The coupling λ promotes the pair (π], f ]) to an element of
L(X) and thereby establishes the absolute case of the relative surjectivity condition.
The relative case is only slightly more difficult. We sketch it. Again fix X in X and (π, f)
in W(X), with π : E → X . Let C ⊂ X be closed. We want to find an element in L(X)
whose image in W(X) is concordant rel C to (π, f). This can be constructed essentially
as in the absolute case, except for one change which consists in replacing the embedding
e : R → R above by a smooth family of smooth embeddings ex : R → R , depending on
x ∈ X . Then we have the option to choose ex = idR for x in a small neighborhood of C ,
while having im(ex) = ]− 1, 1[ for x outside a slightly larger neighborhood of C .

The forgetful map L → Lloc is not surjective in general, nor does it have the concordance
lifting property. However certain “easy” concordances in Lloc can be lifted across the
forgetful map L → Lloc , and this fact will be needed later.

Lemma 5.4.6 Let (π, f, p, g, V, λ) be an element of L(X) . Let (p̄, ḡ, V̄ ) ∈ Lloc(X×R) be
a concordance whose initial position is (p, g, V ) ∈ Lloc(X) . Suppose that there is a pullback
diagram

Ȳ //

p̄

��

Y

p

��
X × R

proj. // X .

Then (p̄, ḡ, V̄ ) lifts to a concordance (π̄, f̄ , . . . ) ∈ L(X × R) whose initial position is
(π, f, p, g, V, λ) ∈ Lloc(X) . If the concordance (p̄, ḡ, V̄ ) is relative to a closed subset A
of X , then (π̄, f̄ , . . . ) can also be taken relative to A .
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Proof The statement involves R in two ways: as a target for functions such as f and
g , and as a time–like axis which parametrizes concordances. To reduce confusion, we will
write Rτ instead of R if we mean the time axis.
The restriction of (π, f) to ∂(im(λ)) is a submersion ∂(im(λ))→ X×R . This follows from
the equation fλ = fV + gω (where ω : V → Y is the projection) and either (5.3) or (5.4).
It is therefore possible to find an outward collar for im(λ) in E (the source of π ) which is
“over” X×R . We mean by that a smooth codimension zero embedding u of ∂(im(λ))×[0, 1]
in E r int(im(λ)) which extends the inclusion of ∂(im(λ)) ∼= ∂(im(λ)) × {1} , and which
satisfies π(u(z, t)) = π(u(z, 1)) as well as f(u(z, t)) = f(u(z, 1)) for all z ∈ ∂(im(λ)) and
t ∈ [0, 1]. Note that u(∂(im(λ))× {0}) is the far end of the collar.
We now construct our concordance (π̄, f̄ , . . . ) as follows. Let Ē = E × Rτ and let π̄ =
π× id : Ē → X ×Rτ . Elements of Ē should be relabelled to ensure that π̄ is graphic, but
we will not pay much attention to that now. Since Ȳ is identified with Y ×Rτ , we may also
identify V̄ with V × Rτ , so that ω̄ : V̄ → Ȳ is identified with ω × id : V × Rτ → Y × Rτ .
Now we can define λ̄ by λ̄(v, t) = (λ(v), t) ∈ E × Rτ = Ē .
It remains to define f̄ on Ē . For z ∈ E outside im(λ) ∪ im(u) and any t ∈ Rτ we let
f̄(z, t) = f(z). For z = λ(v) ∈ im(λ) we must define

f̄(z, t) = fV (v) + ḡ(ω(v), t) = f(z) + ḡ(ω(v), t)− g(ω(v)) .

This leaves the case z ∈ im(u), say z = u(λ(v), s) with v ∈ ∂(saddle(V, %)) and s ∈ [0, 1].
In that case we say f̄(z, t) = f(z) + ḡ(ω(v), st)− g(ω(v)).

Definition 5.4.7 For T in K , we define a sheaf L′T as the pullback of

L
forget // Lloc Lloc,T .

forgetoo

The forgetful maps L′T → L for T in K determine a canonical map u from the sheaf
hocolimT L′T to L .

Proposition 5.4.8 The map u : hocolim
T in K

L′T −→ L is a weak equivalence.

Proof The proof is completely analogous to that of proposition 5.3.7. There is a factor-
ization of u having the form

hocolim
T in K

L′T
u1 // βLδ

u2 // L (5.15)

where Lδ is defined as the pullback of L −→ Lloc ←− Lδloc . One shows that u1 and u2 are
weak equivalences.
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5.5 Lower left hand column: Regularization

In order to make this section more accessible, we assume to begin with that Θ is a discrete
space and discuss the general case afterwards.

Let (π, f, p, g, V, δ, h, λ) be an element of L′T (X) with

(π, f) : E → X × R , (p, g) : Y → X × R , V
ω−→ Y ,

δ : Y → {−1, 0,+1} , h : T ×X ∼= δ−1(0) , λ : saddle(V, %) −→ E .
(5.16)

We adopt the notation Y+ = δ−1(+1), Y− = δ−1(−1), Y0 = δ−1(0) and let V+ , V− , V0 be
the restrictions of the Morse bundle V to these three (open and closed) subspaces of Y .

Definition 5.5.1 LT is the subsheaf of L′T consisting of the elements (π, f, p, g, V, δ, h, λ)
as above with g|Y0 ≡ 0.

Proposition 5.5.2 The inclusion LT → L′T is a weak equivalence.

Proof This is a direct application of proposition 2.4.4 in conjunction with lemma 5.4.6.

For an element (π, f, . . . ) of LT (X) as above we define the regularization (πrg, f rg) with
πrg : Erg → X and f rg : Erg → R by

Erg = E r λ(V %
+ ∪ V

%
0 ∪ V

−%
− ) ,

πrg = π|Erg ,

f rg(z) =


f(z) if v /∈ im(λ)
f+
V (v) if z = λ(v) and v ∈ V+ ∪ V0

f−V (v) if z = λ(v) and v ∈ V− .

(5.17)

The maps f+
V and f−V were defined in (5.8) and (5.9), respectively. We note that Erg is an

open subset of E despite remark 5.4.3. Moreover, πrg : Erg → R is a smooth submersion
and f rg is regular on each fiber of πrg . In fact

(πrg, f rg) : Erg −→ X × R

is a smooth proper submersion. Hence by Ehresmann’s fibration lemma, we have

Proposition 5.5.3 The map (πrg, f rg) : Erg −→ X × R is a smooth bundle of closed
d–manifolds.

It follows that the inverse image of −1 under f rg is a bundle q : M → X of closed d–
manifolds. Since the restriction of f rg ◦ λ to saddle(V0, %) is f+

V and since f+
V agrees with

fV on levels less than or equal to −1, the restriction of λ gives an embedding

e : {v ∈ saddle(V0, %) | fV (v) = −1} −→ M (5.18)
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The source of e is identified with D(V %
0 ) ×T×X S(V −%

0 ) by formula (5.3). The diffeomor-
phism h : T ×X → Y0 gives the required element h∗(V0) ∈ Wloc,T (X). Since we are (still)
assuming that Θ is discrete, the Θ–orientation on T πErg determines a Θ–orientation on
T qM in a straightforward manner. Also, the embedding e respects the Θ–orientations of
the fiberwise tangent bundles.
Starting from an element in LT (X), we have now produced an element of WT (X) consisting
of q : M → X and the embedding e .

It is convenient to introduce two subsheaves L!
T and L!!

T of LT . For L!
T we add to the data

in 5.5.1 the condition that g ≥ 1 on Y+ and g ≤ −1 on Y− . For the sheaf L!!
T we add the

stronger condition that δ ≡ 0, so that Y+ and Y− are empty (and g ≡ 0).

Lemma 5.5.4 The inclusions L!
T → LT and L!!

T → L!
T are weak equivalences.

Proof A direct application of 5.4.6 shows that the inclusion L!
T → LT is a weak equiv-

alence. For the inclusion L!!
T → L!

T we use lemma 2.5.1. Given an element (π, f, . . . ) of
L!
T (X) as in (5.16), we choose a suitable smooth e : X×R→ R such that each ex : R→ R

defined by ex(t) = e(x, t) is a smooth orientation preserving embedding for all t ∈ R , with
ex(0) = 0. In addition we require 0 < e′x ≤ 1 for all x ∈ X , with a view to proposi-
tion 5.2.4, and that the image of ex does not contain any nonzero critical values of the
Morse function f |Ex . (For example, if −1 < ex < 1, then im(ex) does not contain any
nonzero critical values of f |Ex .) Define E(1) ⊂ E , π(1) and f (1) exactly as in lemma 2.5.1.
Let V (1) = V0 . Define λ(1) : saddle(V (1), %) → E(1) by composing λ : saddle(V, %) → E
with an embedding τ : saddle(V0, %)→ saddle(V0, %) over X as in proposition 5.2.4, so that
fV (τ(v)) = ex(fV (v)) for x ∈ X , y ∈ Y0 with p(y) = x and v ∈ Vy . These new data,
and others obtained by restriction from the old data, make up an element (π(1), f (1), . . . ) of
L!!
T (X) which is concordant in L!

T to (π, f, . . . ). In fact the proof of proposition 5.2.4 carries
over to this situation without much change. Therefore L!!

T [X] → L!
T [X] is surjective. The

same argument gives surjectivity in the relative case, L!!
T [X,A; s]→ L!

T [X,A; s] , assuming
A ⊂ X is closed and s ∈ colimUL!

T (U) where U runs over the open neighborhoods of A
in X . The only detail to watch here is that we need ex = idR for x in a sufficiently small
neighborhood of A . We complete the proof by applying proposition 2.4.4.

Proposition 5.5.5 The map LT → WT defined above (in the case where Θ is discrete)
is a weak equivalence.

Proof By lemma 5.5.4, it is enough to verify that the composition L!!
T → LT → WT is

a weak equivalence. But this is almost obvious from section 5.2. Namely, the long trace
construction gives us a map of concordance sets WT [X] → L!!

T [X] which is inverse to
L!!
T [X] → WT [X] . This works equally well in a relative setting, so that proposition 2.4.4
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can be used. The only thing to watch here is the Θ–orientation issue. For this, fix an
element (q, V, e) of WT (X) with q : M → X and write

e : {v ∈ saddle(V, %) | fV (v) = −1} −→ M .

Let E be the long trace of e , with projection π : E → X . Then E contains a copy of
C = M tim(e) saddle(V, %). A Θ–orientation of T πE|C is already specified. The inclusion
C → E is a homotopy equivalence, so that there is no obstruction to extending the Θ–
orientation of T πE|C to a Θ–orientation of T πE .

Remark 5.5.6 Here we resolve a set-theoretical issue related to the question of how exactly
T 7→ WT should be regarded as a functor and why the lower square in diagram 5.1 is
commutative. The following item should be added to definition 5.1.3: a choice of pushout
(in the category of sets)

M tim(e) saddle(V, %)

with graphic projection to X .
Next we update definition 5.1.5 by explaining that M [ should be regarded as the subspace
of the pushout

M tim(ea) saddle(Va, %a)

consisting of all elements of M r im(e) and those v ∈ saddle(Va, %a) with f−V (v) = −1.
By the above, this gives us an explicit choice of underlying set for M [ . Note also that
M [ tim(e[) saddle(V [, %[) is identified with a subset of M tim(e) saddle(V, %), so that we
have a preferred choice of underlying set for it. This choice is to be added to the data
q[ : M [ → X and e[ to give an element of WS(X).
With these adjustments, T 7→ WT is a functor. Now the map LT →WT of proposition 5.5.5
has to be adjusted as well, but this is straightforward. Indeed, returning to the notation used
in (5.17) and (5.18), we have that M and λ(saddle(V0, %)) are subsets of E with intersection
im(e). Hence their union in E is an explicit pushout M tim(e) saddle(V0, %) in the category
of sets, with a graphic projection map to X . By inspection, the (updated) maps LT →WT

now constitute a natural transformation between two contravariant functors, T 7→ LT and
T 7→ WT , from K to the category of sheaves on X .

We end the section with the promised discussion of general Θ–orientations. We start again
with the data list (5.16) for an element of L′T (X), but do not assume that Θ is discrete.
The coupling λ identifies T πE|im(λ) with ω∗V |saddle(V, %). The differential

df : T πE −→ f∗(TR)

is surjective over E r Σ ⊂ E , where Σ = Σ(π, f). Over im(λ) r Σ it has a preferred
splitting, since T πE|im(λ) is a Riemannian vector bundle. We add the following two items
to definition 5.5.1:

(A) A vector bundle splitting of df : T πE|E r Σ → f∗(TR)|E r Σ which extends the
preferred splitting over im(λ) rΣ ;
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(B) the condition that λ preserve the given Θ–orientations of the vertical tangent bundles
(and not just their restrictions to the fiberwise singularity sets, as in definition 5.4.2).

Proposition 5.5.7 The forgetful map LT → L′T is a weak equivalence.

Proof Like the proof of proposition 5.5.2, this one is a direct application of proposi-
tion 2.4.4 in conjunction with lemma 5.4.6.

Given an element of LT (X), consisting of data as in (5.16) and items (A) and (B) just
above, we produce a d–manifold bundle q : M → X and an embedding

e : D(V %
0 )×T×X S(V −%

0 ) −→M

as before. We note that T πE|Ereg has a canonical splitting,

T πE|Erg ∼= ker(df rg)× R .

Indeed, over points z ∈ Erg not in im(λ) we can use the data of item (A) and over points
z ∈ im(λ)∩Erg we can use the Riemannian vector bundle structure on the fiberwise tangent
bundle of im(λ)→ X . The matching condition in (A) ensures that this gives a continuous
splitting. Since M ⊂ Erg , we deduce a canonical vector bundle splitting

T πE|M ∼= ∼= T qM × R .

The Θ–orientation on T πE therefore induces a Θ–orientation on T qM×R , which amounts
to a Θ–orientation on T qM itself.
In the same way, the codimension 1 inclusion of {v ∈ saddle(V0, %) | fV (v) = −1} in
saddle(V, %) with preferred normal line bundle leads to a Θ–orientation on the vertical
tangent bundle of

{v ∈ saddle(V0, %) | fV (v) = −1} ∼= D(V %
0 )×T×X S(V −%

0 ) .

This is our standard choice of a Θ–orientation on the vertical tangent bundle of the source
of e . With this choice e clearly respects the Θ–orientations. Hence (q, V0, e) is a triple
satisfying the requirements for an element of WT (X) in definition 5.1.3.

Proposition 5.5.8 The map LT →WT defined above is a weak equivalence.

Proof The proof of proposition 5.5.5 goes through without essential changes.

This completes the construction of diagram (5.1) in the general case.
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5.6 Using the concordance lifting property

Lemma 5.6.1 For fixed T in K , the forgetful map WT → Wloc,T has the concordance
lifting property.

Proof We first consider the slighty easier case where Θ is discrete. Fix X in X . Any
Morse vector bundle V on T × X × R is isomorphic to the pullback of a Morse vector
bundle on T × X along the projection T × X × [0, 1] → T × X . It follows easily that
any concordance starting at an element z of Wloc,T (X) is trivial up to an isomorphism of
Morse vector bundles with Θ–orientation. More precisely, suppose that the concordance is
given by a Morse vector bundle V on T × X × R . For s ∈ R let V (s) be the pullback
(as in 2.1.2) of V along the map (t, x) 7→ (t, x, s) from T × X to T × X × R . Then we
have V (s)(x,t) = V (1)(x,t) for (x, t, s) in a neighborhood of X × T × [1,∞[ , and similarly
V (s)(x,t) = V (0)(x,t) for (x, t, s) in a neighborhood of X × T× ] − ∞, 0]. There exists a
Morse vector bundle W on X × T and isomorphisms js : V (s)→ W depending smoothly
on s , such that js|V (s)(x,t) = j1|V (s)(x,t) for (x, t, s) in a neighborhood of X ×T × [1,∞[ ,
and js|V (s)(x,t) = j0|V (s)(x,t) for (x, t, s) in a neighborhood of X × T× ]−∞, 0]. A choice
of such a family (js)s∈R determines, for each y ∈ WT (X) which lifts z , a lifted concordance
starting at y .
In the general case, when Θ is arbitrary, we begin with the construction of a lifted concor-
dance as above, first without worrying about tangential Θ–orientations. We then have to
make a choice of Θ–orientation on the fiberwise tangent bundle of a manifold bundle of the
form

q × R : M × R −→ X × R .

This is prescribed over the union of U and im(e)× R , where U is a neighborhood (germ)
of M× ]−∞, 0] and e is an embedding as in definition 5.1.3. Since the inclusion of

M× ]−∞, 0] ∪ im(e)

in M × R is a homotopy equivalence, the problem can be solved.

Now fix an element (V, %) in Wloc,T (?). That is, V is a (d + 1)-dimensional Θ–oriented
Morse vector bundle on T . For each t ∈ T , the dimension of Vt−% is equal to the label of
t in {0, 1, . . . , d+ 1} . The following is true by definition and trivial reformulations.

Lemma 5.6.2 The fiber of the forgetful map WT → Wloc,T over (V, %) ∈ Wloc,T (?) is
weakly equivalent to the sheaf which takes an X in X to the set of all pairs (q, e) where

(i) q : M → X is a smooth graphic bundle of closed d–manifolds with a Θ–orientation of
the vertical tangent bundle T qM ;

(ii) e : D(V %)×T S(V −%)×X −→ M is a smooth embedding over X which is fiberwise
Θ–orientation preserving.

65



Corollary 5.6.3 The fiber of the forgetful map WT → Wloc,T over (V, %) ∈ Wloc,T (?) is
weakly equivalent to the sheaf which takes an X in X to the set of all smooth graphic bun-
dles q : M → X of tangentially Θ–oriented compact d–manifolds with collared boundary,
where the boundary bundle ∂M → X is identified with

−(S(V %)×T S(V −%))×X −→ X.

Proof To get from data (q, e) as in lemma 5.6.2 to the kind of bundle described in corol-
lary 5.6.3, delete the interior of im(e) from the total space of the bundle q . To get from a
bundle M → X as in corollary 5.6.3 to the data described in lemma 5.6.2, form the union
M ′ of M and (D(V %)×T S(V −%))×X along (S(V %)×T S(V −%))×X .
The minus sign in front of S(V %)×T S(V −%) indicates a Θ–orientation which is “opposite”
to the one inherited from the tangent bundle of D(V %)×T S(V −%). Equivalently, the pre-
ferred Θ–orientations on the vertical tangent bundles of M and (D(V %)×T S(V −%))×X
must match to produce a Θ–orientation on the vertical tangent bundle of M ′ .

Remark 5.6.4 The description of the (homotopy) fiber in corollary 5.6.3 uses only the
part of T lying over {1, 2, . . . , d} ⊂ {0, 1, 2, . . . , d, d+1} , since spheres of dimension −1 are
empty.

5.7 Introducing boundaries

Here we are concerned with a slight generalization of diagram (5.1). It is obtained by
replacing all families of (d+ 1)–manifolds in sight by families of (d+ 1)–manifolds with a
prescribed boundary. For the purposes of this section we indicate the change by a superscript
“∂” as in ∂W ; later, in sections 6 and 7, the superscript will be dropped.

We assume d > 0 and fix a closed nonempty smooth (d − 1)–manifold C with a Θ–
orientation of the tangent bundle TC . The “prescribed boundary” which we have in mind
will be C × R . We assume also that C is nullbordant in the following sense: there exists
a compact smooth d–manifold K with collared boundary ∂K = C and a Θ–orientation
of TK which extends the specified one on TC × R ∼= TK|C . (Here we use the outward
normal field along C to identify TC × R with TK|C .)

Definition 5.7.1 An element of ∂W(X) is a pair (π, f) as in 2.2.4, with π : E → X and
f : E → R , except for the following: ∂E need not be empty. We ask for a diffeomorphism
germ over X × R which identifies a neighborhood of ∂E in E with a neighborhood of
X × C × R× {0} in X × C × R× [0,∞[ , respecting the Θ–orientations.

The same change made in the definitions of the sheaves Wloc , Wµ , Wµ
loc , L and LT

produces ∂Wloc , ∂Wµ , ∂Wµ
loc

∂L and ∂LT , respectively. (There is also a small change in
definition 5.4.2: we require im(λ) ∩ ∂E = ∅ .) No changes are needed in the definitions of
Lloc and Lloc,T , that is, we put ∂Lloc = Lloc and ∂Lloc,T = Lloc,T . The case of ∂WT is
slightly different:
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Definition 5.7.2 An element of ∂WT (X) is a triple (q, V, e) with q : M → X , as in 5.1.3
except for the following. We ask for a diffeomorphism germ over X which identifies a
neighborhood of ∂M in M with a neighborhood of X × C × {0} in X × C × [0,∞[ ,
respecting the Θ–orientations. We require im(e) ∩ ∂M = ∅ .

The ∂–variant of diagram (5.1) is

∂W // ∂Wloc

∂Wµ

'

OO

// ∂Wµ
loc

'

OO

'
��

∂L //

'

OO

Lloc

hocolim
T in K

∂LT

'

OO

'
��

// hocolim
T in K

Lloc,T

'

OO

'
��

hocolim
T in K

∂WT // hocolim
T in K

Wloc,T .

(5.19)

To prove that all the maps labelled “'” are indeed weak equivalences, one could proceed
roughly as in the no–boundary situation. Another method is to show that diagrams (5.19)
and (5.1) can be related by a chain of natural transformations which are termwise weak
equivalences. We now explain how this works for the top left–hand terms, and give some
indications for the remaining terms.
The first thing we need to know is that ∂W(?) is nonempty. Indeed, an element in ∂W(?)
is given by K×R , where K is the nullbordism for C mentioned earlier, with the projection
map K×R→ R and a Θ–orientation on TK×TR which can be described as the opposite
of the one specified earlier. (It has to extend the preferred Θ–orientation on TC ×R× TR
under the identification TC × R ∼= TK|C which is determined by the inward normal field
along C .)
Modulo set theoretic adjustments as in the proof of theorem 3.2.5 and especially the remark
following that proof, the formula

((π, f), (ψ, g)) 7→ (π t ψ, f t g)

defines maps W×W →W and W× ∂W → ∂W . We can view these as an addition law on
W and an action of W on ∂W , respectively (up to weak equivalences). From section 4 we
know that |W| ' |hW| and from section 3 we know that the monoid π0|hW| is a group. It
follows that π0W =W[?] is a group under the above addition law.
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We now claim that for fixed z ∈ ∂W(∗), the restriction of the action map to W × z is a
weak equivalence

u : W × z → ∂W .

Conversely we have a map, essentially from ∂W to W , given by gluing in the “nullbordism”
K × R . More precisely, we define

v : ∂W →W
by taking (π, f) ∈ ∂Wλ(X) with π : E → R to (π t pX , f t pR) ∈ W(X), where pX and
pR are the projections from X × K × R to X and R , respectively. The common source
of π t pX and f t pR is the pushout E tX×C×R (X ×K × R). (In addition, there are set
theoretic precautions to be taken; the details are left to the reader.)
Taking representing spaces, we obtain |u| from |W × z| ' |W| to |∂W| and |v| from |∂W|
to |W| , both well defined up to homotopy. It is easy to verify that the homotopy classes
of |v||u| and |u||v| are both given by translation with the concordance class [v(z)] ∈ W[?] .
Since W[?] is a group, this shows that |u| and |v| are homotopy equivalences, i.e. u and
v are weak equivalences.

Rows 2 and 3 of diagrams (5.1) and (5.19) can be compared in the same fashion. For
rows 4 and 5 some extra ideas are required. For example, to compare hocolimTWT and
hocolimT

∂WT we use the sheaf

hocolim
(S,T )

WS ×WT

where S and T are objects of K with S∩T = ∅ . The disjoint union maps (with the usual
adjustments) and substitutions U = S t T induce

hocolim
(S,T )

WS ×WT −→ hocolim
U

WU .

But the map given by specialization to the coordinates,

hocolim
(S,T )

WS ×WT −→ ( hocolim
S

WS) × ( hocolim
T

WT )

is a weak equivalence, so that we end up with an addition law on |hocolimSWS | . In the
same way, we can make an action (up to homotopy) of |hocolimSWS | on |hocolimS

∂WS | .
Then a choice of an element z ∈ ∂W∅(?) leads, via the action, to a map

hocolim
S

WS × z −→ hocolim
S

∂WS

which, by the same reasoning as before, turns out to be a weak equivalence.

Corollary 5.7.3 has a variant “with boundaries” which looks as follows.

Corollary 5.7.3 The fiber of the forgetful map ∂WT →Wloc,T over (V, %) ∈ Wloc,T (?) is
weakly equivalent to the sheaf which takes an X in X to the set of all smooth graphic bun-
dles q : M → X of tangentially Θ–oriented compact d–manifolds with collared boundary,
where the boundary bundle ∂M → X is identified with

−(C t S(V %)×T S(V −%))×X −→ X.
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6 The connectivity problem

6.1 Overview and definitions

Throughout this section we work with the sheaves ∂W , ∂WS introduced in section 5.5
(which depend on the choice of a (d− 1)–manifold C , as specified there). But we drop the
superscripts and simply write W , WS . We need the following extra condition on Θ . (This
is satisfied by the examples listed in 2.2.2, except for the case Θ = π0GL × Y when Y is
not path–connected.)

Assumption 6.1.1 The action of π0GL on π0Θ is transitive.

The previous section gave us decompositions of W and Wloc into pieces WS and Wloc,S ,
respectively, and a description of the homotopy fibers of the forgetful maps

WS −→Wloc,S

as certain bundle theories, cf. corollary 5.7.3. For a given S in K , the d–manifolds involved
are typically not connected. In this section we remedy this by showing that upon taking
the homotopy colimit over S , we can in fact assume that the relevant d–manifolds are
connected.

Definition 6.1.2 For X in X let Wc,S(X) ⊂ WS(X) consist of the triples (q, V, e) as
in definition 5.1.3/5.7.2, with q : M → X etc., such that the bundle M r im(e) −→ X has
connected fibers.

Then Wc,S is a subsheaf of WS and |Wc,S | is a union of connected components of |WS | .
The forgetful map from Wc,S to Wloc,S still has the concordance lifting property. By
analogy with corollary 5.7.3, we have the following analysis of its fibers.

Corollary 6.1.3 The fiber of the forgetful map Wc,S → Wloc,S over V ∈ Wloc,S(?) is
weakly equivalent to the sheaf which takes an X in X to the set of all smooth graphic
bundles q : M → X of tangentially Θ–oriented smooth compact connected d–manifolds,
where the boundary of each fiber Mx is identified with

−(C t S(V %)×S S(V −%)).

It would therefore be nice to have a statement saying that the inclusion of hocolimSWc,S

in hocolimSWS is a weak equivalence. Unfortunately such a statement is nonsensical if we
insist on letting S run through the entire category K . We have a contravariant functor
S 7→ WS from K to the category of sheaves on X , but we do not have a subfunctor
S 7→ Wc,S . It is not the case that the map

(k, ε)∗ : WT →WS
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induced by a morphism (k, ε) : S → T in K will always map the subsheaf Wc,T to the
subsheaf Wc,S . Let us take a more careful look at this phenomenon.
We may assume that k is an inclusion and that T rS has exactly one element t , with label
λ(t) ∈ {0, 1, . . . , d, d+ 1} and sign ε(t) ∈ {±1} . Fix (q, V, e) in WT (X), with q : M → X
and let (q′, V ′, e′) be the image of (q, V, e) in WS(X), with q′ : M ′ → X . For each x ∈ X
there is a canonical embedding

Mx r im(ex) −→ M ′
x r im(e′x).

The complement of its image is identified with

D(V %
(t,x))× S(V −%

(t,x)) if ε(t) = +1, and
S(V %

(t,x))×D(V −%
(t,x)) if ε(t) = −1,

where V(t,x) is the fiber of V over (t, x) ∈ T×X . We have a problem when the complement is
nonempty but has empty boundary, because then it will contribute an additional connected
component. This happens precisely when (λ(t), ε(t)) = (d+ 1,+1) and when (λ(t), ε(t)) =
(0,−1). In all other cases, there is no problem.

Now our indexing category K is equivalent to a product K ′×K ′′ . The categories K ′ and
K ′′ can be described as full subcategories of K : namely, K ′ is spanned by the objects S
whose reference map S → {0, 1, 2, . . . , d+ 1} has image contained in {0, d+ 1} and K ′′ is
spanned by the objects S whose reference map S → {0, 1, 2, . . . , d+1} has image contained
in {1, 2, . . . , d} .
For homotopy colimits of functors from a product category to spaces (or to sheaves on X )
there is a Fubini principle. In our case it states that

hocolim
T in K

WT ' hocolim
Q in K ′

hocolim
S in K ′′

WQqS . (6.1)

Lemma 6.1.4 For any morphism (k, ε) : P → Q in K ′ , the commutative square

hocolim
S in K ′′

WQqS
(k,ε)∗ //

��

hocolim
S in K ′′

WPqS

��
hocolim
S in K ′′

Wloc,QqS
(k,ε)∗ // hocolim

S in K ′′
Wloc,PqS

is homotopy cartesian (after passage to representing spaces).

Theorem 6.1.5 The inclusion

hocolim
S in K ′′

Wc, S −→ hocolim
S in K ′′

WS

is a weak equivalence.
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Theorem 6.1.5 is the main result of the section. We develop a surgery method to prove it.
The idea is to make nonconnected d–manifolds connected by means of multiple surgeries
on embedded (thickened) 0-spheres. Then we need to know that such multiple 0-surgeries
on a d–manifolds are essentially unique. In order to state the uniqueness, we view them as
the objects of a category.

6.2 Categories of multiple surgeries

In this section we fix a compact, smooth, nonempty d–manifold M with a Θ–orientation
of TM . Unless otherwise stated, Rd+1 will be regarded as a Morse vector space with
the standard inner product and involution %(x1, . . . , xd, xd+1) = (x1, . . . , xd,−xd+1). We
shorten D((Rd+1)%)× S((Rd+1)−%) to Dd × S0 . This is normally identified with the space
{v ∈ saddle(Rd+1, %) | 〈v, %(v)〉 = −1} . Hence any Θ–orientation on the tangent bundle of
Rd+1 will induce one on the tangent bundle of Dd × S0 . Cf. the discussion leading up to
proposition 5.5.8.

We make a slight change in the definitions of WS and Wloc,S . Namely, where defini-
tions 5.1.2 and 5.1.3 ask for a Morse vector bundle ω : V → Y with a Θ–orientation on V
itself, we will be satisfied with a Θ–orientation on the Morse vector bundle TωV ∼= ω∗V .
This change does not affect the homotopy types of |WS | and |Wloc,S | .

Definition 6.2.1 Let CM be the topological category defined as follows. An object con-
sists of a finite set T , a Θ–orientation on the tangent bundle of Rd+1 × T and a smooth
embedding eT of Dd×S0×T in M r ∂M which respects the Θ–orientations and satisfies
the following condition: Surgery on eT results in a connected d–manifold. A morphism
from (S, eS) to (T, eT ) is an injective map k : S → T such that k∗eT = eS .
The set of objects of CM is topologized as a subspace of the disjoint union, over all T , of
the spaces

(space of smooth embeddings Dd × S0 × T −→M r ∂M)
× (space of Θ–orientations on the tangent bundle of Rd × T ).

The total morphism set mor(CM ) is topologized as a closed subset of ob(CM ) × ob(CM )
via the map (source,target).

Proposition 6.2.2 The space BCM is contractible.

The proof requires a lemma.

Lemma 6.2.3 Let σ : N → X be a submersion of smooth manifolds without boundary,
dim(N) > dim(X) . Suppose that for each x ∈ X there exists a contractible open neighbor-
hood W of x in X , a finite set Q and a map Q×W → N over X inducing a surjection
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from Q ∼= π0(Q ×W ) to π0(Ny) for every y ∈ W . Then there exists a locally finite cov-
ering of X by contractible open sets Wj , where j ∈ J , and finite sets Qj , and a smooth
embedding

a :
∐
j

Qj ×Wj −→ N

over X , such that the restriction of a to Qj ×Wj induces surjections Qj → π0(Nx) , for
each j ∈ J and x ∈Wj .

Example 6.2.4 The submersion R2 r (0, 0) −→ R ; (x, y) 7→ x satisfies the hypothesis
of lemma 6.2.3. The submersion R r 0→ R ; x 7→ x does not. Surjectivity is not directly
related to the issue; the projection from (R×{0, 1})r (0, 0) to R is a surjective submersion
which also fails to satisfy the hypothesis of lemma 6.2.3.

Proof of lemma 6.2.3. Note first that the statement is not completely trivial. Using the
hypothesis, we could start with a locally finite covering of X by contractible open sets
Wj , and choose finite sets Qj and maps aj : Qj ×Wj → N over X inducing surjections
Qj → π0(Ny) for every y ∈Wj . This would give us a map

a :
∐
j

Qj ×Wj −→ N

which is an immersion. Unfortunately there is no guarantee that it is an embedding. To
solve this problem we will partition a “large”, dense open subset U of N into “levels”
indexed by the real numbers, and arrange that a maps distinct connected components of∐
Qj ×Wj to distinct levels of U . Then a is an embedding.

The jet transversality theorem, applied to sections of the vertical tangent bundle of N ,
implies that we can find a k � 0 and a smooth f : N → R such that the fiberwise k -jet
prolongation jkσf : N → Jkσ (N,R) is nowhere 0. Let U ⊂ N consist of all z ∈ N such
that f |Nσ(z) is regular at z . Then U is open in N and Ux := U ∩ Nx is dense in Nx ,
for each x ∈ X . Hence the inclusions Ux → Nx induce surjections π0(Ux) → π0(Nx).
The hypotheses on σ now give us a a covering of X by contractible open subsets Wj , and
for each Wj a finite set Qj and a map aj : Qj ×Wj → U over X such that the induced
composite map Qj → π0(Ux)→ π0(Nx) is onto for every x ∈Wj . We can assume that the
Wj are the open stars of the vertices in a sufficiently fine triangulation of X , in which case
the covering is locally finite. But in addition we can easily arrange that faj is constant on
q ×Wj for each q ∈ Qj , and that the resulting map

∐
j Qj → R is injective. Then the

map a which equals aj on Qj ×Wj satisfies all our requirements.

In the proof of theorem 6.1.5, we will use a sheaf version CM of CM . For connected X in
X let CM (X) be the (discrete) category whose objects are the pairs (T, eT ) where T is a
finite set together with a Θ–orientation on the tangent bundle of Rd+1 × T , and

eT : Dd × S0 × T ×X −→ (M r ∂M)×X
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is a smooth embedding over X , respecting the tangential Θ–orientations and subject to
the condition that fiberwise surgery on eT results in a bundle of connected manifolds. A
morphism from (S, eS) to (T, eT ) is an injective map k : S → T such that k∗eT = eS .
Since ob(CM (∆k

e)) is the set of smooth maps from ∆k
e to the space ob(CM ), one gets a func-

tor of topological categories |CM | → CM which induces a degreewise homotopy equivalence
of the nerves and therefore a homotopy equivalence B|Cop

M | ∼= B|CM | → BCM . (Here it is
best to define BCM as the fat realization [36] of the nerve of CM , ignoring the degeneracy
operators.)

Proof of proposition 6.2.2. We show that βCop
M is weakly equivalent to the terminal

sheaf taking every X in X to a singleton. (Without loss of generality, we can assume
that the fixed indexing set J which is used in the β–construction is uncountable.) By
proposition 2.4.4, this reduces to the following

Claim. Let X in X be given with a closed subset A and a germ s ∈ colimU βCop
M (U),

where U ranges over the neighborhoods of A in X . Then s extends to an element
of βCop

M (X).

To verify this, choose an open neighborhood U of A in X such that the germ s can be
represented by some s0 ∈ βCop

M (U). The information contained in s0 includes a locally
finite covering of U by open subsets Uj for j ∈ J . (Making U smaller if necessary, we can
assume that this is locally finite in the strong sense that every x ∈ X has a neighborhood
which meets only finitely many Uj .) It also includes a choice of object ψRR ∈ ob(CM (UR))
for each finite nonempty subset R of J . (There are also morphisms ψRS ∈ mor(CM (US)),
but they are of course determined by their sources ψRR|US and targets ψSS .) Next, choose
an open X0 ⊂ X such that U ∪X0 = X and the closure of X0 in X avoids A .
Let N be the open subset of (M r ∂M)×X0 obtained by removing from (M r ∂M)×X0

the closures of the embedded disk bundles determined by the various ϕRR|UR ∩ X0 . By
making U and X0 and the Uj smaller if necessary, but taking care that the Uj remain
the same near A , we can arrange that the projection N → X0 satisfies the hypothesis of
lemma 6.2.3.
By the lemma, there exists a locally finite covering of X0 by contractible open sets U ′

j ,
and finite sets Qj and an embedding a of

∐
j Qj × U ′

j in N , over X0 , such that a
induces surjections Qj → π0(Nx) for each j and x ∈ U ′

j . (Again, making X0 smaller if
necessary, we can assume that this is locally finite in the strong sense that every x ∈ X
has a neighborhood which meets only finitely many U ′

j .) We can also choose a smooth
embedding b of

∐
j Qj ×U ′

j in N , over X0 , inducing constant maps Qj → π0(Nx) for each
j and all x ∈ U ′

j , and such that im(a) ∩ im(b) = ∅ . (For example, the distinct sheets of
b restricted to Qj × U ′

j can be chosen very close to a selected sheet of a .) Since the U ′
j

are contractible, the normal bundles of a and b can be trivialized (as d-dimensional vector
bundles), and so the “union” of a and b extends to a smooth and fiberwise Θ–orientation
preserving embedding

c : Dd × S0 ×
∐
j(Qj × U ′

j) −→ N
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over X0 , with suitably chosen Θ–orientations on the vertical tangent bundles of the pro-
jections Rd+1 × Qj × U ′

j −→ Qj × U ′
j . (Such trivializations and such Θ–orientations can

be chosen thanks to our assumption that π0GL acts transitively on π0Θ .) For each j with
nonempty U ′

j , the restriction of c to the summand

Dd × S0 ×Qj × U ′
j

is an object ϕjj of CM (U ′
j). Because J is uncountable, we can arrange that U ′

j is empty
whenever Uj is nonempty.
We are now ready to define an explicit element in βCop

M (X) which extends the germ s . Let
Yj = Uj if Uj is nonempty, Yj = U ′

j if U ′
j is nonempty, and Yj = ∅ for all other j ∈ J .

Then the Yj form a locally finite open covering of X . For finite R ⊂ J with nonempty
YR , we can write YR = US ∩ U ′

T for disjoint subsets S, T of R with S ∪ T = R . Let
ϕRR ∈ ob(CM (YR)) be the coproduct (which exists by construction) of ψSS |YR and the
ϕjj |YR for j ∈ T . The covering j 7→ Yj together with the data ϕRR for finite nonempty
R ⊂ J is an element in βCop

M (X) which extends the germ s .

The category CM in definition 6.2.1 is not quite ideal for our purposes. Suppose that ∂M
is identified with −C . Then M determines a vertex v in |W∅| . Each object (T, eT ) in CM
determines a path in

hocolim
S in K ′′

|WS |

starting at v and ending somewhere in the subspace |Wc,∅| . (The path is composed of
two edges. The first edge leads from v to the vertex in |WT | represented by M and the
embedding eT . The second edge leads from there to the vertex in Wc,∅ represented by
M(eT ), the manifold obtained from M by surgery on eT . Note that we view T as a set
over {1, 2, . . . , d} by mapping each t ∈ T to 1 ∈ {1, 2, . . . , d} . We are making use of two
morphisms ∅ → T in K ′′ , one having ε(t) = +1 for all t ∈ T and the other having
ε(t) = −1 for all t ∈ T .) One might hope that morphisms in CM determine in the same
manner homotopies between paths in

hocolim
S in K ′′

|WS |

starting at v and ending somewhere in the subspace |Wc,∅| . That is not the case, but the
problem is easy to fix. We use Segal’s edgewise subdivision of of CM .

Definition 6.2.5 For any category D , the edgewise subdivision es(D) of D is another
category defined as follows. An object of es(D) is a morphism f : c0 → c1 in D . A
morphism in es(D) from an object f : c0 → d0 to an object g : d0 → d1 is a commutative
square in D of the form

c0
f // c1

��
d0

OO

g // d1 .
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It is well known that B(es(D)) is homeomorphic to BD , if D is a discrete category.
More precisely, by [11, Lm.2.4] the nerve of es(D) is isomorphic as a simplicial set to
the edgewise subdivision of the nerve of D , and this implies by [37] that the realizations
are homeomorphic. In the case of a simplicial category D one can argue degreewise. The
general case of a topological category can in most cases be reduced to the case of a simplicial
category. In particular:

Corollary 6.2.6 The classifying space of es(CM ) is contractible.

With the notation introduced just before definition 6.2.5, each object (T,U, eT ) of es(CM )
determines a path in hocolimS |WS | starting at v ∈ |W∅| and ending somewhere in the
subspace hocolimS |Wc,S | , where S runs through K ′′ . (The path is again composed of
two edges. The first edge leads from v to the vertex in |WT | represented by M and the
embedding eT . The second edge leads from there to the vertex in Wc,TrU represented by
M(eU ), the manifold obtained from M by surgery on eU , together with the embedding
eTrU obtained by restricting eT .) It turns out that morphisms in es(CM ) do indeed deter-
mine homotopies between such paths starting at v and ending somewhere in the subspace
hocolimS |Wc,S | . For now we leave the verification to the reader; in a moment it will be
made explicit in a more general setting.

6.3 Parametrized multiple surgeries

We reformulate corollary 6.2.6 in a parametrized setting and deduce theorem 6.1.5 from the
reformulation.

Definition 6.3.1 Fix an object S in K ′′ . Let (T,U) be a pair of finite sets with U ⊂ T
and T ∩ S = ∅ . We view T as an object of K ′′ by mapping each t ∈ T to the element 1
of {0, 1, 2, . . . , d+ 1} . We introduce a sheaf WS;T,U on X with a forgetful map to WS .
For X in X , an element in WS;T,U (X) is an element (q, V, e) of WStT (X) with q : M → X
etc., where the restriction of V to T ×X is identified with a trivial (Morse) vector bundle
Rd+1 × T ×X . Condition: Fiberwise surgery on

eU : Dd × S0 × U ×X −→M r im(eS)

results in a bundle of connected d–manifolds; here eU and eS denote the restrictions of e
to the portions of the source lying over U ×X and S ×X , respectively.

Let P be the category whose objects are pairs of finite sets (T,U) with U ⊂ T , where a
morphism from (Q,R) to (T,U) is an injective map h : Q → T with U ⊂ h(R). (This is
equivalent to the edgewise subdivision of the category of finite sets and injective maps.) A
morphism (Q,R) → (T,U) in P induces a map of sheaves WS;T,U −→ WS;Q,R , so that
there is a contravariant functor from P to sheaves on X given by

(T,U) 7→ WS;T,U .
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Corollary 6.3.2 The forgetful maps WS;T,U →WS induce a homotopy equivalence

hocolim
(T,U)

|WS;T,U | ' |WS | .

Proof Fix an element (q, V, e) in WS(?), with q : M → X . It is enough to show that the
homotopy fiber of

hocolim
(T,U)

|WS;T,U | −→ |WS |

over the point corresponding to (q, V, e) is contractible. In this situation the processes of
forming homotopy colimits and taking homotopy fibers commute. Moreover each of the
forgetful maps WS;T,U →WS has the concordance lifting property, so by proposition A.2.4,
the homotopy fiber which we are interested in is weakly equivalent to

hocolim
(T,U)

|fiberM (WS;T,U →WS)|. (6.2)

Let MS be the compact surface obtained from M by deleting int(im(e)). It is clear that
each expression |fiberM (WS;T,U →WS)| in (6.2) can be replaced by the naturally homotopy
equivalent

ob(T,U)es(CMS
),

the space of objects in es(CMS
) of definitions 6.2.1 and 6.2.5 whose underlying injection

of finite sets is the inclusion U → T . The homotopy colimit now becomes the classifying
space of the transport category

Pop∫ob•es(CMS
) ,

cf. section B.2, where the bullet stands for objects (T,U) of P . This transport cate-
gory is clearly equivalent to es(CMS

), and its classifying space is therefore contractible by
corollary 6.2.6.

Proof of theorem 6.1.5. Using the homotopy invariance property of homotopy direct
limits, we obtain from corollary 6.3.2 a homotopy equivalence of spaces

η+ : hocolim
S in K ′′

hocolim
(T,U) in P

|WS;T,U | // hocolim
S in K ′′

|WS | .

We compare this with the map

η− : hocolim
S in K ′′

hocolim
(T,U) in P

|WS;T,U | // hocolim
R in K ′′

|Wc,R| (6.3)

induced by the composite maps

WS;T,U // WS∪T
(−)∗ // WS∪(TrU) (6.4)
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and renaming S t (T r U) as R . Here the first arrow in (6.4) is self-explanatory. The
second is induced by the inclusion S t (T r U) → S t T , with the sign function on U
which is ≡ −1. Thus the first arrow amounts to adding the surgery data corresponding
to labels in T (but not performing any surgeries), while the second amounts to performing
the surgeries corresponding to labels in U ⊂ T . It follows that the composite map in (6.4)
lands in the subsheaf Wc,St(TrU) , as required in (6.3). The map η− in (6.3) is clearly a
retraction, with a canonical section ζ which identifies each Wc,R with WR;∅,∅ . The target
of η− is contained in the target of η+ , so we may ask whether η− and η+ are homotopic
as maps to hocolimS |WS | . This is indeed the case, by remark B.2.5 and the fact that each
WS;T,U fits into a natural commutative diagram

WS;T,U

forget

||xx
xx

xx
xx

xx
xx

��

(6.4)

%%KKKKKKKKKKKKKK

WS WStT
(+)∗oo (−)∗ //WSt(TrU) .

The homotopy restricts to a constant homotopy from η+ζ to η−ζ . Consequently, it is a
deformation retraction of hocolimS |WS | to hocolimS |Wc,S | .

6.4 Annihiliation of d-spheres

The goal is to prove lemma 6.1.4. Most of the proof is based on some elementary product
decompositions.

Lemma 6.4.1 Let T = T1 ∪ T2 be a disjoint union, where T1 is an object of K ′ and T2

is an object of K . There are weak equivalences, natural in T2 for fixed T1 ,

WT −→ Wloc,T1 ×WT2 , Wloc,T −→ Wloc,T1 ×Wloc,T2 .

Proof The second map is induced by the inclusions T1 → T and T2 → T . It should be
clear that it is a weak equivalence. Note that sign functions on T2 and T1 are not needed.
The first coordinate of the first map is again induced by the inclusion T1 → T . The second
coordinate of the first map,

WT −→WT2 ,

is defined as follows. Let (q, V, e) be an element of WT (X) as in definition 5.1.3, with
q : M → X . For a ∈ T1 , the bundle

D(V %
a )×Xa S(V −%

a )

(where Xa = a×X and Va = V |Xa ) is either empty or a bundle of d-spheres. In any case
it has empty boundary and its image under e is a union of connected components of M .
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Let M ′ be obtained from M by deleting these components, for all a ∈ T1 . Let V ′ be the
restriction of V to T2 ×X and let e′ be the restriction of e to∐

b∈T2

D(V %
b )×Xb

S(V −%
b ) .

Then (q′, V ′, e′) ∈ WT2(X). This determines the map WT −→ WT2 . Again it should be
clear that the resulting map

WT −→Wloc,T1 ×WT2

is a weak equivalence: it is easy to write down an inverse for the induced map on homotopy
groups.

Proof of lemma 6.1.4. Applying lemma 6.4.1 with and noting that homotopy colimits
commute with the functors Wloc,Q× and Wloc,P× , and passing to representing spaces we
can rewrite the commutative diagram in lemma 6.1.4 in the form

|Wloc,Q| × | hocolim
S in K ′′

WS |
(k,ε)∗ //

id×`
��

|Wloc,P | × | hocolim
S in K ′′

WS |

id×`
��

|Wloc,Q| × | hocolim
S in K ′′

Wloc,S |
(k,ε)∗ // |Wloc,P | × | hocolim

S in K ′′
Wloc,S |

where ` : hocolimSWS −→ hocolimSWloc,S is the forgetful map. For y ∈ Wloc,Q(?) and
z ∈ hocolimSWS(?), the homotopy fiber of the left–hand vertical arrow over (y, z) is
therefore identified with hofiberz(`) and the homotopy fiber of the right–hand vertical
arrow over the image point ((k, ε)∗y, z) is also identified with hofiberz(`). However, with
these identifications the map

u : hofiberz(`) −→ hofiberz(`)

induced by the horizontal arrows in the diagram is not obviously the identity. To understand
what it is, we can assume that Qr P has exactly one element a . Associated with this we
have a label na ∈ {0, d + 1} and a value ε(a) ∈ {−1,+1} . By inspection, if (na, ε(a)) is
(0,+1) or (d + 1,−1), then the map u is the identity. To describe what happens in the
remaining cases, we note that by choosing y we have also selected an element (p,W, g) ∈
Wloc,{a}(?) where W is a vector bundle with inner product over a point, i.e., a vector space
with inner product. We may identify W with Rd+1 . Now the map u is given by disjoint
union with S(W ) = Sd , assuming that (na, ε(a)) is (d+ 1,+1) or (0,−1). More precisely,
for each S in K ′′ and X in X , we have a map

ū : WS(X)→WS(X)

given by (q, V, e) 7→ (q], V, e) where q : M → X is a bundle of d–manifolds etc., and q]

is obtained from q by disjoint union with a trivial sphere bundle Sd × X → X . This is
natural in the variables X and S . It covers the identity map of Wloc,S(X) and so induces
u above. Hence it only remains to show that ū is a weak equivalence.
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Lemma 6.4.2 The map

ū : hocolim
S in K ′′

WS −→ hocolim
S in K ′′

WS

given by disjoint union of all d–manifolds in sight with Sd is a weak equivalence.

Proof We reason as in section 5.7. This will require two variants of WS as in defini-
tion 5.1.3, one where we use −C as the prescribed boundary and another where we use
C t −C , in other words, the boundary of C × [0, 1]. To distinguish these, we write ∂WS

for the first and ∂∂WS for the second.
Concatenation defines maps ∂∂WS×̄ ∂∂WT → ∂∂WStT and ∂∂WS×̄ ∂WT → ∂WStT where
×̄ denotes a mildly enhanced version of the product. Hence

hocolim
S in K ′′

| ∂∂WS |

becomes a homotopy associative H –space. It has a homotopy unit given by the element
C × [0, 1] in ∂∂W∅(?). This H –space acts (in a homotopy associative manner) on

hocolim
S in K ′′

| ∂WS |.

Up to homotopy, the map ū is given by translation with a single element z of

| ∂∂W∅| ⊂ hocolim
S in K ′′

| ∂∂WS | .

Namely, z is the element defined by Sd t (C × [0, 1]). It is therefore enough to show that z
is in the connected component of the homotopy unit, defined by C × [0, 1]. This amounts
to saying that Sdt (C× [0, 1]) can be transformed into C× [0, 1] by elementary surgeries of
index 1, 2, . . . , d only. In fact a single surgery of index 1, that is, a surgery on a thickened
0–sphere in Sd t (C × [0, 1]), is enough. (Let one component of the thickened 0–sphere be
in Sd and the other in C× [0, 1]. Here at last we are using the assumption that C 6= ∅ .)

7 Stabilization

7.1 Stabilizing the decomposition

Conventions. Throughout this section we assume d = 2 and Θ = π0GL with the translation
action of GL. (This means that Θ–orientations are ordinary orientations.) We continue to
write W and WS for ∂W and ∂WS , respectively. The fixed boundary C is S1 t −S1 .

In section 6, we modified the homotopy colimit decomposition of |W| obtained in section 5.
The goal was to banish non-connected d–manifolds from the picture, as far as possible. Here
we make a second and quite drastic modification to our homotopy colimit decomposition
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(assuming d = 2 etc.); the goal is roughly to ensure that all surfaces in sight are of large
genus, in addition to being connected. We achieve this by repeatedly concatenating with a
standard surface of genus 1, with boundary S1t−S1 . This standard surface can be viewed
as an element z ∈ Wc,∅(?).

For every X in X , the unique map X → ? induces Wc,∅(?)→ Wc,∅(X) and so allows us
to think of z as an element of Wc,∅(X). For S in K define z−1WS and z−1Wc,S as the
colimits, in the category of sheaves on X , of the diagrams

WS
z·−→WS

z·−→WS
z·−→WS

z·−→ · · · ,
Wc,S

z·−→Wc,S
z·−→Wc,S

z·−→Wc,S
z·−→ · · · ,

respectively. The arrows labelled z· are given by concatenation with z . These colimits are
obtained by sheafifying the naive colimits, which are presheaves. The sheafification process
is very mild in this case. In particular, it does not alter the values on compact objects of X ,
such as spheres. Hence the representing spaces of these colimits are homotopy equivalent
to the colimits of the individual representing spaces:

|z−1WS | ' z−1|WS | , |z−1Wc,S | ' z−1|Wc,S | .

For an object T in K ′′ , corollary 6.1.3 implies that the homotopy fiber of the localization
map |Wc,T | −→ |Wloc,T | over any base point is homotopy equivalent to

∐
g BΓg, 2+2|T | .

Lemma 7.1.1 For T in K ′′ , any homotopy fiber of |z−1Wc,T | −→ |Wloc,T | is homotopy
equivalent to Z×BΓ∞, 2+2|T | .

Finally we have the stabilized versions of lemma 6.1.4 and theorem 6.1.5:

Corollary 7.1.2 For any morphism (k, ε) : P → Q in K ′ , the commutative square

hocolim
S in K ′′

|z−1WQqS |
(k,ε)∗ //

��

hocolim
S in K ′′

|z−1WPqS |

��

hocolim
S in K ′′

|Wloc,QqS |
(k,ε)∗ // hocolim

S in K ′′
|Wloc,PqS |

is homotopy cartesian.

Corollary 7.1.3 The inclusion

hocolim
T in K ′′

|z−1Wc, T | −→ hocolim
T in K ′′

|z−1WT |

is a homotopy equivalence.
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Corollaries 7.1.2 and 7.1.3 are about a new homotopy colimit decomposition of |W| :

Lemma 7.1.4 |W| ' | z−1W| ' hocolim
T in K

|z−1WT | .

Proof Since |W| is group complete, the inclusion |W| → z−1|W| ' |z−1W| is a homo-
topy equivalence. The second homotopy equivalence in the chain follows from |z−1WT | '
z−1|WT | and

hocolim
T in K

z−1|WT | ' z−1
(

hocolim
T in K

|WT |
)
.

7.2 Using the Harer-Ivanov stability theorem

Lemma 7.2.1 The canonical map from Z×BΓ∞,2 to the homotopy fiber (over the base
point) of the forgetful map

hocolim
S in K ′′

|z−1Wc,S | −→ hocolim
S in K ′′

|Wloc,S |

induces an isomorphism in homology with integer coefficients.

Proof For the object S = ∅ of K ′′ , we have |z−1Wc,S | ' Z × BΓ∞,2 and |Wloc,S | = ? ,
so that there is indeed a canonical map from Z×BΓ∞,2 to the homotopy fiber of

hocolim
S in K ′′

|z−1Wc,S | −→ hocolim
S in K ′′

|Wloc,S |.

We now check that the hypothesis of corollary B.1.3 is satisfied. Let (k, ε) : S → T be a
morphism in K ′′ . We have to verify that, in the commutative square of spaces

|z−1Wc,T | //

(k,ε)∗

��

|Wloc,T |

(k,ε)∗

��

|z−1Wc,S | // |Wloc,S |,

the induced map from any of the homotopy fibers in the upper row to the corresponding
homotopy fiber in the lower row induces an isomorphism in homology. The homotopy fibers
in question are related by a map

Z×BΓ∞, 2+2|T | −→ Z×BΓ∞, 2+2|S|

given geometrically by attaching cylinders D1 × S1 or double disks D2 × S0 to those pairs
of boundary circles which correspond to elements of T r k(S). This map is an integral
homology equivalence by the Harer-Ivanov stability theorem. Apply corollary B.1.3.
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Corollary 7.2.2 The canonical map from Z×BΓ∞,2 to the homotopy fiber (over the base
point) of the forgetful map

hocolim
S in K

|z−1WS | −→ hocolim
S in K

|Wloc,S |

induces an isomorphism in homology with integer coefficients.

Proof Combine lemma 7.2.1 with corollaries 7.1.3 and 7.1.2.

Proof of theorem 1.3.4. By lemma 7.1.4 and diagram 5.1, we have

hocolim
S in K

|z−1WS | ' |W| , hocolim
S in K

|Wloc,S | ' |Wloc| .

Therefore corollary 7.2.2 implies that the homotopy fiber of |W| → |Wloc| receives a map
from Z × BΓ∞,2 which induces an isomorphism in integer homology. But |W| and |Wloc|
are infinite loop spaces by theorems 1.3.1 and section 3, and the map |W| → |Wloc| is
an infinite loop map. Hence its homotopy fiber is an infinite loop space, and each of
its components has an abelian fundamental group. Each of these fundamental groups is
isomorphic to H1(BΓ∞,2 ; Z) = 0. Summing up, all connected components of the homotopy
fiber in question are simply connected, and the homotopy fiber is therefore Z×BΓ+

∞,2 .

A More about sheaves

A.1 Concordance and the representing space

Let F be a sheaf on X . We shall construct a natural transformation ϑ : [X, |F| ] −→ F [X] ,
and an inverse ξ : F [X]→ [X, |F| ] for ϑ .

We start with the construction of ξ . Fix X in X and an element u ∈ F(X). Choose
a smooth triangulation of X , with vertex set T . Suppose that S ⊂ T is a distinguished
subset (the vertex set of a simplex in the triangulation). Let

∆e(S) = {w : S → R | Σsw(s) = 1}
∆(S) = {w ∈ ∆e(S) | w ≥ 0}.

The triangulation gives us characteristic embeddings cS : ∆(S) → X , one for each distin-
guished S ⊂ T . By induction on S , we can choose smooth embeddings

ce,S : ∆e(S)→ X ,

extending the cS , which are compatible: i.e., if S is distinguished and R ⊂ S is nonempty,
then ce,S agrees with ce,R on ∆e(R) ⊂ ∆e(S). Let uS = ce,S

∗(u) ∈ F(∆e(S)).
Finally choose a total ordering of T . This leads to an identification of each ∆e(S) with a
standard extended simplex. Consequently it promotes each uS to a simplex of the simplicial
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set n 7→ F(∆n
e ). We then have a unique map ξ(u) : X → |F| such that, for each S as

above with |S| = n+ 1, the diagram

∆(S)
∼= //

cS

��

∆n

char. map for u

��
X

ξ(u) // |F|

commutes. It is straightforward to show that the resulting homotopy class of maps X → |F|
depends only on the concordance class of u ∈ F(X).

We remark that ξ : F [X] → [X, |F| ] so defined is a natural transformation. Indeed if
f : X → Y is a smooth embedding, then f∗ξ = ξf∗ by inspection. An arbitrary morphism
g : X → Y in X can be factored as pf , where f : X → Y ×Rk is a smooth embedding for
some k and p : Y ×Rk → Y is the projection. Let s : Y → Y ×Rk be any smooth section
of p . Then s∗ξ = ξs∗ , and consequently p∗ξ = ξp∗ since p is inverse to s in the homotopy
category of X . Therefore g∗ξ = f∗p∗ξ = f∗ξp∗ = ξf∗p∗ = ξg∗ .

The construction of an inverse ϑ for ξ uses a simplicial approximation principle. To intro-
duce notation for that, we suppose first that L is a simplicial complex with a totally ordered
vertex set T . For n ≥ 0 let Lsn be the set of order preserving maps f : {0, 1, . . . , n} → T
such that im(f) is a simplex of L . Then n 7→ Lsn is a simplicial set Ls and the realization
|Ls| is homeomorphic to L .
Next, let K be any simplicial complex and let Q be a simplicial set. Our approximation
principle states that, for any homotopy class of maps from K to |Q| , there exist a subdivi-
sion L of K , with a total ordering of its vertex set, and a simplicial map Ls → Q such that
the induced map from |Ls| ∼= L ∼= K to |Q| is in the prescribed homotopy class. (Probably
the easiest proof proceeds by induction over the skeleta of K , with the original simplicial
complex structure. We leave it to the reader.)

Next we construct ϑ : [X, |F| ] −→ F [X] . We start with a choice of map g : X → |F| .
By the above approximation principle, we may assume that X comes with a smooth tri-
angulation, with totally ordered vertex set T , and that g is the realization of a simplicial
map from Xs to the simplicial set n 7→ F(∆n

e ). In particular, each distinguished subset
S ⊂ T with |S| − 1 = n determines a nondegenerate n–simplex yS of Xs and then an
element g(yS) ∈ F(∆n

e ). Now choose a smooth homotopy of smooth maps ht : X → X ,
where 0 ≤ t ≤ 1, such that h0 = id and

(1) for every t , the map ht maps each simplex of the triangulation to itself;

(2) each simplex has a neighbourhood in X which is mapped to the simplex by h1 .

Then for each n ≥ 0 and each distinguished subset R ⊂ T with |R| − 1 = n and a
sufficiently small open neighborhood VR of cR(∆(R)) in X , we obtain a smooth map
VR → ∆e(R) ∼= ∆n

e by composing h1|VR with the inclusion of ∆(R) in ∆e(R). Using this
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map to pull back g(yR) ∈ F(∆n
e ), we obtain compatible elements zR ∈ F(VR) which, by the

sheaf property of F , determine a unique element ϑ(g) of F(X). Again, it is straightforward
to verify that the concordance class of ϑ(g) depends only on the homotopy class of g .

Proposition A.1.1 The maps ξ and ϑ are inverses of each other.

Proof Let u ∈ F(X). We want to show that ϑξ(u) is concordant to u . With suitable
choices in the constructions above, we have VR ⊃ im(ce,R) for all distinguished R , and
then ϑξ(u) equals h1

∗(u), where (ht : X → X)0≤t≤1 is the homotopy which appears in the
definition of ϑ . Since h1 is smoothly homotopic to h0 = idX , this implies that ϑξ(u) is
indeed concordant to u . Therefore

ϑξ = id: F [X] −→ F [X].

To show that ξϑ is the identity on [X, |F| ] , we return to the notation used and assumptions
made in the construction of ϑ . In particular we have g : X → |F| , induced by a simplicial
map from Xs to the simplicial set n 7→ F(∆n

e ), and a homotopy of smooth maps ht
from X to X . In addition we have, from the construction of ξ , smooth embeddings
ce,S : ∆e(S)→ X extending the characteristic embeddings cS : ∆(S)→ X of the simplices
of X . With some care, we can arrange that each ht : X → X takes the image of each ce,S
to itself. We can also arrange that ht = h0 for t close to 0 and ht = h1 for t close to 1,
and define H : X × R→ X by

H(x, t) =


ht(x) t ∈ [0, 1]
h1(x) t ≥ 1
h0(x) t ≤ 0 .

We introduce the notation FR for the sheaf Y 7→ F(Y × R) on X , and note that
the embeddings y 7→ (y, 0) and y 7→ (y, 1) of Y in Y × R determine maps of sheaves
ev0 , ev1 : FR → F . The point of this is that our data so far determine a simplicial map
G from Xs to n 7→ FR(∆n

e ), and consequently a map |G| : X → |FR| . Namely, for a
nondegenerate n–simplex yS of Xs let G(yS) ∈ FR(∆n

e ) be the pullback of g(yS) ∈ F(∆n
e )

along
(ce,S)−1 ◦H ◦ (ce,S × idR) : ∆n

e × R −→ ∆n
e ,

where we identify ∆n
e with ∆e(S). Lemma A.1.2 below implies that g = |ev0G| and

ξϑ(g) = |ev1G| are homotopic.

Lemma A.1.2 The evaluation maps |ev0|, |ev1| : |FR| → |F| are homotopic.

Proof For an order preserving map f : n → 1 let f̄ : ∆n
e → ∆n

e × R be the unique
affine embedding which takes a vertex v of ∆n to (v, f(v)). The formula (u, f) 7→ f̄∗(u)
determines a simplicial homotopy, i.e., a simplicial map from n 7→ F(∆n

e ×R)×mor∆(n, 1)
to n 7→ F(∆n). The homotopy connects ev0 with ev1 .
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Proof of proposition 2.4.3. The special case where the closed subset A is empty is
covered by proposition A.1.1. The proof of the general case follows the same lines. To
construct ξ[u] for u ∈ F(X,A; z), we choose a smooth triangulation of X where each
simplex which meets A is contained in a fixed open neighborhood Y of A with u|Y = z .
Conversely, for a relative homotopy class of maps X → |F| taking A to z , we can find
a smooth triangulation of X with totally ordered vertex set and a simplicial map from
Xs to n 7→ F(∆n

e ) taking every nondegenerate simplex of Xs which meets A to z , and
representing the relative homotopy class.

A.2 Categorical properties

Proposition A.2.1 The construction F 7→ |F| takes pullback squares of sheaves to pull-
back squares of compactly generated Hausdorff spaces. In particular it respects products.

Proof The functor F → |F| is a composition of two functors: one from sheaves to sim-
plicial sets, and another from simplicial sets to compactly generated Hausdorff spaces. It is
obvious that the first of these respects pullbacks. The second also respects pullbacks by [7,
§3, Thm. 3.1].

Definition A.2.2 The categorical coproduct F1qF2 of two sheaves F1 and F2 on X can
be defined by (F1 qF2)(X) =

∏
iF1(Xi)qF2(Xi) where Xi denotes the path component

of X corresponding to an i ∈ π0(X).

Proposition A.2.3 |F1 q F2| ∼= |F1| q |F2| .

Proof Note that ∆n
e is path-connected for n ≥ 0.

Proposition A.2.4 Suppose given sheaves E ,F ,G on X and morphisms (alias natural
transformations) u : E → G , v : F → G . Let E ×G F be the fiber product (pullback) of
u and v . If u has the concordance lifting property, definition 4.1.5, then the projection
E ×G F → F has the concordance lifting property and the following square is homotopy
cartesian:

|E ×G F| //

��

|F|

v

��
|E| u // |G|.

We begin with a special case of proposition A.2.4. Given a natural transformation u : E → G
of sheaves on X with the concordance lifting property, let z be a point in G(?) and let Ez
be the fiber of u over z (in the category of sheaves). Let hofiberz |u| denote the homotopy
fiber of |u| : |E| → |G| over the point z .
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Lemma A.2.5 For any y ∈ Ez(?) , the homotopy set πn(Ez, y) is in canonical bijection
with πn(hofiberz |u|, y) .

Proof Because of the concordance lifting property, πn(Ez, y) can be identified with an
appropriate relative homotopy group (or homotopy set) of the map of sheaves u : E → G .
Representatives of the latter are elements (s, h) ∈ E(Sn) × G(Sn × R), where s has the
value y near the base point Sn and h is a concordance (relative to a neighborhood of the
base point) from u(s) to the constant z . We can identify this relative homotopy group
(set) with a relative homotopy group (set) of the map of spaces |u| : |E| → |G| , which can
then be identified with a homotopy group (set) of the homotopy fiber of |u| over z .

Corollary A.2.6 In the situation of lemma A.2.5, the sequence

|Ez| �
� // |E|

|u| // |G|

is a homotopy fiber sequence.

Proof The composite map from |Ez| to |G| is constant. This leads to a canonical map
from |Ez| to the homotopy fiber of |u| : |E| → |G| over z . It is easy to verify directly that
this induces a surjection on π0 . For each y ∈ Ez(?), the induced map of homotopy sets

πn(Ez, y) −→ πn(hofiberz |u|, y)

is the one from lemma A.2.5. It is therefore always a bijection.

Proof of proposition A.2.4. We fix z ∈ F(?) and obtain v(z) ∈ G(?). The fiber of

E ×G F −→ F

over z is identified with the fiber of u : E → G over v(z). Using corollary A.2.6 we can
conclude that the homotopy fiber of |E ×G F| −→ |F| over z maps to the homotopy fiber
of |u| : |E| → |G| over v(z) by a homotopy equivalence.

A.3 Cocycle sheaves and classifying spaces

This section contains the proof of 4.1.2. To prepare for this we start with a variation
on the standard nerve construction. Recall that Dn is the poset of nonempty subsets of
n = {0, 1, 2, . . . , n} . There are functors vn : Dn→ n given by vn(S) = max(S) ∈ n .

Lemma A.3.1 Let C be a small category. Then the map of simplicial sets

(n 7→ hom(nop,C )) −→ (n 7→ hom(Dnop,C ))

given by composition with v• induces a homotopy equivalence of the geometric realizations.
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Proof The simplicial set (n 7→ hom(Dnop,C )) is obtained by applying Kan’s functor ex,
the right adjoint of the barycentric subdivision, to (n 7→ hom(nop,C )). The statement is
therefore a special case of [19, 3.7].

We note that the simplicial set (n 7→ hom(nop,C )) is precisely the nerve of C , denoted
N•C in section 4.

Corollary A.3.2 Let m 7→ Cm be a simplicial category. The map of bisimplicial sets

(m,n) � // hom(nop,Cm)

��
(m,n) � // hom(Dnop,Cm)

given by composition with the functors vn : Dn → n induces a homotopy equivalence of
the geometric realizations.

Lemma A.3.3 Let S be an infinite set and let K• be a simplicial set. For n = 1, 2, . . .
let emb(n, S) be the set of injective maps from n to S . The geometric realization |K•|
is homotopy equivalent to the geometric realization of the incomplete simplicial set alias
∆–set [35]

n 7→ Kn × emb(n, S).

Proof There is a projection map p from the realization of n 7→ Kn × emb(n, S) to |K•| .
We will show that it has contractible fibers. This gives the induction step in an inductive
argument showing that the restrictions p−1(|K•|n) −→ |K•|n of p are homotopy equiva-
lences for all n ≥ 0.
Let y be a point in an m-cell of |K•| , corresponding to some nondegenerate simplex in
Km . The fiber of p over y is homeomorphic to the classifying space of the poset R whose
elements are the nonempty finite subsets of S equipped with a total ordering and an order
preserving surjection to m . For each finite subset R′ of R , there exists T ∈ R which is
disjoint from all T ′ ∈ R′ , so that T ′ ≤ T ′∪T ≥ T in R where T ′∪T has the concatenated
ordering. This implies that the inclusion of |R′| in |R| is homotopic to a constant map,
with value equal to the vertex determined by T . Therefore R is contractible, i.e., the fiber
in question is contractible.

Corollary A.3.4 Let J be the (fixed) infinite set from definition 4.1.1. The classifying
space B|F| is homotopy equivalent to the geometric realization of the incomplete simplicial
set K• given by

n 7→ hom(Dnop,F(∆n
e ))× emb(n, J).
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We turn to the construction of a comparison map Ψ from the incomplete simplicial set K•
in corollary A.3.4 to the simplicial set n 7→ βF(∆n

e ). An n-simplex in K• consists of a
functor

ϕ : Dnop −→ F(∆n
e )

and an injective map λ : n → J . The pair (ϕ, λ) carries exactly the same information
as an element in βF(∆n

e ) whose underlying J -indexed open covering is given by j 7→ ∆n
e

if j = λ(t) for some t ∈ n and j 7→ ∅ otherwise. To make these data functorial, i.e.,
compatible with face operators, we need to replace the nonempty open sets in the open
covering by smaller ones, according to the rule

j = λ(t) 7→ { (x0, x1, . . . , xn) ∈ ∆n
e | xt > 0}. (A.1)

The remaining data can be restricted and we now have an element Ψ(ϕ, λ) ∈ βF(∆n
e ). The

construction Ψ respects the face operators. We restate theorem 4.1.2 as

Theorem A.3.5 The map Ψ induces a homotopy equivalence from B|F| ' |K•| to |βF| .

Proof We proceed by constructing an inverse at the homotopy set level, a natural map
Λ from βF [X] ∼= [X, |βF| ] to [X, |K•| ] . Let (Y , ϕ••) be an element of βF(X), so that
Y is a locally finite open covering of the manifold X . Choose a smooth triangulation
of X , with vertex set contained in J . For each finite nonempty subset S of J spanning
a simplex of the triangulation, choose a smooth map ce,S : ∆e(S) → X extending the
characteristic inclusion cS : ∆(S)→ Sn , in such a way that ce,S agrees with ce,R on a face
∆e(R) ⊂ ∆e(S). All this is to be done in such a way that a map κ : J → J can be found
satisfying

ce,S(∆e(S)) ⊂ Yκ(v)
whenever S ⊂ J spans a simplex and v ∈ S . Then for each pair of nonempty subsets Q,R
of S with Q ⊂ R , the pullback under ce,S of the morphism ϕκ(Q)κ(R) in F(Yκ(R)) is a
morphism in F(∆e(S)). Together these morphisms define an element

xS ∈ hom(D(S)op,F(∆e(S))) .

Finally we choose a total ordering of the vertex set of the triangulation. This promotes each
xS to a simplex of K• , and as these simplices are compatibly constructed they determine
a map from X (viewed as a simplicial complex) to |K•| . It follows from lemma A.3.3
that the homotopy class of that map does not depend on the way in which the vertex set
of the triangulation is embedded in J , and then it is altogether clear that the homotopy
class depends only on the concordance class of (Y , ϕ••) ∈ βF(X). Hence we have defined
Λ : βF [X]→ [X, |K•| ] .
We need to know that the composition ΨΛ : βF [X] → βF [X] is the identity. Suppose
that an element of βF [X] is represented by a pair (Y , ϕ••), where Y is a J –indexed
open covering of X . Then, by construction and painful inspection, ΨΛ of that element is
represented by a pair (Y ′, ϕ′••) for which κ : J → J can be found such that Y ′

j ⊂ Yκ(j) for
j ∈ J and ϕ′RS is the restriction of ϕκ(R)κ(S) to Y ′

S , for finite nonempty R,S ⊂ J with
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R ⊂ S . [What makes the inspection difficult is that the target of Ψ is really [X, |βF| ] and
we compose with the identification ϑ : [X, |βF| ] → βF [X] of section A.1. At the level of
representatives, we are therefore dealing with ϑΨΛ . Each nonempty Y ′

j is a subset of the
open star st(j) of the vertex labelled j in the triangulation of X used to construct Λ of
(Y , ϕ••), above. In fact Y ′

j is the inverse image of st(j) under h1 : X → X , and h1 is part
of a homotopy (ht) as specified in the description of ϑ .] Thus we have a situation where
one element of βF(X) “refines” another. Lemma A.3.6 below then guarantees that the two
elements are concordant. Hence ΨΛ = id.
Next we show that Λ : βF [X] → [X, |K•| ] is onto for any X in X . As explained in
section A.1, any element of [X, |K•| ] can be represented by a simplicial map f : Xs → K•
where Xs is the simplicial set associated to some smooth triangulation of X with totally
ordered vertex set. We subject f to a smoothing procedure, familiar from section A.1, which
will result in a “better” simplicial map f∼ : Xs → K• representing the same homotopy
class. The smoothing procedure begins with the choice of a homotopy of smooth maps
ht : X → X , where 0 ≤ t ≤ 1, such that h0 = id and

(1) for every t , the map ht maps each simplex of the triangulation to itself;

(2) each simplex has a neighbourhood in X which is mapped to the simplex by h1 .

We also choose compatible smooth embeddings ce,R : ∆e(R)→ X extending the character-
istic embeddings cR : ∆(R) → X of the simplices of X , and such that each ht : X → X
takes the image of each ce,R to itself. For an n–simplex zR of Xs , with vertex set R ⊂ T ,
define f∼(zR) by composing the functor

(c−1
e,R ◦ h1 ◦ ce,R)∗ : F(∆n

e )→ F(∆n
e )

with f(zR) : Dnop → F(∆n
e ) ; here we have identified S with n and ∆e(S) with ∆n

e as
usual. As in the proof of proposition A.1.1, lemma A.1.2 shows that f and f∼ represent
the same homotopy class. But now it is easy to exhibit an element (Y , ϕ••) of βF(X)
which is mapped to the class of f∼ by Λ . We may assume that the vertex set T of the
triangulation is contained in J and let

Yj = int((h1)−1(st(j)))

for j ∈ T , where st(j) is the open star of the vertex j . All other Yj are empty. To obtain
ϕRS , assuming YS 6= ∅ , we note that

h1(YS) ⊂
⋂
j∈S

st(j)

so that S is the vertex set of an n–simplex zS in X for some n . We therefore have

c−1
e,S ◦ h1 : YS → ∆e(S)

and we can use it to pull back the morphism in F(∆e(S)) ∼= F(∆n
e ) which is the image of

R ⊂ S under the functor f(zS). The result is ϕRS , a morphism in F(YS). Following the
instructions above for finding a representative for Λ of (Y , ϕ••), we get precisely f∼ . The
conclusion is that Λ is indeed surjective.
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The final step is to note that Ψ , as a map from |K•| to |βF| , induces a surjection
π1(|K•|, z) → π1(|βF|, Ψ(z)) for any choice of base vertex z ∈ |K•| . We leave this ver-
ification to the reader: Given an element u in π1(|βF|, Ψ(z)), an element v of π1(|K•|, z)
can be obtained by applying the procedure Λ above to u in a relative form. The relative
case of lemma A.3.6 below implies Ψ(v) = u .
It is a formality to show that a map q : C → D between CW–spaces which induces bijec-
tions [X,C]→ [X,D] for every X in X and surjections π1(C, z)→ π1(D, q(z)) for every
z ∈ C induces bijections πn(C, z) → πn(D, q(z)) for n ≥ 0 and z ∈ C . Such a map is
therefore a homotopy equivalence. We have just verified that this criterion applies with
q = Ψ , showing that Ψ : |K•| → |βF| is a homotopy equivalence.

Lemma A.3.6 Let (Y , ϕ••) and (Y ′, ϕ′••) be elements of βF(X) . Suppose that there
exists a map κ : J → J such that Y ′

j ⊂ Yκ(j) for all j ∈ J , and ϕ′RS is the restriction
of ϕκ(R)κ(S) to Y ′

S , for all finite nonempty R,S ⊂ J with R ⊂ S . Then (Y , ϕ••) and
(Y ′, ϕ′••) are concordant. If (Y , ϕ••) and (Y ′, ϕ′••) are in βF(X,A; z) for some closed
A ⊂ X and some z ∈ βF(?) , and if κ(j) = j for all j ∈ J such that the closure of Yj has
nonempty intersection with A , then the concordance can be taken relative to A .

Proof We assume first that the fixed indexing set J is uncountable, rather than just
infinite, and concentrate on the absolute case, A = ∅ .
The case where κ = idJ is straightforward. Hence (Y ′, ϕ′••) is concordant to (Y ′′, ϕ′′••)
where Y ′′

j = Yκ(j) and ϕ′′RS = ϕκ(R)κ(S) . It remains to find a concordance from (Y ′′, ϕ′′••)
to (Y , ϕ••). Alternatively, to keep notation under control, we may assume from now on
that (Y ′, ϕ′••) = (Y ′′, ϕ′′••), in other words Y ′

j = Yκ(j) for all j ∈ J .
The sets {j ∈ J | Y ′

j 6= ∅} and {i ∈ J | Yi 6= ∅} are countable, since the coverings Y ′

and Y are locally finite and X admits a countable base. Hence there exists a bijection
λ : J → J such that Yλ(j) ∩ Yj = ∅ = Yλ(j) ∩ Yκ(j) for all j ∈ J ; for example, λ can be
chosen so that Yλ(j) = ∅ if Yj 6= ∅ or Yκ(j) 6= ∅ . Now let

Wj =
(
Yj× ]−∞, 1/2[

)
∪
(
Yλ(j)× ]1/4, 3/4[

)
∪
(
Yκ(j)× ]1/2,∞[

)
.

The Wj for j ∈ J constitute an open covering W of X × R . For any finite nonempty
S ⊂ J , we have a decomposition of WS into disjoint open sets

YS× ]−∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(SrQ)× ]1/4, 1/2[ , Yλ(Q)∪κ(SrQ)× ]1/2, 3/4[ ,

where Q runs through the nonempty proper subsets of S . Therefore, given finite nonempty
R,S ⊂ J with R ⊂ S , there is a unique morphism ψRS in F(WS) whose restrictions to the
various summands of WS in the above decomposition are the pullbacks of ϕRS , ϕλ(R)λ(S) ,
ϕκ(R)κ(S) , etc. etc., under the projections to YS , Yλ(S) , Yκ(S) , YQ∪λ(SrQ) and Yλ(Q)∪κ(SrQ) ,
respectively. (Here the two “etc.” are short for ϕTU where U = Q ∪ λ(S r Q) and T =
(R∩Q)∪λ(RrQ) in the first case, while U = λ(Q)∪κ(SrQ) and T = λ(R∩Q)∪κ(RrQ)
in the second case.) Clearly (W , ψ••) is a concordance from (Y , ϕ••) to (Y ′, ϕ′••).
Next we look at the relative case, A 6= ∅ , but continue to assume that J is uncountable.
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As in the absolute case we may assume that Y ′
j = Yκ(j) for all j ∈ J . Choose a bijection

λ : J → J such that λ(j) = j whenever κ(j) = j , and such that Yj∩Yλ(j) = ∅ = Yκ(j)∩Yλ(j)

for the remaining j . Again let

Wj =
(
Yj× ]−∞, 1/2[

)
∪
(
Yλ(j)× ]1/4, 3/4[

)
∪
(
Yκ(j)× ]1/2,∞[

)
.

The Wj for j ∈ J constitute an open covering W of X ×R . For a finite nonempty S ⊂ J
which is contained in the fixed point set of κ , we simply have WS = YS × R . For a finite
nonempty S ⊂ J which does not contain any fixed points of κ , we have a decomposition
of WS into disjoint open sets

YS× ]−∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(SrQ)× ]1/4, 1/2[ , Yλ(Q)∪κ(SrQ)× ]1/2, 3/4[ ,

as before, where Q runs through the nonempty proper subsets of S . For finite nonempty
S ⊂ J which contains some fixed points of κ and some non–fixed points of κ , write
S = S1 ∪ S2 where S1 = {j ∈ S | κ(j) = j} and S2 = S r S1 . Then WS2 decomposes
into disjoint open sets as above, whereas WS1 = YS1 × R . Hence WS = WS1 ∩WS2 still
decomposes as a disjoint union of open sets

YS× ]−∞, 1/2[ , Yλ(S)× ]1/4, 3/4[ , Yκ(S)× ]1/2,∞[ ,
YQ∪λ(SrQ)× ]1/4, 1/2[ , Yλ(Q)∪κ(SrQ)× ]1/2, 3/4[ ,

where Q runs through the nonempty proper subsets of S2 only. We can therefore define
morphisms ψRS in F(WS) much as in the absolute case and obtain a relative concordance
(W , ψ••) from (Y , ϕ••) to (Y ′, ϕ′••).
Now we must consider the case(s) where J is countably infinite. We can in fact reason as
before provided that X is a closed manifold, because in that case the sets {j ∈ J | Y ′

j 6= ∅}
and {i ∈ J | Yj 6= ∅} are finite. While this is not exactly what we want, it allows us to make
a comparison between the case where J is countable and the case where it is uncountable.
To this end, choose an uncountable set J ] containing J as a subset. Corresponding to J
and J ] we have two variants of βF . We keep the notation βF for the J –variant, and
write β]F for the J ]–variant. There is a natural inclusion βF(X) → β]F(X); namely,
any J –indexed open covering of X can be regarded as a J ]–indexed covering of X where
all open sets with labels in J ] r J are empty. By all the above, |βF| → |β]F| induces an
isomorphism of homotopy groups or homotopy sets, for any choice of base vertex in |βF| ,
the point being that spheres are closed manifolds. By proposition 2.4.3, this implies that
the inclusion–induced map of concordance sets

βF [X,A; z] −→ β]F [X,A; z]

is always a bijection, and not just when X is closed. We have therefore reduced the case
of a countable J to the case of an uncountable one, and that has been dealt with.
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B Realization and homotopy colimits

B.1 Realization and squares

Lemma B.1.1 Let u• : E• −→ B• be a map between incomplete simplicial spaces (or
good simplicial spaces). Suppose that the squares

Ek
uk //

di

��

Bk

di

��
Ek−1

uk−1 // Bk−1

are all homotopy cartesian (k ≥ i ≥ 0). Then the following is also homotopy cartesian:

E0
u0 //

incl.
��

B0

incl.
��

|E•|
|u•| // |B•|.

Lemma B.1.2 Let u• : E• −→ B• be a map between incomplete simplicial spaces (or
good simplicial spaces). Suppose that, in each square

Ek
uk //

di

��

Bk

di

��
Ek−1

uk−1 // Bk−1

the canonical map from any homotopy fiber of uk to the corresponding homotopy fiber of
uk−1 induces an isomorphism in integer homology. Then in the square

E0
u0 //

incl.
��

B0

incl.
��

|E•|
|u•| // |B•|,

the canonical map from any homotopy fiber of u0 to the corresponding homotopy fiber of
|u•| induces an isomorphism in integer homology.

Proofs. It is shown in [36, 1.6] and [23, Prop.4] that the geometric realization procedure
for simplicial spaces respects degreewise quasifibrations and homology fibrations under rea-
sonable conditions. The two lemmas follow from these statements upon converting the maps
uk into fibrations.

Corollary B.1.3 Let C be a small category and let u : G1 → G2 be a natural transforma-
tion between functors from C to spaces. Suppose that, for each morphism f : a→ b in C ,
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the map f∗ from any homotopy fiber of ua to the corresponding homotopy fiber of ub in-
duces an isomorphism in integer homology. Then for each object a of C , the inclusion of any
homotopy fiber of ua in the corresponding homotopy fiber of u∗ : hocolimG1 → hocolimG2

induces an isomorphism in integer homology.

Proof Apply lemma B.1.2 with Ek :=
∐
G1(D(k)) and Bk =

∐
G2(D(k)), where both

coproducts run over the set of contravariant functors D from the poset k to C . Then |E•|
is hocolimG1 and |B•| is hocolimG2 .

B.2 Homotopy colimits

Any functor D from a small (discrete) category C to the category of spaces has a colimit,
colimD . This is the quotient space of the coproduct∐

a in C

D(a)

obtained by identifying x ∈ D(a) with f∗(x) ∈ D(b) for any morphisms f : a → b in C
and elements x ∈ D(a). It is well known that the colimit construction is not well behaved
from a homotopy theoretic point of view. Namely, suppose that w : D1 → D2 is a natural
transformation between functors from C to spaces and that wa : D1(a) → D2(a) is a
homotopy equivalence for any object a in C . Then this does not in general imply that the
map induced by w from colimD1 to colimD2 is again a homotopy equivalence. (It is easy
to make examples with C equal to the poset of proper subsets of a two–element set, so that
the colimits become pushouts.)

Call a functor D from C to spaces cofibrant if, for any diagram of functors (from C to
spaces) and natural transformations

D v // E Fwoo

where wa : F(a) → E(a) is a homotopy equivalence for all a ∈ C , there exists a natu-
ral transformation v′ : D → F and a natural homotopy D(a) × [0, 1] → E(a) (for all a)
connecting wv′ and v . It is not hard to show the following. If v : D1 → D2 is a natural
transformation between cofibrant functors such that va : D1(a) → D2(a) is a homotopy
equivalence for each a ∈ C , then v has a natural homotopy inverse (with natural homo-
topies) and therefore the induced map colimD1 → colimD2 is a homotopy equivalence.

This suggests the following procedure for making colimits homotopy invariant. Suppose
that D from C to spaces is any functor. Try to find a natural transformation D′ → D
specializing to homotopy equivalences D′(a)→ D(a) for all a in C , where D′ is cofibrant.
Then define the homotopy colimit of D to be colimD′ . If it can be done, hocolimD is at
least well defined up to homotopy equivalence.
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This point of view is carefully presented in [4]. Some of the ideas go back to [25]. As we
will see in a moment, there is a construction for D′ which depends naturally on D .

The standard foundational reference for homotopy colimits and homotopy limits is the book
[1] by Bousfield and Kan. But the first explicit construction of homotopy colimits in general
appears to be due to Segal [38].

Again let D be a functor from a discrete small category C to the category of spaces.
Following Segal we introduce a topological category denoted C ∫D , the transport category
of D :

ob(C ∫D) =
∐

a∈ob(C )

D(a) , mor(C ∫D) =
∐

f∈mor(C )

D(σ(f)) .

Here σ(f) denotes the source of a morphism f in C . We will write morphisms in C ∫D
as pairs (f, x) where f ∈ mor(C ) and x ∈ D(σ(f)). The composition (g, y) ◦ (f, x) of
two such morphisms is defined if an only if g ◦ f is defined in C and f∗(x) = y , in which
case (g, y) ◦ (f, x) = (g ◦ f, x). The classifying space B(C ∫D) is a model for the homotopy
colimit of D .

To relate B(C ∫D) to our earlier discussion we define a functor D′ from C to spaces as
follows. For a ∈ ob(C ) let C ↓a be the category of C -objects over a , [21, II.6]. Let

D′(a) := B ((C ↓a)∫D)

for objects a in C , where we view D as a functor on C ↓a . Then D′ is cofibrant and the
canonical map D′(a)→ D(a) is a homotopy equivalence for every a in C . Moreover,

B(C ∫D) ∼= colimD′.

Note in passing that if D(a) is a singleton for each a in C , then the transport category
C ∫D is identified with C and so hocolimD = BC .

Proposition B.2.1 Let w : D1 → D2 be a natural transformation between functors from
C to spaces. Suppose that wa : D1(a)→ D2(a) is a homotopy equivalence for any object a
in C . Then the map hocolimD1 −→ hocolimD2 induced by w is a homotopy equivalence,
where hocolimDi = B(C ↓Di) .

This is just a partial summary of our conclusions above. We proceed to a reformula-
tion, B.2.3 below, in which homotopy colimits are not mentioned explicitly.

Definition B.2.2 Let p : E → C be a continuous functor between small topological
categories, where C happens to be discrete. We say that p is a transport projection if the
following is a pullback square of spaces:

mor(E ) source //

p

��

ob(E )

p

��
mor(C ) source // ob(C )
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Proposition B.2.3 Let p : E → C and p′ : E ′ → C be transport projections as in
definition B.2.2. Let u : E → E ′ be a continuous functor over C . Suppose also that,
for each object c in C , the restriction Ec → E ′

c of u to the fibers over c is a homotopy
equivalence. Then Bu : BE → BE ′ is a homotopy equivalence.

Proof Note that E ∼= C ↓ D and E ′ ∼= C ↓ D where D(c) = Ec and D′(c) = E ′
c for an

object c in C . Note also that Ec and E ′
c are topological categories in which every morphism

is an identity, that is, they are just spaces.

Next we mention two useful naturality properties of homotopy colimits. To make a ho-
motopy colimit, we need a pair (C ,D) consisting of a small category C and a functor D
from C to spaces. By a morphism from one such pair (C s,Ds) to another, (C t,Dt), we
understand a pair (F , ν) consisting of a functor F : C s → C t and a natural transformation
ν from Ds to DtF .

Remark B.2.4 Such a morphism induces a map (F , ν)∗ from hocolimDs to hocolimDt .

Suppose that (F0, ν0) and (F1, ν1) are morphisms from (C s,Ds) to (C t,Dt). Let θ be a
natural transformation from F0 to F1 such that ν1 = Dt(θ) ◦ ν0 .

Remark B.2.5 Such a θ induces a homotopy θ∗ from (F0, ν0)∗ to (F1, ν1)∗ .

Proof Let I = {0, 1} , viewed as an ordered set with the usual order and then as a cate-
gory. Then BI ∼= [0, 1]. Let p : C ×I → C be the projection. The data (F0, ν0), (F1, ν1)
and θ together define a morphism from (C s × I ,Ds ◦ p) to (C t,Dt). By remark B.2.4,
this induces a map from hocolim (Ds ◦ p) ∼= (hocolimDs)×BI to hocolimDt .

Let C be a small category and let a 7→ Fa be a covariant functor from C to the category
of sheaves on X .

Lemma B.2.6 |hocolimaFa| ' hocolima |Fa| .

Proof Definition 4.1.3 and theorem 4.1.2 give |hocolimaFa| ' B|C ∫F| and proposi-
tions A.2.1, A.2.3 imply B|C ∫F| ∼= B(C ∫ |F•| ), where |F•| denotes the functor a 7→ |Fa|
from C to spaces.

Corollary B.2.7 Let C be a small category and let a 7→ Ea and 7→ E ′a be covariant
functors from C to the category of sheaves on X . Let ν = {νa : Ea → E ′a} be a natural
transformation such that every νa : Ea → E ′a is a weak equivalence. Then the induced map
hocolima Ea → hocolima E ′a is a weak equivalence (between sheaves on X ).
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