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THE HOMOLOGY OF
THE MAPPING CLASS GROUP

EDWARD Y. MILLER

1. Introduction

The mapping class group Γg is the group of components of the groups
Diff+(Sg) or orientation preserving diffeomorphisms of a Riemann surface Sg

of genus g. Since each component is contractible, there are natural isomor-
phisms of integral cohomology groups:

(1.1) H*(BΏm+{Sg); z) = H*{BTg; Z).

In the context of complex analysis, Γg is called the Teichmuller group. It
acts properly and discontinuously on the Teichmuller space T3g~3 with finite
isotropy groups. The quotient of this action is the module space M g of smooth
algebraic curves of genus g. Consequently, there is an isomorphism of rational
cohomology:

(1.2) H*{BTg:A) = H*(Mg:Q).

In this paper we will show that M g , BTg, and BΌiϊl+(Sg) get more and
more complicated as the genus g tends to infinity. More precisely, we will
prove:

Theorem 1.1. Let Q[z2, z4, z6, ] denote the polynomial algebra of genera-

tors z2n in dimension In, n = 1,2,3, . There are classes y2, y4, , y2n, '*

with y2n in the 2nth cohomology group H2n(BΌiίί+(Sg)\ Z) such that the

homomorphism of algebras sending z2n toy2n

is an injection in dimensions less than (g/3).
These classes y2n were first introduced by D. Mumford [7]. In the topologi-

cal context, they are defined as follows:
Let p: E -> BΌiίΐ+(Sg) be the universal Sg bundle with fiber Sg. Let d

be the first Chern class of Γ*, the tangent bundle along the fibers of the
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fibration p, and p* denote the "integration along the fibers" homomorphism

in integral cohomology. The homomorphism p* maps H2n+2{E\Z) to

H2n(BDiff+(Sg); Z) (since the fibers are dimension 2). Define y2n by

(1-3) y2n=P*(dn+ι),

where dn+1 is the (n + l)-fold cup product of d. {Note: D. Mumford in [7]

defines analogous classes in H *(M g; Z) by a strictly algebraic process. His

classes extend to the closure of the moduli space Mg.)

It is useful to utilize Diff(5g, Z)2), the group of orientation preserving

diffeomorphism of Sg fixing a chosen disk D2 in Sg. By taking connected sums

of the surfaces Sg and Sh (of genera g and h) along their fixed disks we obtain

natural homomorphisms

(1.4) Diff(S g,/) 2) X Diff(SΛ,Z)2) -> Diff(S g + Λ ,Z) 2 ),

(1.5) Diff(Sg,Z>2) X(identity) -* Diff(S g + Λ ).

In these terms one of the basic results concerning the homology of the

mapping class group is the following remarkable theorem of J. Harer [3].

Theorem 1.2 (/. Harer). The induced maps of classifying spaces

(1.6) 5Diff+(5g,Z)2)^5Diff+(5g + Λ), £Diff+(Sg,I>2)^f?Diff+(Sg)

give rise to isomorphisms on integral homology in dimensions less than (g/3).

Note. Since Theorem 1.2 does not appear in Harer's work in the form

stated here we will show in §4 how it follows from his much stronger results

[3].

Harer's theorem implies that the rational cohomology of the moduli space

M g stabilizes. Indeed this is true integrally since M g is a F-manifold whose

singularities have codimension that increases with g (see [7]). The algebraic

analog of BΌifί+(Sg) is the moduli space of triples (Cp,p,υ) where Cg is a

smooth curve of genus g, p is a point on Cg, and υ is a nonzero cotangent

vector based at p.

By Theorem 1.2 the limit of homology groups

is of finite type. The homomorphisms (1.4) induce maps of classifying spaces

(1.7) F: BΌiff+(Sg9D
2)xBΌifί+(Sh,D

2)^BΌiίf+(Sg+h9D
2).

These induce a product F+ on the limit and so a Hopf algebra structure on the

limit A.

Theorem 1.3. (a) A = Lim H*(B Diff+(Sg, D 2 ) ; Q) under the F^product is

a commutative, cocommutative Hopf algebra of finite type.
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(b) A is the tensor product of a polynomial algebra on even dimensional

generators and an exterior algebra on odd dimensional generators.

(c) A contains at least one generator x2n in each even dimension 2n9 n =

1,2,3, ••-.

As explained in §2, Theorem 1.3 part (a) is implied by general considera-

tions. Part (b) then follows from the general structure theory of Hopf algebras

over Q of Milnor and Moore (see [6]). Part (c) is proved by explicitly

constructing the desired classes x2n and detecting them by means of the

universal cohomology classes y2n of Mumford.

It is presently an open question whether or not there are nontorsion classes

in the odd dimensional homology of the mapping class groups Γg in dimen-

sions less than (g/3). Mumford has conjectured that A is the polynomial

algebra on precisely the classes x2n, n = 1,2,3, [7] (i.e., one generator in

each even-dimension). Quite possibly the number of even dimensional genera-

tors might increase exponentially with dimension.

From the definition (1.3) the universal classes y2n restricted to

H2"(BΌiΐf+(Sg9 D2)\Z) are compatible under the inclusions (1.6). Conse-

quently, they define universal cohomology classes in the inverse limit

Lim H2n(BΌiίf+(Sg, D2)\ Z).

The main properties of these universal classes y2n are:

Lemma 1.4. The classes y2n vanish on the F^-decomposibles of the Hopf

algebra A above.

By Lemma 1.4 the classes y2n may be used to detect polynomial generators

of A. That is, if we construct classes x2n in A with nonzero evaluation by y2n

(i e > [yin>x2n\φ Q\ then the x2n

9s are the desired polynomial generators

sought in Theorem 1.3, part (c). Dually (again using Harer's Theorem 1.2)

Theorem 1.1 is proved.

In view of Harer's Theorem 1.2, H2n(BΌiίf+(Sg9 D2)\ Z) is isomorphic to

H2n(BΌifi+(Sg)\Z) for g. large. Hence to prove Theorem 1.3, part (c) it

suffices to construct explicit classes u2n in H2n(B Diiί+(Sg)\ Z) with [y2n, u2n]

Φ 0 for g large.

The desired examples are provided by Theorem 1.5 below.

Theorem 1.5. For each n there is a fϊbration of smooth projective algebraic

varieties pn: Zn+1 -> Xn with fiber a smooth connected curve, d i m c ^ " = w,

[dn+ι, Zn+ι]Φ 0. Here d equals the first Chern class of the tangent bundle along

the fibers Γ* topn. The genus of fiber Y" ofpn may be made as large as desired.

The equality [dn +\ Zn+ι] = [{pn)^dn+ι\ Xn\ = [y2n, Xn\ follows from the

definition of the "integration over the fibers" map (/>„)*• Hence, once Theo-

rem 1.5 is proved, Theorem 1.3, part (c) and Theorem 1.1 are proved as

explained above.
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The construction of pn: Zn+ι -> X" of Theorem 1.5 is modeled on the

methods of Atiyah [1]. In that paper a more standard detection procedure is

suggested. It may be described as follows.

The local coefficient system [i/^Fiber; Z)] with its symplectic form via cup

product defines a classifying map

L: BΌifϊ+(Sg,D
2) -+£Sp(2g,Z).

Equivalently, L is the classifying map of the homomorphism Diff+(Sg, D2) ->

Sp(2g, Z) which records the symplectic homomorphism induced by a diffeo-

morphism of the Riemann surface Sg. It is natural to attempt to detect nonzero

classes in B Diff+(Sg9 D2) by pulling back classes from i?Sp(2g, Z). This is

Atiyah's approach in studying two dimensional classes.

The real symplectic group Sp(2g, R) has maximal compact subgroup t/(g),

the unitary group. Thus, the inclusion U(g) -> Sp(2g, R) induces a homotopy

equivalence / : BU(g) -> £Sp(2g, R) with inverse J~ι. Consequently, the

inclusions and homomorphisms of groups Diff+(5g, D2) -> Sp(2g, Z) -»

Sp(2g, R) <- U(g) induce a map of classifying spaces

(1.8) G:BΌiff+(Sg,D
2)-+BU{g).

Recall that the homology of BU = Lim BU(g) is a polynomial algebra

under the Whitney sum on generators zn in dimension 2«; and that the

primative characteristic class s(n)(t) = n\ch(n)(t) in H2n(BU; Z) vanishes on

decomposibles with [ch(n)(t\ zn] Φ 0. Here t is the universal bundle over BU.

See [1].

Note that the map G sends the .F-product in Lim B Diff+(Sg, D2) to the

Whitney sum product of bundles in BU = Lim BU{g). Consequently,

G * ( C / J ( W ) ( O ) vanishes on the ivdecomposibles of A and so may be used to

detect possible polynomial generators.

The relationship between this detection procedure and the nonmultiplica-

tivity of the signature has been elucidated by Atiyah [1]. He shows that the

signature of the total space of a (4k — 2) dimensional family X2k~ι of

Riemann surfaces can be expressed in terms of the classes G*(ch(n)(t))

evaluated against the characteristic classes of X2k~ι.

The relationship between these detection procedures was independently

discovered by D. Mumford. It is:

Theorem 1.6. There exist as classes in H*(B Diff+(Sg, D2): Q):

(1.9) G*(chiH)(t)) = Nn(y2n) + {decomposible)

with N2k = 0 and N2k_ι = (-\)k-ιBk/(2k)\, where Bk is the kth Bernoulli

number.
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Combining the above Theorem 1.1 and 1.4 we have proved the result.

Theorem 1.7. The map G*

(1.10)

H*(BU; Q) -> i/*(£Sp(2g, Z ) ; Z ) -* Urn H*(BΌift+(sg9 D2),Q)

is an injection of the polynomial algebra Q[cn(t)/n odd].

Recall that Borel [2] has proved that the cohomology of B Sp(2g,Z)

stabilizes and the limit is a polynomial algebra on generators in dimensions 2,

6,10,14, . Thus we have proved:

Theorem 1.8. The map / /*(£Sp(Z); (?) -+ LimH*(BΌiff+(Sg, Z)2); Q) is

an injection.

Results similar to those described here have been independently obtained by

Morita.

It is a pleasure to acknowledge the help and encouragement which I received

from John Harer in doing this work.

2. Proofs of the above results assuming Theorems 1.2 and 1.5

Proposition 2.1. (a) There is an action of the little square operad of disjoint

squares in D2 on the disjoint union of the B Diΐί+(Sg9 D2)'s extending the

F-product.

(b) The group completion of the disjoint union of the BΌifί+(Sg, D2ys under

F is a double loop space.

(c) F induces a commutative, cocommutative, associative, coassociative Hopf

algebra structure on the limit A = Lim H*(B Diff+(Sg9 D2); Q).

(d) A is of finite type and is a tensor product of a polynomial algebra on even

dimensional generators and an exterior algebra on odd dimensional generators.

This proposition is easily, proved. Part (a) is obtained by taking connected

sums of the chosen fixed disks with the disjoint squares in the disk D2 to get

maps

(2.1) Config/Z)2) x[Diff+ {Sg,D
2)Y -> Diff+ {sg,D

2)

which when classified give the desired structural maps of part (a). Here

Configj(D2) is the space of configurations of j disjoint squares in the disk

(sides parallel to the JC, y axes). General loop space theory (see May [5]) shows

that part (a) implies (b). Harer's Theorem 1.2 above implies that A is of finite

type. This combined with the structure theory of Hopf algebras over Q of

Milnor and Moore [6] implies part (c). Note Proposition 2.1 subsumes Theo-

rem 1.3, parts (a) and (b).
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Proof of Lemma 1.4. The universal bundle E over BΌiίί+(S^ D2) X
B Diff+(SA, D ) is a union of bundles E = EλU E2, where El9 E2 are smooth
surface bundles with fibers (S — (interior of D2)\ respectively (Sh — (interior
of D2)). The intersection Ex n E2 is equal to the common boundaries dEλ =
dE2 which is a trivial circle Sι = dD2 bundle.

Form the bundles Ej* (j = 1,2) by identifying two points x, y of E} if they
are in the same fiber and lie in the boundary circle. Equivalently, Eλ*, E2*,
may be obtained from E by identifying two points x, y of E if they both lie in
the same fiber and both lie in E2, respectively Ev These identifications define
continuous maps

(2.2) fcE-^E^ f2:E-+E:2*

Let p denote the bundle map for E and pλ\ Cλ -> .BDiff^, D2), p2:
C2 -» BΌiff+(Sh, D2) denote the universal (Sg, D2\ respectively (Sh,D

2),
bundles. Thus the pullback bundles (pr1)*(C1), (ρr2)*(C2) of Cv respectively
C2, to the product BΌiff+(Sg, D2) X ^Diff+(5Λ, D2) are precisely Ex., E2*
respectively. Let d, dvd2, denote the first Chern class of the tangent bundle
along the fibers of the universal bundles p: E ^> BΌiff+(Sg, D2) X
BΌiff+(Sh,D

2\ Pι: Cx^BΌiίf+(Sg9D
2)9 p2: C2 - BΌiίf+(Sh9 D2) re-

spectively.

By construction the equality of d = (/χ)*(pr1)*(έ/1) + (/2)*(pr2)*(^2) A l s o
the two terms in this sum have disjoint supports. Thus, cn+ι =
(Λ)*(pri)*(^i)π + 1 + (/2)*(pr2)*(</2)

w+1 and so F*(y2n) = (y2n X 1) +
(y2n X 1) as claimed in Lemma 1.4.

As explained by Atiyah [1], Theorem 1.6 follows from the Grothendieck
Riemann Roch theorem. Theorems 1.7 and 1.8 follow from this by combining
Theorems 1.1, 1.2, 1.6 and the fact that G sends the F-product to the Whitney
sum on BU.

As in §1, Theorem 1.1 follows from Theorems 1.2 and 1.5 and the above.
The whole crux of this paper therefore rests on the construction of the
examples of Theorem 1.5.

3. Construction of pn\ Zn+ι -* X"

Our construction is modeled on that in Atiyah's paper [1]. There he produces
a curve bundle over a curve with nonzero signature. Hence we review his
methods.
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Let C be a connected curve with free involution A and genus g. In other
words, C is the double cover of a curve C" = (C/A) of genus g'. These exist as
soon as g' is at least 1 and we take g' at least 2. Note that g = 2g' - 1 and so
is at least 3 and is odd.

Let X be the covering of C given by the homomorphism

(3.1) πx(C) - Hτ(C; Z) - HX(C; Z/2Z) = (Z/2Z)2g.

It has the property that if /: X -> C is the associated covering map, the
induced homomorphism

(3.2) / ' : H\C\ Z/2Z) -> H\X\ Z/2Z)

is zero.
Now consider in X X C the graphs Ĝ  and G^ of / and Af. Atiyah's choice

of / was to ensure the following property of these graphs.
Lemma 3.1 [1, p. 75]. The homology class of the sum (Gf + GAf) in

H2(X X C\Z) is even {i.e., divisible by 2).
By lemma 3.1 we may form the ramified double covering Z 2 of X X C

along the divisor (G, + GAf). This gives Atiyah's example pλ: Z 2 - > I X
(Pri)

C -> I = X . Z is a 4-manifold with nonzero signature which fibers over a

Riemann surface. The fiber of the map pλ in this example is Yι, the ramified

double covering of the curve C branched at two points. For his example

Atiyah proves

(3.3) [y2, X1] = \d\ Z2] = 3(signature of Z 2 ) = 3(g - l)2*-\

d is the first Chern class of the tangent bundle along the fibers of the map pv

To generalize the above construction it is convenient to form certain finite
covers of C. For this purpose choose an epimorphism Hλ(C\ Z) ^> {Z + Z).
Let Gn be the subgroup of ^ ( C ) which is the kernel of the epimorphism

(3.4) mx{C) -> HY{C\ Z)^{Z + Z)^ {(Z/22nZ) + ( Z / 2 " Z ) ) ,

and let Cn -> C be the associated 4"-fold covering of C with its free (Z/2WZ)
+ (Z/2"Z) action.

The subgroups Gn of 7rx(C) fit into a descending sequence

(3.5) πx(C) = G0ΏGλΏG2Ώ 3 Gn_λ Ώ GnΏ

with (Gn/Gn_λ) = (Z/2Z) + (Z/2Z). Equivalently, the finite covers Cw fit
into a tower of coverings

(3.6) C = Q «- Q <- C2 <- • <- Cw_x <- Cn ^ /,
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where Cn -> Cn_x is a 4-fold covering. Indeed, Cn_x is the quotient of Cn by a

free (Z/2Z) + (Z/2Z) group action. Note by construction Cn is a connected

curve of genus g(n) = 4n(g - 1) + 1.

Starting from Atiyah's example px: Z2 -+ X1 we will inductively define

smooth algebraic fibrations of smooth projective algebraic varieties pn\ Zn+ι

-> Xn with fiber Yn such that:

A (n ) : pn has fiber 7W a connected curve.

2?(n): There are maps Zn+ι -> Zn such that the composite map

Zn+ι -> Z" -> Zn~ι -* ••• -*Z2^>XXC->C

(37) sends both iTι{Yn) and ^(ϊ ) , ) onίo the subgroup Gn_x of

J M + 1 , Z π + 1 ] # 0, where dn is the first Chern class of

the tangent bundle along the fibers of pn.

Atiyah's construction is the n = 1 case, px: Z2 -• Λ"1. Such a construction

will then provide the desired examples of Theorem 1.5.

Let us assume inductively that p{. Zi+ι -> X' has been constructed satisfy-

ing properties A(i\ B(i\ C(i) for i < /i [/i > 1].

In view of B(n) we may lift the map (3.7) Zn+ι -» C to the covering Cn_!

thereby obtaining a map Z Λ + 1 -• Cn_x. By 5(AI) we conclude that this map

sends both ^ ( ϊ ^ ) and irx(ZOn+l) onto ττx(Cn_x) = G,,.!.

Let Zr be the 4-fold covering c: T -> Z w + 1 induced from the 4-fold

covering Cn -* Cπ_x by the map constructed above. By definition, Z' comes

equipped with two commuting free involutions [say An9Bn] giving a free

(Z/2Z) + (Z/2Z) action on Z' and a map Z' -> Cπ which is (Z/2Z) +

(Z/2Z) equivariant. Also c: Z' -> Z" + 1 is the quotient map of the free

action. Let Y denote the fiber of Z' -> Z n + 1 -> ^ w . The fiber 7Π of /?„ is then

the quotient of Y' by the free action. Since both πx(Yn) and Π 1 (Z W + 1 ) map

onto Gn_x and thence onto (Gn_x/Gn) = (Z/2Z) + (Z/2Z), Y' is a con-

nected curve. Moreover we have the property:

(3.8) mx(Z') -* iτx(Z»+ι) - Vι(C) and πx(Y) -+ τrx(Z»+ι) - πx(C)

both have image Grt.

Now consider the fiber product of Z' with Z' o\er Xn defined by the

pullback diagram

(3.9)

(Z>XX,
I

(Pr.)j
Z'

Z ' ) -
pr2

r

•*Z'
1

I-
+ xn
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with r the composite of c: Z' -> Z"+1 with pn: Zw + 1 -> X". The common

fiber is Y\ the fiber of r.

Note. The fiber product of two smooth algebraic fibrations of smooth

projective algebraic varieties (say /: V -> W, g: V -> W) is a smooth projec-

tive algebraic variety, this is proved by showing that the fiber product is a

Hodge manifold and appealing to the intrinsic characterization of smooth

projective algebraic varieties of Kodiera [4].

Let A, B be the fiber preserving commuting free involutions on the fiber

product of (3.9) defined by A(x9 y) = (JC, Any\ B(x, y) = (x, Bn(y)). These

give a free (Z/2Z) + (Z/2Z) action on the fiber product (3.9) which is fiber

preserving for the projection prx (projection on the first factor). Let S:

Z' -> (Z' X χn Z') be the section S(z) = (z, z) and consider the smooth di-

visor

(3.10) D = S{Z')+AS{Z').

This smooth divisor intersects each fiber Y' of prx in precisely two points.

Corresponding to Lemma 3.1 we will later prove:

Lemma 3.2. Let R: πλ(Z') -> K\xi[H\Y\ Z/2Z)] be the representation of

τrλ(Z') on the cohomology of the fiber of prx above which records the monodromy

of the fibration. Then the kernel Kn = {kernel of R) has finite index and so

defines a finite covering Γ π + 1 -> Z'. Let Xn+ι -> Tn + ι be the finite covering

associated to the epimorphism πι(Tn+1) -> Hx(Tn+1; Z / 2 Z ) . Then in the pull-

back diagram which defines Wn+2

9

\
^ v-w + l _^ η-Ή

the divisor h~ιl(D) regarded as an element of H2(Wn+2; Z) is even (i.e.,

divisible by 2).

Given Lemma 3.2, we may form the ramified double covering Z π + 2 of

Wn+1 along the divisor h~\D). The composite pn+1: Zn+2 ^ Wn+2 Λ Xn+ι

projective algebraic varieties. (See pp. 76-77 of [1].)

By construction y n + 1, the fiber of /?M+1, is the ramified double covering of

Y (ramified at two points). Also Y is a nontrivial 4-fold covering of Yn, the

fiber of pn. Since Yn is a connected curve, Yn+1 is a connected curve. This

proves property A(n + 1) of (3.7).

The map Z w + 2 -> Z n + 1 needed for property ^(AI + 1) of (3.7) is provided

by the composite

(3.12) Z π + 2 - Wn+2{Z' Xχn Z ' ) ->Z^ Zn+ι.
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Now by (3.8) the images of 7rι(Zn+2) and ττ1(yw + 1) under the map

Zn+2 _> Zf _+ Zn+\ _> Q m u s t b e c o n t a i n e d i n Gn in πx(C). On the other

hand, this composite maps the fiber Yn+ι via

Yn+1 = (fiber of PH+1) -> (fiber of Wn+2 -> Xn+ι)

(3.13) = (fiber (Z' X χn Z') - Zr) = (fiber of Z' -> Xn)

= r -> (fiber of Z M + 1 -» * w ) - C.

By (3.8) the image of ̂ ( 7 ' ) in ̂ ( C ) is Gw. Hence the image of iΓι(Yn+ι) is

Gn because the first map is a nontrivial branched covering and the next three

maps are homeomorphisms. Here we use the geometric fact that any nontrivial

ramified branched covering A -> B with A, B connected curves induces an

epimorphism of fundamental groups. Thus the image of the fundamental

groups of both Yn+Ϊ and Zn+2 equal Gn. This proves property B{n + 1) of

(3.7).

To calculate [dn+1, Zn+2] we follow Atiyah's analysis [1]. Note that the map

(3.12) sends the fibers as indicated in (3.13). Thus if we consider the composite

(3.14) Zn+2 -» Zn+2 -> Z" -> -> Z 2 -• XX C -> C,

then we may pull back a holomorphic differential w on C to obtain forms

w(n + 2), w(n + 1) on Z w + 2 , Z w + 1 respectively. These forms are holomorphic

sections of the duals to the tangent bundle along the fibers of pn+2, Pn+ι

respectively. Let cx() denote the first Chern class and (form) denote the

divisor class of zeros of a holomorphic form. We have equalities:

(3.15) -(w(n + 2)) = cλ(Tangent bundle along the fibers of pn+ι) = dn+ι,

(3.16) -(w(n 4- 1)) = cλ(Tangent bundle along the fibers of pn) = dn.

The relationship between the divisors (w(n 4- 2)), (w(n + 1)), has been

explicated by Atiyah [1]. Denote by p the map Z w + 2 -> Zn+1 of (3.12). Since

Z w + 2 is constructed by taking the double branched covering along the ramifi-

cation divisor h'\D) in Wn+2 and the map Wn+2 -> Zn+ι of (3.12) induces

an isomorphism of fibers (see (3.13)) we obtain the equation:

(3.17) (w(n + 1)) = p*(w(n + 1)) + [ ( A " 1 ^ ) ) ]

The use of brackets here means that we regard the ramification divisor to be in

Z M + 2 . Combining (3.15)-(3.17) we have the equality:

(3.18) ^ i-p ίO-KΛ
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For notational convenience let En equal (Z' Xχn Z') and Fn equal (Zn+ι

X χn Z w + 1 ) in the following calculations.

Using formula (3.18) the following sequence of equalities shows that

[ί<//ί + 1)" + 2, Zn+2] is nonzero, thereby proving property C(n + 1) of (3.7).

(3*19)

(#1) [ κ + i ) " + 2 ,

- [Σ (" 1

(#4)

(#5)

(#6)

(#7)

(#8, #9) =16Λ^((l/2)" + 2 - l ) [( ί / / ί ) " + 1, Z" + 1 ] # 0

The equalities in (3.19) are justified as follows:

Equality # 1 by (3.18) and the binomial expansion. All the sums in (3.19)

range over indices i = 1 to n + 2.

As for equality # 2 , note that the divisor [(h"\D))] in Zn+2 is b*(cx(L)) for

some complex line bundle over Wn+2 with cλ(L2) dual to the ramification

divisor h~ι(D) in Wn+2. Therefore in rational cohomology we have [(Λ'H^))]

= b*(cx(L))1 = (l/2yb*(h-ι(D)y where on the right h'\D) is regarded as a

divisor and dually a cohomology class on Wn+2. Atiyah gives a thorough

discussion of this poiint in [1]. Since b: Zn+2 -> Wn+2 is of degree 2, equality

# 2 follows with /?' = C (pr2) A and /? = p'b.

Next note that h: Wn+2 -> £„ = (Z' X M̂ Z') is an JV-fold unbranched

covering. Λ̂  is the degree of the finite covering Xn+1 -> Z' (see (3.11)). Hence,

equality # 3 holds with q = c (pr2) and p' = qh.

Recall that the divisor Z) is 5(Z') + AS(Z') for disjoint sections X, AS of

prx (see (3.9)). Thus (Z))' - (5(Z'))' + (AS(Z% The automorphism ^ sends

S(Zy into ^(SίZ' ) ' and in # 3 these classes are evaluated against terms in the

image of q*. Consequently, the term involving AS(Z'y may be replaced by

one involving S{Z')1 instead. This shows equality # 4 .
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Let S": Z M + 1 -> Fn = ( Z n + 1 X ^ Z " + 1 ) be the section S"(α) = (α, a). Re-

call that the section S: Z' -+ En = (Z' Xχn Z') is given by S(z) = (z9z).
There is a commutative diagram:

(cXc)

£ F

(3.20) ( P r 2 ) | | (pr 2 )

Z' " Zn+1

Recall that (id, A, B, AB) gives a free (Z/2Z) X (Z/2Z) action on the
space Fn Z w + is the quotient of the free action of (id, A9 B, AB) on Z'. The
quotient map is c: Z' -» Z w + Consequently, we may replace (S(Z'))Z in # 4
by ((c X c)-ιS'(Z)Y = S(Zy + ΛS(Z')' + BS(ZJ + ^ ^ ( Z ' ) ' at the cost of
dividing by 4. Equality # 5 follows. Since (c X c) is an unbranched covering of
degree 16, equality # 6 holds.

The normal bundle of the diagonal embedding of a manifold M in M X M
is canonically identified with the tangent bundle of M. Similarly, the normal
bundle of the section S\a) = (α, a) in Fn is precisely the tangent bundle along
the fibers to Z " + 1 -> Xn. Let U denote the Thorn class of the normal bundle T.
Hence we may replace (S'(Zn+ι)Y by (-ί/)' in #6. Since

[(phH(dnr
2-%U)\ Fn\ = [(prj*((^+1)(-l)'(ί/), Fn\

= [{dn)
n+\ Z-+1]

equality # 7 holds. Here we used the facts that U2 = (pr1)*(c1(Γ))ί7, dn =
cγ(T\ and C/ restricted to a fiber of prx is the generator (since the section S'
intersects each fiber precisely once).

Equality # 8 holds by arithmetic while inequality # 9 is true by the induc-
tion hypothesis.

This completes the induction step in the proof of Theorem 1.5 assuming
Lemma 3.1.

Proof of Lemma 32. We use the notation of Lemma 3.2. Let V -> Tn+1 be
defined by the pullback diagram:

(3.21)

Z'

By definition Tn+ι -+ Z' is a finite covering arranged so that πι(Tn+ι) acts
trivially on the cohomology Hι(T; Z) of the fibration V -> Tn+1. (D) inter-
ests each fiber of (Z' X χn Z') -• Z' in two points. That is, the restriction of the
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cohomology class (D) to the fiber Y' is zero. Consequently, j*(D) (mod2)
in the spectral sequence for F - » Γ Π + 1 lies in the sum of E1*1 =
H\Tn + ι; Z/2Z) Θ H\Y'\ Z/2Z) and E°<2 = H2(Tn + 1; Z/2Z).

The map Xn+1 -> Tn + 1 is prearranged to induce the zero map of
Hι( Z/2Z), the first cohomology with Z/2Z coefficients. Hence the bundle
t: Wn+2 -> Xn+ι induced over * " + 1 will have an associated map h: Wn+ι ->
(Z' X ^ Z') such that A*(Z>) lies in the image of E°>2 = H2(Xn+\ Z/2Z).
Thus, A*(£>) = t*(e) for some * in H2(Xn+ι; Z/2Z).

The section BS induces via pullback a section B' of ί: PΓΠ+2 -> j r n + 1

which is dtyVwif from A*(Z>) = A*(S(Z') + AS(Z')). Hence, e = (Λ')*/*(β)
= (JBO*(A*(Z))) = 0 and so A*(D) = ί (e) = 0 in H2(Wn+2; Z/2Z). This
proves Lemma 3.2.

4. Harer's results

The mapping class group of a Riemann surface Fgr of genus g with r
boundary components is Tgr = 770(Λg Λ), where Ag r is the topological group
of orientation preserving diffeomorphisms of Fgr which are the identity on the
boundary of Fgr.

Let A: Fgr -> Fg r + 1 (r > 1) and 5: Fgr -> i^+i^-i (r ̂  2) be the inclu-
sions defined by adding a pair of pants (a copy of F 0 3 ) sewn along one
boundary component for A and two boundary components for B. Also define
C: Fgr -> Fg+lr_2 (r > 2) by gluing two boundary components together.

Harer's theorem is:
Theorem 4.1 (Harer [3]). The associated homomorphisms of mapping class

groups defined by the maps A, B, C induce isomorphisms of integral homology:

for k > 1 when g > 3k - 2, r > 1, and for k = 1, when g > 2, r > 1,

> 1, wAeH g > 3fc — 1, r ^ 2, and for k = 1, wAe« g ^ 3, r > 2,

g ^ 3A:, r > 2.
Note that the homomorphisms Λ g l -» A g + U considered in Theorem 1.2

arise from the mapping A: Fgl -> Fg2 composed with B: Fg2 -> F g + U . By
Harer's result 4.1 the induced mapping Hk(Agl) -> Hk(kg+ιΛ) is an isomor-
phism for A: less than (g/3).
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Let D(r): Fgr -» Fgr_x (g > 1) be the inclusion obtained by filling in one
of the boundary disks of Fgr The homomorphism of mapping class groups
Λ g α -> Λ g 0 induced by D(l) is the homomorphism appearing in Theorem 1.2.

In the commutative diagram
A c

Fg-l,2 > ^ - 1 , 3 * Fg,l

(4.1) l H(3) I //(I)
+ c *

the inclusion H(3) A induces the identity map on Λ g _ u Thus the induced
homomorphisms on the integral homology of the associated mapping class
groups give a commutative diagram:

c*

(4.2) (identity)

By Harer's Theorem 4.1 the maps A+, C* are isomorphisms if k <
((g — l)/3). Hence, D(l)* is an isomorphism in this range also.

This completes the proof of Theorem 1.2.
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