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Introduction 

Let M be a C~-manifold. If one wants to classify all differentiable fibre bundles 
over a given manifold which have M as fibres, then one must study the topology 
of the corresponding structure group DiffM, the group of all diffeomorphisms 
of M equipped with the C ~ topology. It is easy to see that the connected 
component Diffo M of the identity of Diff M is an open subgroup. Therefore 
the natural topology on the quotient group @(M)= Diff M/Diffo M, the diffeo- 
topy group of M, is the discrete topology. Hence we have a fibration 

B Diff 0 M -~ B DiffM ~ K(~(M), 1). 

We may call cohomology classes of B DiffM characteristic classes of differenti- 
able M-bundles. The above fibration shows that the cohomology H* (B Diff M) 
can be approximated by that of the group ~(M) with coefficients in the ~(M)- 
module H* (B Diffo M). 

Recently some information has been discovered about the homotopy groups 
of Diff o M for spheres and aspherical manifolds (see [FH])  and also there is 
a general result about ~(M)  for simply connected manifolds due to Sullivan 
[S]. However the problem to determine the topology of B Diff M, in particular 
the problem to compute characteristic classes of differentiable M-bundles should 
be considered to be completely open. 

The purpose of the present paper is to attack the above problem in the 
case where M is a closed orientable surface Zg of genus g->_ 2. In this case 
Earle and Eells [EEl proved that Diffo Zg is contractible. Hence B Diff+ Xg 
is a K(~g v 1) where Diff+ Z~ is the subgroup of DiffX~ consisting of all orienta- 
tion preserving diffeomorphisms and J[s=no(Diff+ Zg) is the mapping class 
group of  X v Therefore characteristic classes of surface bundles can be naturally 
identified with the cohomology classes of the mapping class group. On the 
other hand ~'s acts on the Teichmiiller space of genus g properly discontinuously 
and the quotient space Mg is the moduli space for compact Riemann surfaces 
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of genus g. Hence the rational cohomology of ~ is naturally isomorphic to 
that of M s . In  this way characteristic classes of surface bundles are related 
to various branches of mathematics so that they should find many applications. 

Now the contents of this paper are roughly as follows. Definitions of charac- 
teristic classes of surface bundles are given in w i and in w 2 we give known 
relations among them. w 3 is devoted to a study of the interplay between three 
types of mapping class groups. In w 4 we construct various surface bundles ex- 
plicitly and in ~ 5, 6 we compute the characteristic classes of them. In w 7 we 
extend these results to the case of surface bundles with cross-sections. As a 
consequence it turns out that our  characteristic classes are highly non-trivial 
(see Theorem 7.5). Finally as an application we give in w 8 a negative solution 
to the generalized Nielsen realization problem. More precisely we prove that 
the natural  surjective homomorphism 

Diff+ 2~ ~ Jr 

does not  have a right inverse for all g>18 .  In fact our characteristic classes 
can be considered as obstructions for the existence of it. This should be compared 
with Kerckhoff's affirmative solution [Ke]  to the original Nielsen realization 
problem that the homomorphism splits over finite subgroups. 

We have defined characteristic classes of surface bundles as in w 1 inspired 
by Atiyah's  paper I-A]. After we had finished the main work, Mumford's  paper 
I-Mu] and Miller's paper  I-Mi] were published. In [Mu]  Mumford initiated 
a new theory of the moduli  space M B and in [Mi] Miller obtained many of 
the results of ~j 1, 4 and 5 of this paper. It turns out that our theory corresponds 
to Mumford's one reduced to the rational cohomology via the natural  isomor- 
phism H*(JCg; Q ) = H * ( M g ;  Q). This can be easily proved by passing to a tor- 
sion-free subgroup of JCs of finite index (cf. [Hav]). However we prefer to develop 
our theory in the framework of topology as far as possible. 

The main part  of the results of this paper  have been announced in I-Mo 1]. 

1. Definitions of characteristic classes of surface bundles 

Let 2; s be a dosed  orientable surface of genus g. In this paper we always assume 
that g > 2. A differentiable fibre bundle 7r: E ~ X with fibre 2~ is called a surface 
bundle or a ~z-bundle. Let ~ be the "tangent  bundle" of ~. Namely it is the 
subbundle of the tangent bundle of E consisting of those vectors which are 
tangent to the fibres of the bundle. I t  is a 2-plane bundle over E. If ~ is orientable 
and an orientation is given on it, we say that the surface bundle rr: E ~ X  
is oriented. Henceforth we always assume this condition. Then we have the 
Euler class 

e=e(~)~n2(E; Z) 

which will be called the Euler class of the bundle. We define 

ei= ~ . ( e  i+ 1)EH2i(X; Z) 
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where n ,  : H 2(i+ 1)(E; Z) ~ H2i(X; Z) is the Gysin homomorphism (of course 
e0=2--2g) .  

Next we define a g-dimensional complex vector bundle ~/ on X as follows. 
For  each fibre E x = n - l ( x )  (x ~ X), we consider the real cohomology H 1 (Ex; R). 
It is easy to see that the natural  projection U H I(E~; R) ~ X admits a canonical 

x E X  

structure of a 2g-dimensional real vector bundle over X which we denote by 
r/R. Now choose a fibre metric on ~ so that each fibre Ex inherits a Riemannian 
metric. Since Ex is a two-dimensional manifold, any Riemannian metric on it 
induces a complex structure and hence a hyperbolic structure by the Uniformiza- 
tion Theorem of Riemann surfaces. Hence we have another fibre metric on 

such that the induced Riemannian metric on each fibre has constant negative 
curvature - 1 .  For  simplicity we assume henceforth that the fibre metric on 

is such a metric. Now if we identify H~(Ex; R) with the space of harmonic 
1-forms on Ex, then the , -opera tor  on H~(Ex;R) satisfies , 2 = - - 1 .  Hence it 
induces a structure of g-dimensional complex vector bundle on ~/R- We define 
r/ to be this bundle. It is easy to see that the isomorphism class of ~/ does 
not depend on the choice of the metric on ~. Also the spaces of holomorphic 
differentials on E~ (x~X) define another g-dimensional complex vector bundle 
over X. However it is easy to see that  this bundle is naturally isomorphic 
to the conjugate bundle f/of r/. Now we define 

ci=ci(rl)~H2i(X ; Z) 

where ci(r/) is the i-th Chern class of r/. 
It  is clear from the above definitions that the cohomology classes eeH2(E; Z) 

and ei, cieH2~(X; Z) are functorial in the obvious sense. In fact we can define 
them at the classifying space level as follows. 

The structure group of oriented 2~g-bundles is the group Diff+ S~ of all orien- 
tation preserving diffeomorphisms of S~ equipped with the C ~ topology. Hence 
if we denote B Diff+ S s for the classifying space of it, there is a Sg-bundle 

Xg ~ E Diff+ 2;g --, B Diff+ E s 

called the universal Zg-bundle such that any X,-bundle n: E ~ X can be obtained 
as a pull back bundle of it by a certain continuous map f :  X--,B Diff+ Xg, 
which is then called the classifying map of the bundle. Now, as already mentioned 
in the introduction, the result of Earle and Eells [EE] implies that B Diff+ S, s 
is an Eilenberg-MacLane space K(~CCg, 1) where ~qg=no(Diff+ X~) is the map- 
ping class group. It follows that the isomorphism class of a surface bundle 
~: E--,  X is completely determined by a homomorphism 

h: ni (X) ~ ~//, 

which is induced from the classifying map. We call it the holonomy homomorphism 
and Im h the holonomy group of the bundle. The total space E Diff+ ~g of the 
universal Ss-bundle is also an Eilenberg-MacLane space whose fundamental 
group is naturally isomorphic to the mapping class group JOg., 
=7~o(Diff+ (~?s, *)) where Diff+ (Eg, , )  is the subgroup of Diff+ ?g consisting 
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of all base point preserving diffeomorphisms. It is easy to see that E Diff+ 2:g 
can be considered as the-classifying space for Zg-bundles with cross sections. 
We identify cohomology classes of B Diff+ 2;, and E Diff+ Sg with those of ~//s 
and J/g. .  as abstract groups. 

Now if we apply the former constructions to the tangent bundle of the 
universal 2:g-bundle, we obtain certain cohomology classes 

e e H 2 (E Diff+ S,;  Z) = H 2 (./f/g,, ; Z) 

e,, ci~H2i(B Diff+ Z,; Z) = n2i(,A/g; Z). 

We use the same letters el, ci for the elements n* (ei), n* (ci)eH 2 i ( j [ , . . ;  Z) where 
: . / / , . .  ~..1r is the natural homomorphism. The cohomology class 

cieH2i(.lC,; Z) can also be introduced in a different way as follows. The natural 
action of M/g on the cohomology Hi(Z, ;  Z) preserves the symplectic form on 
it given by the cup product. Hence if we choose a symplectic basis for H 1 (Zg; Z), 
we obtain a homomorphism 

.ltg ~ Sp (2g; Z) 

where Sp(2g; Z) is the group of all 2g • 2g symplectic matrices with integral 
entries. This induces a homomorphism .~', ~ Sp (2g; R). Now the maximal com- 
pact subgroup of Sp(2g; R) is isomorphic to U(g). Hence passing to the classify- 
ing spaces we obtain a continuous map 

B Diff+ Z, = K (~r 1) --* BU(g). 

Now it can be checked that the cohomology class ci~.H21(,Alg; Z) coincides 
with the pull back of the universal Chern class ci~H2i(BU(g); Z) under the 
above map. 

Next we consider one more type of surface bundle. Let 

Sl~/~Diff+27g ~ ,EDi f f+2 :g  

be the Sl-bundle defined by the cohomology class e~.H2(E Diff+ Zg; Z). Then 
/~ Diff+ Sg is again an Eilenberg-MacLane space and its fundamental group 
is naturally isomorphic to the mapping class group J//R.x=n0(Diff(27~ a2:~ 

0__ where 2~ , -2~g- In tD 2 and ' o 0 Dlff(Z,, a2:,) is the group of all diffeomorphisms 
of 2:0 which restrict to the identity on the boundary./~ Diff+ 27g is the classifying 
space for surface bundles with cross sections whose normal bundles are trivial 
and have a specific trivialization. As before we use the same letters el, ci for 
the elements 1~* (ei), it* (c3 ~ H 2 r Diff+ 2fg ; Z) = H 2i(,/Jf/g, x ; Z). 

2. Relations between characteristic classes 

In this section we investigate relations among various cohomology classes of 
the mapping class groups defined in w 1. 

To deduce the first relation, we follow Atiyah's argument in [A].  Thus let 
~: E ~ X  be an oriented 2:g-bundle, r the tangent bundle of it and let r/ be 
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the g-dimensional complex vector bundle defined in w 1. Then as in [A] the 
index theorem for families of elliptic operators [AS] applied to the signature 
operators on E x (x~X) gives 

ch (,1" - , t )  = r~, (L(~)) 

where ch is the Chern character and for any real vector bundle ( of dimension 
2n, L,(O is defined to be 

n Xi L(() VI  

.i 11 tan h x J2' 

where the Pontrjagin classes Pi(Q of ( are expressed as the elementary symmetric 
functions in x 2, ..., x 2 as usual so that the right hand side is a polynomial 

x 
of Pi(0 because is an even function of x. We have 

tan h x/2 

ch Ol*--q)=g + ~',(-1)i ~ - ( g  + ~", ~ )  

st(q) 
= - 2  ~ i! 

i: odd 

where si(r/) is the characteristic class of q corresponding to the formal sum 
~x~ (it is a polynomial in the Chern classes of r/, see [MS]). On the other 
J 

hand 
2 2 i  e 2t 

B2i 
= 2  E ( -  1)'-1 ( ~ .  e21- ~ 

where e is the Euler class of ~ and B2i is the 2i-th Bernoulli number. Hence 
we obtain 

�9 2i 
e 2 i -  1 = ( - -  1)' B~2/s21-1 (r/). (R-l) 

Since the above argument holds for any surface bundle, we conclude that (R-l) 
gives a relation in H41-E(~-/g; Q). This remark also applies to the arguments 
below. 

Secondly it is clear from the definition that the bundle ~/R is a flat bundle 
with structure group Sp(2g; Z). In fact it is defined by the homomorphism 
7tl(X) ~ Sp (2g; Z) which is the composition of the holonomy homomorphism 
with the natural homomorphism ,/r Sp(2g; Z). Hence all the Pontrjagin 
classes of q vanish. Equivalently we have 

s2i(r])=0 in H41(J/g;Q) ( i=1 ,2  . . . .  ). (R-2) 
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Now it can be derived from a result of [BH] that  if we impose the relation 
(R-2) to the universal Chern classes c~, . . . ,  cg, we obtain exactly characteristic 
classes of f ia t  Sp (2g; R)-bundles which correspond to elements of the relative 
Lie algebra cohomology H*(~0(2g; R), u(g)). Therefore we can conclude that 
there exist natural isomorphisms 

Q [el ,  e3 . . . .  ]/relations ~ H*(~p(2g;  R), u(g); Q) 
(R-l) (R-2) 

~ H * ( S  2 •  4 •  

where the second isomorphism is only additive and is again due to [BH]. Also 
it is clear from the above that the Chern classes of q, ci(rl ), are polynomials 
in ej (j: odd). In short then we can say that  the characteristic classes el, ea, ... 
are precisely those of q as a flat Sp (2g; R)-bundle. 

Next we describe the third relation which the author  learned from Mumford 
[Mu].  Let n: E ~ X be an oriented surface bundle and suppose a fibre metric 
is given on the tangent bundle ~ of it as in w Let n*(~/) be the conjugate 
bundle of the pull back bundle n* (q). We define a map 

b: n*(~/) ~ ~* 

as follows. Let x ~ X  and let co be a harmonic 1-form on Ex with the correspond- 
ing real cohomology class [co] ~H 1 (E~; R). Then we define 

b([~oJ)(v)=m(v) + l / / ~  * co(v) (v~ TEx), 

where �9 denotes the Hodge's  , -operator .  I t  can be checked that b is complex 
linear so that  it is a bundle map. Moreover  it is easy to see that b is surjective. 
Hence we have a short  exact sequence of complex vector bundles over E: 

O--* Ker b ~ n*(q) ~ ~* --* O. 

Therefore 

c (Ker b) = =* (1 - c i (q) + e2 ( q ) - . . .  + ( -  1) g c s (~/)) (1 + e + e2 + . . . ) .  

Since Ck(Ker b) = 0 for all k > g, we have the following relation in H* (Jr ; Z):  

e k - - e k - l c l + . . . + ( - - 1 ) g e k - S c s = O  (k>__g) (R-3) 

(recall that we write simply c~ for n*(ci)~H2~(~/g,.; Z)). Since c s is divisible 
by e in HZS(~/~,, ; Z), Proposition 3.3 below implies 

cg=0 in HZS(.$/g,x; Z). (R-4) 

Applying the Gysin homomorphism n .  to (R-3), we obtain 

ek- 1 - - e k -  2 Cl + ... + ( - -  1)s ek-g-  1 Cg=0 

for all k_>_ g 

in H2~-~)(.Ks; Z) 
(R-5) 
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here we understand e_ z = 0. Then the argument of Mumford ([Mu],  Corollary 
6.2) shows that the relations (R-l) and (R-5) imply the fact that ek~H2k(Jt'g; Q) 
can be expressed as a polynomial in el, ..., %-2 for all k > g - 1 .  In our recent 
papers [Mo 2, 3], we have obtained more relations. For example we have 

2g+le~+h+k-l--{e,+keh-l+(gll) eg+k-leh+... 

-t-(g+gl)ekeh+g_l.q-ek_leh+g}=O in H2tg+h+k-1)(.A/g;Q) 

for all h, k_-> 0. (R-6) 

{ 2 g ( 2 - 2 g ) e - e l }  g + l = 0  in H2(g+l)(.//C'g; Q). (R-7) 

See [Mo 2, 3] for more relations and proofs (see also [Harr] in which Harris 
proved (R-7) by a method of algebraic geometry). Finally [Har 3] determined 
the virtual cohomological dimensions of the mapping class groups. In particular 
vcd(~g) = 4 g - 5  and vcd(J/g . . )= 4 g - 3 .  Hence we have 

(i) any polynomial in e x, e2 . . . .  of degree > 4 g - 5  vanishes 
(R-8) 

(ii) any polynomial in e, el, e2 .... of degree > 4 g - 3  vanishes. 

We sum up the above as 

Theorem 2.1. We have homomorphisms 

Q [ei . . . . .  eg_ 2]/relations ~ H* (~s ;  Q) 

Q [el . . . . .  e~_ 2]/relations ~ H* (JOg. 1 ; Q) 

Q I-e, el . . . . .  eg_ 2]/relations ~ H* (~r162 ; Q). 

Observe that the first known relation between e~ . . . .  , e~-2 occurs in degree 
2 g - 2 .  As Mumford says in l-Mu] for the first homomorphism, it seems to 
be reasonable to conjecture that the above homomorphisms are all isomor- 
phisms up to small degree. Harer's result I-Har 1] shows that they are actually 
isomorphisms in degree 2 for all g > 2. We prove in ~ 6, 7 that the above homo- 
morphisms are all injective up to any given degree if the genus is accordingly 
sufficiently large. However in higher degrees there seem to be still more relations 
than the above. A certain study of the natural action of J tg. ,  on the lower 
central series of nz(Zs), along the lines of [Mo 2, 31, would probably provide 
new relations. We would like to pursue this in a near future. 

3. Relations among  ..r162 ~ , ,  and ,a~, l 

In this section we collect certain relations between the cohomology groups of 
the three types of mapping class groups considered in w 1. We have the following 
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commutative diagram: 

0 0 

Z Z 

t l 
l 1 

, ~1(~:~) , ~ , ,  

1 l 
1 1 

where TI Z~ is the unit tangent bundle of X~. The central extension 0 ~ Z 
~Jr ~ , . ~  1 is defined by the element eeH2(j/r Z) (see w and the 
center Z of ~/r ~ is generated by the Dehn twist along a simple closed curve 
on X ~ which is parallel to the boundary. 

Proposition 3.1. Let ~: E ~ X be an oriented Xs-bundle and let k = Q or Zip where 
p is a prime not dividing (2g -2 ) .  Then the spectral sequence {EP, "q, d,} for the 
cohomology H*(E;k)  collapses so that the homomorphism n * : H * ( X ; k )  

H* (E; k) is injective and we have 

HP(E ; k) ~- HP(X ; k) ~) H p- 1 (X; H 1 (X~; k)) 0) e H ~- 2 (X; k) 

where e~H2(E; k) is the Euler class of the bundle. 

Proof. The E2-term is given by E~'~=HP(X; H~(X~; k)). Since the bundle is 
orientable, we have 

E~'~ k) and E~'2=HP(X; k). 

Now consider the following commutative diagram: 

H2(E; k) i* , H2(Zg; k) 

1 
/ ~ 2  c . . . ~  E ~ 

where i: Z ~ E  is the inclusion. Since i*(e) is the generator of  H2(z~g, k) by 
the assumption, we conclude that  

EO,2=EO, 2 . . . . .  E~2_~k. 
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Hence d 2--0 on E ~ and d3 = 0  on E 0'2. Now the cup product  defines an 
isomorphism 

Ep, O ,~  t?o,2 ~ 2 ~ 2  'E~  '2" 

Hence any element of E~ '2 can be written as u w v  for some u~Eg "~ (veE~ "2 
is the generator). Then 

d2(uu  v)=d2(u)w v + ( -  1)Puwd2(v) 

= 0  

because d2 (u)~Eg + 1 . - l =  0 and d2(v)= 0. Therefore we have E~' 2= E~' 2. It fol- 
lows that  the surjective homomorphism E~' 0_~ E~' 0 is actually an isomorphism 
because otherwise let u 4:0 be in the kernel. Then u w v 4:0 in E~' 2 while [u] w 
Iv] = 0 in E~' 2, a contradiction. Therefore the differentials 

d2:E~,2--~E~ +2,1, d2:EI~-2,1-.E~ ,0 

are zero. Next consider d 3 " E  p ' 2 - ~ E ~  +3'~ Since the cup product  defines an 
isomorphism 

E~,O| ~ ,E~,2 

the same argument as before shows d3=0.  It follows that all the differentials 
d, vanish by the dimension reasons. Hence 

HV(E; k)_~E~~ @ E~ -1.1 @EV -2,2 

= Hv(X;  k) (~ H v - 1 (X; H 1 (Z~; k)) ~ eH v-  2 (X; k). 

This completes the proof. 
If we apply the above Proposition to the universal 27,-bundle, we obtain 

Corollary 3.2. The homomor phism ~* : H* (Jig; k) ~ H* (Jig, .  ; k) is injective and 
we have 

/-/,(~g~.,; k)~ H~(~'~; k)~ H ' - 1 ( ~ ;  H'IZ,; k))e e l l ' - ~ ( ~ ;  k). 

From this follows that the homomorphism ~ , :  H , ( , g g . , ;  Z) -~H,(~g~;  Z) is 
surjective modulo (2g-2)- tors ions .  It is actually a surjection for �9 = 2 as proved 
first by Hater  [Har  1]. 

Next we consider the Gysin exact sequence of the central extension 0--* Z 
--' ~g~. 1 -~@,- - ,  1: 

.. --* H*(.ACt',. , )  ue  H k + 2 ( . ~ , , ,  ) k+2 _.~Hk+ �9 , , H ( J / g ,  1) ' ( J r , ,  , )  ~ . . . .  

From this we conclude 

P r o p o s i t i o n  3.3. Let ~* :H*  (~g~, , ) ~  H* ( ~ ,  1) be the natural homomorphism (co- 
efficients are in Z or Q). Then for an element u~H*(cg~.,) ,  ~*(u)=0 /f and 
only i f  u is divisible by e. 
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Finally let g, gl, ..-, gk be natural numbers such that Zgi<g.  Choose an 
k 

embedding of the disjoint union LI  z~ of compact surfaces Zg ~ each with one 
j = l  

boundary component, into 2? ~ This induces a homomorphism 

k 
Proposition3.4. z*(ei)= ~ p*(ei) for  all i > l ,  where pj: dig1.1 x ... Xdlgk, 1 

j=l 
J/4g~, 1 is the j-th projection. 

Proof. Let rtj: E i--* X i be a Zg/bundle with holonomy group G i lying in dOg j. 1 
(j----- 1 . . . . .  k). Namely there is given a cross section s i: X i--* E i and an identifica- 
t ion N ( s i ( X i ) ) = X i x D  2, where N(sj (X~)  is a tubular neighborhood of sj(Xi) 
in E i. Let X - - X  1 x ... • Xk  and let ~i: E1 ~ X be the pull back of the Zg/bundl_e 
nj : E i ~ X~ by the j-th projection X ~ X i. We have a cross section g1: X ~ E i 
and an identification N(g~(X))= X • D 2 (henceforth we identify them). Now let 

k 
= s  LI  lnt s~ and also we write s for E i - X  x Int D 2. We attach the mani- 

j = l  k 
fold X x ~ to the disjoint union I_I/~j along their boundaries by identifying 

j = l  
X • ~S~ with O s  x S ~. We denote the resulting manifold by E. Then it 
is easy to see that the canonical projection n: E--, X admits a natural structure 
of  a ~s-bundle whose holonomy group is t(G1 x ... x Gk). Now let ~ (resp. ~i) 
be the tangent bundle of it: E ~ X (resp. it i: E 1 ~ X:). Choose a canonical framing 
of the tangent bundle of Sg restricted to the subset U d~~ This induces framings 
of ~ I U OE~ and of ~ I X1 x S 1. Therefore we have the corresponding relative Euler 
classes )~jEH2(/~j, 63~j, Z),  ~ o 6 H 2 ( X  x J~, X • d s  Z) and )~ieH2(Ei-Int  D 2, 
Xj • S l ;  Z),  ~(j, 0 ~ H 2  (Xi • D2, X1 x $1 ;  Z). O f  course  we h a v e  

e(r and e(~i)=)~j.o+Zj 

(here we omit symbols for the homomorphisms induced from inclusions and 
excisions). Now clearly ~ and X~,o vanish for all i > 2  because ~o (resp.)~.o) 
is a pull back of an element of H2(,~, d,~; Z) (resp. H2(D 2, Sl;  Z)). Also if we 
denote P1: (s d/~i) ~ (Ei-- X1 • Int D 2, X i • S 1) for the natural projection, we 
have ~l=p*(z~). Hence for all i_>--2 we have 

(e(r = E ~  

= L pT (x9 
= ~p*  ((e(~i)'). 

The required assertion follows from this, completing the proof. 

Remark  3.5. It might be interesting to compare the above result to  Wolpert's 
result that the Weil-Petersson form of the moduli spaces restricts to subsurfaces 
in a similar fashion. 
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4. A method of constructing surface bundles 

In this section we give a method of constructing a new surface bundle from 
a given one which is a generalization of the constructions of [A]  and [Ko].  
By this method we can construct surface bundles whose characteristic classes 
are highly non-trivial. First we prepare a few facts. 

Lemma 4.1. Let n: E ~ X be an orientable Z:bundle with g > 2. Then for each 
natural number m, there exists a finite covering map X 1 ~ X such that the pull 
back Z:bundle E 1 ~ X 1 over XI  admits a fibre-wise m-fold covering space. More 
precisely there is a finite covering map E'I ~ E1 of degree m such that the composed 
map E'I ~ X l  is a surface bundle with fibre Sg, which is an m-fold covering space 
of  Z~ (hence g' = m ( g -  1) + 1). 

Proof. First  we recall two well-known results about  the mapping class group 
~/g. One is the classical result that  Jgg is naturally isomorphic to the proper 
outer automorphism group Aut + nl(Sg)/InnTzl(Sg) of 7z1(S~) (see [Bi] for the 
terminology as well as more informations). Second is the fact that JCs is virtually 
torsion-free, namely it has a torsion-free subgroup of finite index (see [Hay]). 
Now fix an m-fold regular covering map Z~, ~ Zg. In other words choose a 
normal subgroup g~(Zg,) of n~(Zg) of index m. There exist only a finite number 
of subgroups of 7zl(Z~) of index m so that it is easy to choose a normal subgroup 
F x of Aut  + nl(Z,) of finite index such that  the action of F 1 preserves ~I(Z~,). 
Consider the natural homomorphism 

r:/]1 --} Aut + n l ( Z g , ) ~ r  8, 

where Aut+ ul(S~,)--,~h'g, is the natural projection. It is easy to see that  for 
any element y ~ Inn rt 1 (Sg)c~/'1, r(~,) is a torsion element. Now choose a torsion- 
free normal  subgroup F2 of dr of finite index. Then we have 
r - ~ ( F 2 ) n l n n ~ l ( Z ~ ) c K e r r .  Let n : A u t +  ~l(Zg)---}~/~ be the projection. Then 
n(r-~(F2)) has finite index in Jg~, let F 3 be the intersection of its conjugates 
so that it is a normal subgroup of J/g of  finite index. Now let h: nl ( X ) ~  Jt'~ 
be the holonomy homomorphism of the given surface bundle n: E ~ X. We 
define the finite covering map X1 ~ X  to be the one defined by the kernel 
of the homomorphism 7tl(X)---}~lgg~l,[~/F3. Then the Z~,-bundle E'I--}X1 
defined by the homomorphism n~(Xx)--* F3 ~ J/r satisfies the required condi- 
tion. 

Definition 4.2. We define a class cg~ of C ~ 2n-manifolds recursively as follows. 
c~ o is the class {one point}, cg 1 is the class consisting of  Zs's with g>2 and in 
general c~,+ 1 is the one consisting of those connected C~-manifolds which are 
total spaces of orientable fibre bundles whose base spaces belong to cg. and whose 
fibres are disjoint union of  closed orientable surfaces of genus >__ 2. Let rg denote 
the class o f  manifolds which are type oK. for some n. We call elements of cg iterated 
surface bundles. 

It is clear from the definition that the class r6 is closed under the operation 
of taking finite coverings. 



562 S. Morita 

Proposition 4.3. Let M o be a manifold belonging to the class c~ n and let m be 
a natural number. Then for any cohomology class uoeH2(Mo; Z/m), there exists 
a finite covering space p: ~I o -* M o such that p* (Uo) = O. 

Proof We use the induction on n. The assertion is clear for the case n =  1. 
Thus assume that M o fibres over a manifold X o e ~  ._ 1 with fibre S which is 
a disjoint union of orientable surfaces, nl(Xo) acts on the finite set no(S) of 
connected component of 27. Let X-~  X o be a finite covering map which kills 
this action and let M ' o ~ X  be the pull back bundle. We have XeC~_~. Now 
choose a connected component M of M~. It is a finite covering space of M o 
and we have the cohomology class uEH2(M; Z/m) with is the pull back of 
uoeH 2(Mo;Z/m). Also it is clear that the projection M-~ X is a Sg-bundle for 
some g, because its fibre is connected. Hence by Lemma 4.1, there is a finite 
covering map X 1 ~ X  such that the pull back 1; :bundle M 1 --,X~ admits a 
fibre-wise m-fold covering map M~ --* M 1. Namely the composed map M'~ ~ X1 
is a Ss,-bundle, where Sg, is an m-fold covering ofS  v nl  (X~) acts on H l (Sg, ; Z/m) 
which is a finite group. Let X'~--*X~ be a finite covering which kills this action 
and let X2 --* X'I be another finite covering such that the induced homomorphism 
H I (X' 1 ; Z/m) ~ H I ( 2  2 ; Z/m) is trivial. Let M E --* X 2 be the pull back S~,-bundle. 
We summarize the above construction as the following commutative diagram: 

Let us write p: M 2 --* M for the composition of the three maps in the above 
top sequence. We claim that there is an element v~H2(X2; Z/m) such that 
p*(u)=n*(v). To show this, consider the Serre spectral sequence {E~'q, dr} 
for the cohomology H*(M2;Z/m).  The E2-term is given by E{ "~ 
=Hv(X2; H~(S S, ; Z/m)). p*(u) is an element of HZ(M2; Z/m) and we have short 
exact sequences 

O-~ K-*  H2(M2; Z/m)--, E~2--.O 

0 _.. F2, 0 .._~ K _+ b~t. t 

where K = Ker (H 2 (M2 ; Z/m) ~ H 2 (Sg, ; Z/m)). The image of p* (u) in E~ 2 is zero 
because 2~,-~2~g is an m-fold covering. Hence p*(u) is contained in K. Then 
it follows from the constructions of the finite coverings X'~ ~ X 1 and X 2 ~ X't 
that the image of p*(u) in E L1 vanishes. Hence p*(u) is contained in 
E ~ ~  Therefore there is an element 
veH2(X2;  Z/m) such that n*(v)=p*(u) as required. Now observe that X 2 ~ g  ._ t. 
Hence by the induction assumption there is a finite covering p: X a ~ X 2  such 
that p*(v)=0. Finally let Mo ~ X 3  be the pull back 2;g,-bundle. Then it is clear 
from the above construction that the finite covering ~ 0  ~ M o  satisfies the 
required condition. This completes the proof. 

Now we recall a well-known criterion for the existence of a ramified covering. 

M2 , M'I ~ M1 , M 

X2 ' X1 ' X1 , X .  
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Proposition 4.4 (see Hirzebruch [Hi]). Let M be an oriented closed 2n-manifold 
and let N be a (possibly disconnected) oriented submanifold of M of codimension 
2. Assume that the cohomology class v~H2(M; Z), which is the Poincar~ dual 
of the fundamental homology class of N, is divisible by a natural number m as 
an integral class. Then there exists an m-fold cyclic covering p: 1V1--. M ramified 
along N. 

Now we can describe our main construction. Let n: E ~ X be a given oriented 
Sg-bundle such that the total space E belongs to the class cr For  each natural  
number m >  2, we define an m-construction on it as follows. Roughly speaking 
it constructs a new surface bundle from the old one by a combination of taking 
pull backs and ordinary or ramified finite coverings. More precisely consider 
first the following pull back diagram: 

E* q , E 

E ,X .  

Here E * =  {(z, z')eE x E; n(z)=n(z')}, n'(z, z ')=z and q(z, z')=z'. The Xg-bundle 
n':E*-*E admits a cross section s: E ~ E *  defined by s(z)=(z,z). We write 
D for Ims.  Let veH2(E*; Z) be the cohomology class defined by it and let 
vmeHZ(E*; Z/m) be the mod m reduction of v. Now we consider the following 
commutative diagram of surface bundles: 

E* , e ~  , e l  , ' e T  , E~* , e *  

E , E 2 , E 1 -  E1 , E. 

Here the four surface bundles on the right of the above diagram are the ones 
obtained by applying the construction of Proposit ion 4.3 (see especially the 
diagram in its proof) to the Xg-bundle E* ~ E  and the cohomology class 
vm ~ H 2 (E*; Z/m) replacing M ~ X and u ~ Hz (X; Z/m). In particular 'E* ~ E* 
is an m-fold fibre-wise covering (see also Lemma 4.1). By the construction, the 
image in HZ(E*; Z/m) of the cohomology class v,~ comes from an element 
veH2(E2; Z/m). Observe that E2 belongs to the class cr Hence again by Proposi- 
tion 4.3, there is a finite covering p : / ~ E 2  such that p*(v)=0. E * ~ / ~  is the 
pull back X~,-bundle. Clearly the image of v .  in H2(E];Z/m) vanishes. This 
means the following. If we write D* for the inverse image of D under the map 
E* --. E*, the pair (E*, D*) satisfies the condition of Proposit ion 4.4. Therefore 
there exists an m-fold cyclic covering/~* ~ E* ramified along D*. The projection 
/~* ~ / ~  is a X~,,-bundle where 2~g,, is an m-fold covering of 2~g, ramified along 
m points on it (hence g " = m 2 g - � 8 9  This is the surface bundle 
obtained by applying an m-construction on the original bundle n: E ~ X. It 
is clear that/~* belongs to the class cr so that we can apply an m'-construction 
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on/~* ~/~. In this way starting from a surface bundle whose total space belongs 
to cg, we can apply mfc0nstructions successively (j = 1, 2 . . . .  ) to obtain various 
surface bundles. The 2-construction on the trivial surface bundle Zg~p t .  is 
nothing but Atiyah's method in [A] (see also Kodaira [Ko]). The above is 
therefore a generalization of their constructions. 

5. Non-triviality of the characteristic classes 

In this section we compute the characteristic classes of surface bundles con- 
structed in w 4. For a given oriented Z~-bundle n: E ~ X with the total space 
E being a member of c~, we consider an m-construction on it: 

~ ,  r E* q /7  

/~ , E  , X .  
P it 

Let eEH2(E; Z) (resp. ~'~H2(/~*; Z)) be the Euler class of n: E ~ X  (resp. ~:/~* 
~/~). Recall that we write D c E* for the image of the "diagonal" cross section 
which is an oriented submanifold of E* of codimension 2. Set/~ = r - l (D) .  We 
write veH2(E*;  Z) (resp. ~H2(/~*;  Z)) for the cohomology class defined by 
the codimension two submanifold D (resp./3). 

Lemma 5.1. (i) The Euler class o f  7z' : E* ~ E is q* (e). 
(ii) v 2 = q* (e) v = (~')* (e) v in n 4 (E*; Z). 

Proof. (i) is clear. To prove (ii), let i: D ~ E* be the inclusion. It is easy to 
see that the cohomology class i*q*(e)=i*(n')*(e) is equal to the Euler class 
of the normal bundle of D in E*. Then the required assertion follows from 
a standard argument using the Thorn isomorphism theorem. 

1 
Lemma 5.2. r* (v)= m ~ and hence ~ = - - r *  (v) in H2(/~* ; Q). 

m 

Proof is easy and omitted. 

Lemma 5.3. E=r* q * ( e ) - ( m -  1) ~ in H2(E*; Z). 

Proof. Let ~ (resp. ~') be the tangent bundle of E * ~  E (resp. /~*~/~). Then 
the induced bundle r*(r is canonically isomorphic to ( o n  E*- /3 .  Also near 
the locus/3, the map r is locally the identity of/3 times the map C ~ C given 
by z ---, z m. It is easy to deduce the required assertion from these facts. 

Now we write ~k and ek for the characteristic classes of ~: P*--,/~ and 
n: E ~ X  corresponding to the k-th class ek. 

, f  , m - 1  ) .  
Proposition 5.4. (i) ~ = r  ~q ( e ) -  m - v~ m n2(/~*; Q). 

(ii) gk=m 2 7" {n*(ek)-(1 - m  -~k+ 1)) ek}. 
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Proof  (i) follows f rom Lemma 5.2 and  L e m m a  5.3. We have 

e k + l = r * { (  q*(e)-m-lm v)k+l}  

= r* {q*(e k+ 1)--(I - -m -tk+ 1)) rt ,(e k) v} 

here we have used L e m m a  5.1. If  we apply  the Gys in  h o m o m o r p h i s m  
n,  : H 2~k + I~(E* ; Q) ~ H2k(E ; Q) to the above equat ion,  we obta in  

ek = m2 r*  {7c* (ek) -- (1 -- m-(k + 1)) e k} 

here we have used the fact that  the map  Sg,, ~ S~ is a ramified covering of 
degree m 2. This completes  the proof. 

If  the base manifold  X of  a surface bundle  is a closed or iented 2 n-manifold,  
then we can evaluate  cohomology  classes of X of degree 2 n, which are po lyno-  
mials in the characteris t ic  classes of the bundle,  on the fundamenta l  cycle of 
X to obta in  various numbers.  More  precisely for each par t i t ion  I =  {il, . . . ,  it} 
of n, we have the cor responding  number  

e I [X]  = e i l . . .  eir [X].  

We call them characteristic numbers of the bundle.  F o r  each subset J = {Jl . . . . .  Js} 
of a par t i t ion  I = {il . . . . .  it} of some na tura l  number ,  we express the complement  
j c =  I \ J  as j c =  {kl . . . . .  kt} (s + t = r). Wi th  these nota t ions  we have 

Proposit ion 5.5. Let  ~: E--* X be an oriented Sg-bundle over an oriented closed 
2n-dimensional manifold X and let ~: E* ~ ff~ be a surface bundle obtained by 
applying an m-construction on it. Then for each partition I =  {i 1 . . . . .  i,} o f  n +  1, 
the I-th characteristic number o f  ~: ff,* ~ E is given by 

e! ['L'] = d m 2 r  E ( -  1)'(1 - - m  -(ka + 1)). . .  (1 - - m  -(kt+ 1)) es ek I + . . .+k,-  1 I X ]  
J 

where d is the degree of  the f ini te  covering ff~ ~ E and J runs through all the 
subsets o f  I. In  particular ~. + 1 I-El = d(m-"  - m 2) e, [ X ]  so that i f  e. [X]  is different 
f rom zero and m ~ i ,  then so is e, + 1 [E l .  

Proof  Using  Propos i t ion  5.4, (ii) we compute  

~ [~] = ~.... ~. [~] 
= m 2 ~ { = *  ( e l , ) - ( 1  - m -  I,, + 1~) e" }.. .  m 2 ~* {=* ( e i . ) -  (1  - m -  ~'~ + 1)) eir} jR]  

= d m 2 . { = . ( e i , ) _ ( l  _ m - t , ,  + 1~) e " } . . .  {~*  (e i . ) -  (I - m - " ' +  1)) e l ' }  [E ]  

= dm 2" ~ ( -  1)'(1 - m -(k' + 1))... (1 - m-(k, + 1)) es ek, +... +k,- 1 [ X ] .  
J 

Here the last  equal i ty  follows f rom the fact that  the Gys in  h o m o m o r p h i s m  
n , :  H 2~"+ ~I(E; Z ) ~  H2"(X;  Z) is an  isomorphism.  This  completes  the proof. 

N o w  we apply  ou r  m-construct ions  successively to  ob ta in  a " t o w e r "  of sur-  
face bundles.  More  precisely we define a Sg~.l-bundle ~. : E . - - * X .  inductively 
as follows, no is the trivial 2Fs-bundle Xg ~ pt. with g__> 2 and for n > 1 we define 
n. : E.  ~ X .  to be the  surface bundle  ob ta ined  by apply ing  an m.-const ruct ion  
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on 7r._ 1 : E ._  1 ~ X . _  1. Thus we have a commuta t ive  d iagram:  

En r n  q n -  t , E * _  1 , E . _  1 

X.----;~.  E.-1 , X . -1  
n l t n -  1 

where n'._ 1 : E*_ 1 --* E._  1 is the pull back of n ._  1 : E ._  1 ~ X . _  1 by the map  
~r._ 1 so that  E*_ 1 = {(z, z')~E._ 1 x E ._  1 ; n . -  1 (z) = n ._  1 (z')} (see w 4). Let  (Ss)" 
be the Cartesian product  of  n-copies of  S~. We define maps  p. :  E.--*(Zg) "+1 
and/~. : X .  ~ (S~)" which make  the following d iagram commuta t ive  

E~ P" , (Zg) "+1 

x.---S7 (z,)" 

inductively as follows, where n:(Ss)"+l~(Zs)" is the project ion onto  the first 
n-factors. First Po and Po are the identities. For  n >  i,  p, is defined to be the 

composed  map  X .  r. p,_, E ._  x , (Zg)". To define p.,  first define a map  

P * -  1 : E * _  1 - *  (2~8)" + 1 

as follows. For  each element (z, ' * z ) e E ,_  1, consider  p ,_  1 (z) and p. _ 1 (z') e (Z~)". 
By the induct ion assumption,  the first ( n -  1)-components in (Zg)" of  them coin- 
cide because n._ 1 (z) = ft._ 1 (z'). We  set p*_ 1 (z, z') = (p._ 1 (z), the last componen t  
of p,_l(z'))e(Zs) "+1. Final ly we define p. to be the composed map  

E .  ""---*E*_ 1 P* " - ' ~ ( S g )  "+1. F r o m  the definition it is easy to see that  np ,  

=/~. ~z. so that the induct ion assumpt ion is satisfied. The above  const ruct ion 
shows that  the Zgt.)-bundle n . :  E.---, X .  is a " ramif ied  cover ing"  of the trivial 
ZFbund le  (Zg). +1 ~ (Zg)". 

If we apply Propos i t ion  5.5 to the surface bundles z . :  E .  ~ X ,  constructed 
above,  we can inductively determine all the characterist ic numbers  of  them and 
we obta in  

Proposit ion 5.6. For any non-negative integer n, there exists no non-trivial linear 
relation between the characteristic numbers of surface bundles whose base spaces 
are iterated surface bundles of dimension 2n. 

Proof. The  assert ion is clear  for the case n = 0 .  W e  use the induct ion on n. 
Thus we assume tha t  the assert ion holds for n and  prove it for n + 1. Suppose 
that  some linear relat ion ~ al  el = 0 holds for n +  1. Let  us recall here that  we 

1 
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can make the operat ions of our  m-constructions for any m. Then in view of 
the form of the formula of Proposi t ion 5.5, it is easy to deduce from the induct ion  
assumption that  all the at must  vanish. This completes the proof. 

In  the above we have proved in part icular  that  the n-th characteristic class 
e. of n . : E . - - * X ,  is non-tr ivial  (provided mi>  1 for all i). In  the next section 
we prove a stronger s tatement  (Proposit ion 6.4). For  that  we look into the 
surface bundles  n .  : E. ~ X .  more closely. 

We have the "d iagona l "  * .. Dk ~ Ek-  ~ (k = 1, ., n) which is a codimension two 
submanifold of E*_ 1. Let us write Vk~H2(E *_ 1; Z) for the corresponding coho- 
mology class. Next consider the codimension two submanifold  Ok= rk 1 (Dk) of 
Ek- We have the corresponding cohomology class ~keH z(Ek; Z). Of course we 
have r*(Vk)=mk~k (see Lemma 5.2). Now we define a map  Q..k: E . ~ E k  to be 
the composi t ion 

Qn.k:En r" ,E*- I  ,E , -1 - -* . . .  'Ek 

and set Utk ") = Q*,k(~k)eH 2 (E, ; Z) (ut.")= ~.). Next let voEH2(z~g; Z) be the Euler 
class of the cotangent bundle  of Zg (so that  v o = 2 g - 2 ~ Z ~ H 2 (Zg; Z)). We define 
Uto "~= Q*, o (Vo)~ H 2 (E. ; Z). With these nota t ions  we have 

Proposition 5.7. The Euler class e t") o f  the S, st.)-bundle ~. : E,  ~ X .  is given by 

e(")= -- {U(o") + (ml - 1) u(l")+ ... +(m. - -  1) u(.n)}. 

Proof. A simple inductive a rgument  using Lemma 5.3 yields the result. 

Remark 5.8. We can define the opera t ion of our  m-constructions in the category 
of algebraic varieties (apply the a rgument  of [A]  [Hi]) so that if one wants, 
we may assume that  E.,  X .  and  E* are all non-s ingular  algebraic varieties and  
maps between them are holomorphic.  In  such a situation, the cohomology class 
u(k ") is the one corresponding to the divisor -1 ~ Q.,k(Dk) of E .  which turn  out  to 
be non-singular. 

Lemma 5.9. (i) (U~o")) 2=  0. 

(ii) (Utk")) 2 = _ _ 1  Utk.){Uto.)+(m I __ 1) U~")+ ... +(mk_ 1 -- 1) U~_ ) 1} (k=  1 . . . . .  n). 
mk 

Proof. (i) is clear. To prove (ii), we apply Lemma 5.1 to the following commutat ive  
diagram: 

we obta in  

q k -  1 
E~'-1 , E~- I  

Ek_ l , Xk_ 1 
~k- 1 

v~ = -- Vk q*- ,  {U~ - 1) + (m, -- 1) u~ k - '  ' + . . .  + (ink -1 -- 1) U~k--i x)} 

here we have used Proposi t ion 5.7 applied to the bundle  n k - l : E k  - 1 ~ X k - 1 "  
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_..} * If we pull back the above equation to E k by the map  r k : E k Ek- 1, we obtain 

mk ~2 = - v k  {u~ )+ (ml - 1)utl k) + . . .  + (mk- 1-- 1) u~k)- 1 } 

here we have used Lemma 5.2. The required assertion follows from this immedi- 
ately. 

6. Non-triviality of the characteristic classes (continued) 

In this section we prove the following theorem which shows that there are 
no relations between polynomials in e[s in small degrees. 

Theorem 6.1. For any natural number n, there exists a number g(n) such that 
the homomorphisms 

Q [e 1 . . . . .  e s_ 2J/relations ~ H* (.~'g; Q) 

Q [el . . . . .  %-  2J/relations --} H* (~/~, 1 ; Q) 

(see Theorem 2.1) are injective up to degree 2 n for all g > g(n). 

Remark 6.2. The above theorem was first proved by Miller [Mi]  by constructing 
surface bundles with non-zero characteristic number e, for all n and then using 
Harer 's  stability theorem on the homology of the mapping class groups [Har  2], 
which states that the homology groups Hk(J/[g ; Q) and Hk(,A/g, 1 ; Q) are all 
naturally isomorphic to each other in the range k<�89 (In particular we can 
take 6n for g(n).) In the following we would like to give a more constructive 
proof  of Theorem 6.1. Our proof will play an essential role when we later general- 
ize Theorem 6.1 to surface bundles with cross sections (Theorem 7.5) because 
Miller's argument does not  apply to them. 

To prove Theorem 6.1 we will first show (Corollary 6.5) that each class 
ei is non-trivial. Then we will use Proposit ion 3.4 to show the e~ are independent 
in the range of the Theorem. Now we prove 

Proposition 6.3. Let re: E--* X be an oriented Zg-bundle and let e~H2(E; Q) (resp. 
ei=Tz,(ei+l)eHE~(X; Q)) be its Euler class (resp. the i-th characteristic class) 
with rational coefficients. Suppose that ~z* (el) is not divisible by e. Then the univer- 
sal i-th characteristic class e i is non-trivial in H2i(J/g, 1 ; Q). 

Proof. Let ~:/~--}E be the Sl-bundle defined by the cohomology class 
e 6 H  2 (E; Z). Then we have the following commutative diagram: 

g 

g Diff+ Z' s, 

, E 

, E Diff+ 27 s 

*t 

X 

, B Diff+ X s 
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where f :  X ~ B  Diff+ Z~ is the classifying map. Hence f*(ei)=Ct*lr*(ei) .  The 
Gysin exact sequence for the rational cohomology group of the Sl-bundle/~ ~ E 
shows that if r~*(ei) is not divisible by e, then z~* rr*(ei):~O (cf. Proposit ion 3.3). 
The result follows from this. 

Now we consider the Xgt,)-bundle nn :En ~ Xn constructed in w 5. In this 
section we assume that mi = 2  ( i= 1, ...,  n). We claim 

Proposition 6.4. L e t  e ~ H 2 ( E 2 i  _ t ; Q) (resp. e i eH2 i (E2 i_  1 ; Q)) be the Euler  class 
(resp. the i-th characterist ic class)  o f  the Xgt2i-1)-bundle ~ 2 i - l  : E 2 i - t  ~ X 2 i - 1 .  
?hen n* i_ 1 (ei) is not divisible by e in H*  ( E 2 i - l  ; Q). 

If we combine Proposition 6.3 and Proposit ion 6.4, we obtain 

Corollary 6.5. For  any i, there is a number gi such that the i-th characterist ic 
class ei is non-trivial in H2i(~//~,. i ; Q). 

To prove Proposit ion 6.4, we prepare a few Lemmas. We have (n + 1) coho- 
mology classes Uo, . . . ,  u ,  e H 2 ( E n ;  Z). Here and henceforth we simply write u k 
for U~k n). For  each number k with n > k > 0, we consider the cohomology classes 

Uit . . .  Ui, 7~* (ek) ~ H 2In + 1)(E~ ; Z ) - ~  Z 

as numbers,  where l = ( n +  1 ) - k  and e k e H 2 k ( s n ;  Z) is the k-th characteristic 
class of nn" En ~ X. .  In the above expression we always assume that i /s  are 
all different. For  a finite ramified covering r" /~-oE,  we denote deg r  for the 
degree of it. With these conventions and notations we have 

Lemma 6.6. (i) Assume  that i~ < n fo r  all j = 1 . . . . .  I. Then 

uil  . . .  uit it* (ek) = - -  2 2 ( 1  - - 2 -  tk + 1)) d e g  r ,  ul ,  . . .  ui, n * _  t (e'k-  1) 

where e'k- t e H 2 ( k -  1)(Xn- 1 ; Z) is the ( k -  1)-st characterist ic  class o f  n~_ t : E~_ 1 

"-"~ S n -  1" 

(ii) We have 

ui~ ... ui~ ~ u~ n* ( ek) = 2 deg r~ u~ ... ui~_ ~ n*_ 1 ( e'k) 

-- 2 (1 -- 2 - tk + 1)) deg r. ui, ... ui~ _ ~ (e') k 

where e' e H 2 ( E n _ l ;  Z) is the Euler class o f  n . - l  : E ~ - t  ~ X n - I .  

Proof. Consider the following commutative diagram: 

En rn qn - 1 
, E *  1 , E n _  1 

X ~ - - - ~  E . - 1  . . . .  , X . - 1 .  

We prove (i). According to Proposit ion 5.4, (ii), we have 

ek = 22 ~ {T t*-1 (e~)-(1 - 2 -  tk 4- l~)(e,)k}, 



570 S. M o r i t a  

Hence we have 

Ull . . . . . .  Ui, 7~* n (ek) ----- ~ 2 2 ( 1  -- 2 -  (k + 1)) deg r. q*_ 1 (ui, Uiz)(l~n-' 1)* {(e')k} 

here we have used the obvious fact that uli ... ui, e~=0  (we can consider uil .-. ui, 
as an  element of H* (E._ ~ ; Z) because of the assumpt ion  that ij < n for all j). 
Now let �9 * ~ * ' ' z. E ._  1 E . _ I  be the involu t ion  defined by ~(z, z ) = ( z ,  z). Clearly it 
preserves the or ientat ion of E*_~ so that the induced homomorph i sm 
t* : H 2(" + X)(E*_ 1 ; Z) --* H 2(" + 1)(E*_ 1 ; Z) is the identity. Obviously n~,_ 1 t = q ._  1 
and  q._ 1 z = 7r'._ 1. Hence we have 

q*-l (u , ,  ... ul,)0r.- ~ ) '  * {(e)' k } =(~Zn_ 1 ) ,  * (Ufl ...ui)qn_l{(e')k}.* 

' u2 (n  + 1)117. " Z )  Now  if we apply the Gysin  homomorph i sm (1t._1),: , ,  ~,~.-1, 
HZ"(E._ ~ ; Z), which is clearly an isomorphism, we obta in  

' * u n* re' (7Cn-1) ( U i , . . . U i , ) q * - l  { ( e ' ) k } = u t l  . ' '  i, n - l~ .  k - l ] "  

The result follows. 
Next we prove (ii). Recall that  u .=�89  (see Lemma 5.2). Hence by a 

similar a rgument  as above, we have 

ui~.., ui~_, Un re* (ek) = 2 deg rnuii . . ,  ui~_~ Vn(rC'n- 1)* {re*_ 1 (e~)-- (1 -- 2 -  (k + 1))(e,)k}. 

NOW it is easy to see that for any cohomology class w H * ( E , _ I ;  Z), we have 
the equality v.(Tr ' ._O*(v)=v,q*_l(v ) (of. the proof  of Lem m a  5.1, (ii)). Hence 
we have 

U l i . . .  Ul,-I Un ~* (ek) = 2 deg r.  v. (n'. _ 1)* { ul , . . ,  ui,_, (n*_ 1 (e'k) -- (1 -- 2 - (k + 1))(e,)k)}. 

AS before if we apply the Gys in  homomorph i sm (n',_ 1), to the above, we obta in  
the result because (Tz'._ 1) ,(v.)= 1. This completes the proof. 

Next  for each i, consider the cohomology class 

u = (Uo-- 2 u0(u  2 - -  2 u 3 ) . . .  ( u 2 i _  2 - -  2 u 2 i -  I ) E  H 2 1 ( E 2 1 - 1  ; Z ) .  

We claim 

L e m m a  6.7. The cohomology class ueHEi(E21_l;  Z) defined above is contained 
in K e r  (De: H 2 i ( E 2 i  _ 1, Z )  --~ H 2(i+ 1 ) ( E 2 1 _  1 ; Z ) ) .  

Proof. We use the induc t ion  on i. For  i = 1 ,  e = - ( U o + U l )  and u ~ = - � 8 9  ua 
(see Proposi t ion 5.7 and  Lemma  5.9). The equa t ion  u e = O  follows from this 
easily. Next we assume that  the assertion is true for i - 1  and  prove it for i 
( i>  1). We have 

- u e = ( u o - 2 u l ) . . . ( u 2 i - E - 2 U 2 i - 1 ) ( U o +  ... + u2i-  1) 

= (u 0 - 2 u t) . . .  (u2i- 2 - -  2 u21- t)(u~i- 2 + u2~- l) 

= (Uo-2ux) . . . ( u2 i -4 -2u2~-a ) (Uo  + ... + u21- 3)(u2i- 1 - �89  u2i -  2) 

= 0  

here we have used the induc t ion  assumpt ion  and  Lemma 5.9. 

Proo f  of  Proposition 6.4. Assume that  n* i -  1 (ei) is divisible by  e in H* (E2i_ 1; Q)" 
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Then in view of Lemma 6.7, we should have un* ,_ l (e i )=O.  Hence to prove 
Proposit ion 6.4, it is enough to show that the number  

R i = u n * i -  1(el) 

is non-zero. We claim 

R i = 2 3 ( 1 - 2  -~'+1)) degr2,_ 1 degr2 i_2Ri_  1 (i>=2). 

To prove this, consider the following commutat ive  diagram: 

r21 - 1 
E 2 i _  1 ~ E ~ i _  2 ) E 2 , _  2 . . . .  ) E ~ , _  3 , E 2 , _  3 

X 2 i _  1 ~ E 2 i _  2 ~ X 2 i _  2 ~ E 2 i _  3 ~ X 2 i _  3.  

We denote e 'GI-12(E2,_2;Z)  (resp. e" GH2(E2i_3;  Z)) for the Euler class of 
7~2i- 2 " EE,- 2 -+ X2 i -  2 (resp. ~2i- 3 " E2i-  3 --* X2i -  3) and  similarly we denote 
ejGHEJ(E2i - 2; Z) (resp. e~' GHEJ(EEi _ 3; Z)) for the corresponding characteristic 
class. We also set u ' = ( U o - 2 U O . . . ( U E i _ 4 - 2 u 2 i _ 3 )  so that U ~ U ' U E i _  2 

- 2  u' u2~_ ~. Now if we apply Lemma 6.6 to Ri, we obta in  

R i =  - -22(1 -2 - ( I+1) )  degr2/ 1 ' * ' bl U21_ 2 ~ 2 , _ 2 ( e i _ 1 )  

--22 deg r 2i_ 1 u' 7z*i_ 2 (e1,) + 22 (1 - -2  -(i+ 1)) deg r zi_ 1 u' (e') i. 

Now we have 

u' (e') i = u' (Uo + . . .  + u2 i -  3 + U2i -- 2) i 

- -  t i 
- - U  U 2 i _  2 

= - - � 89  U' U~:~-2(Uo + . . .  + U2,- 3) 

= 0  

here we have used Lemma 6.7 and Lemma 5.9. Next applying Lemma 6.6 again 
we obta in  

t , t 
U U 2 i - 2 7 ~ 2 i - 2 ( e i - 1 )  

2 t , tl t rl i-- 1 deg rzi_ 2 u n2i_ 3(ei_ 1 ) - 2 ( 1 - 2 - ' )  deg r2i_ 2 u (e ) 

= 2  deg rzi_ 2 R i -  1 

because u'(e")= 0 (Lemma 6.7). Similarly we have 

ulrc* i_2(e ' i )=- -22(1- -2- ( i+1))degr2 i_2  u'Tz2i_3(ei_1)* ,1 

= _ 22(1--2-~i+ 1~) d e g r 2 i _ 2 R i _ t .  

Summing up  we obta in  

R~=23(1 - -2  -"+1)) deg r21_ l d e g r 2 i - E R , - i  
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as claimed. Now again Lemma 6.6 yields 

Rl=(Uo-2UOn*(e 0 
= --22(1--2 -2) degrl  Uo n~ (e~))+ 22 ( 1 - 2  -2) deg r 1 e' 

= 3 deg rl ( 2 g -  2 ) (2g-  3) 

because u0 = 2g--  2 and e~ = e' = 2 -  2g. Now in view of the above computations 
clearly we can conclude that R i ,  0 for all i. This completes the proof. 

Proof of Theorem 6.1. In view of Proposition 3.4 (for the case when k = 1), we 
have only to prove the existence of a number g(n), depending on the given 
natural number n, such that the homomorphism 

Q I-el . . . . .  %_ 2]/relations ~ H* (~/g~,), 1 ; Q) 

is injective up to degree 2n. According to Corollary 6.5, for each i there is 
a number gi and a homomorphism hi: n~(Xi)~J/gg,, 1, where Xi is a certain 
closed orientable 2i-manifold, such that h*(ei) is non-zero in H21(Xi;Z)~-Z. 
Now for each i<n, choose a natural number d i such that di>__n/i and set g(n) 

= ~ dl g~. Consider the manifold X given by 
i = 1  

x = x ~ ,  x . . .  • x . ' ~  

and define a homomorphism 

h: nl(X ) h' , (~tl , , ,  0 d' x . . .  x (~l l , . , , )~ .  , ~,~.~.~ 

where h' = hal ' • ... x h, n- and i is the homomorphism defined as in Proposition 
3.4. Let n be the resulting Sgc,)-bundle over X. Then by virtue of Proposition 
3.4, each class ej(n)~ H2~(X; Z) can be expressed in terms of ej of surface bundles 
over Xi which are defined by the homomorphisms hi. By the choices of Xi 
and hi, for any non-trivial element ~" a (I) ei l... ei. of degree < 2 n, the cohomology 
class ~a(1)ei,(n)...eir(n) is non-zero. Hence we can conclude that the homo- 
morphism 

h* 
Q[e  1 . . . . .  %_2]/relations~H*(J/r ; Q) , H*(X; Q) 

is injective up to degree 2n. This completes the proof of Theorem 6.1. 

7. Surface bundles with cross sections 

In this section we extend the results of ~ 5, 6 to the case of surface bundles 
with cross sections. Thus let n: E--, X be an oriented 2~s-bundle and let ~ be 
its tangent bundle as before. Assume now that there are given cross sections 

si:X--*E (i=1, . . . , p ,p+l ,  . . . ,p+q) 
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such that the images si(X) are mutually disjoint. We also assume that the normal 
bundles of the images of the last q cross sections are trivialized, namely there 
are given trivializations 

N ( s i ( X ) ) = X x D  2 ( i = p + l  . . . . .  p+q) 

where N(si(X)) denotes a tubular neighborhood of si(X ). As in w let e 
= e(r H 2 (E; Z) be the Euler class of the surface bundle n: E ~ X. We set 

tri=s*(e)eH2(X; Z) ( i= 1 . . . . .  p). 

It is clear that the cohomology classes a~ of the base space X behave naturally 
with respect to bundle maps of surface bundles with cross sections. 

There is one natural way to obtain a surface bundle with a cross section 
out of a given surface bundle 7z: E ~ X. Namely as in w 4, let 

E* q , E 

E , X  

be the pull back of the bundle rt: E ~ X  by the map 7r itself so that E* 
= {(z, z') E x E; 7r(z)=Tr(z')}, ~z'(z, z ')=z and q(z, z')=z'. Then the surface bundle 
rt': E* --*E has a natural cross section s: E ~ E *  given by s(z)=(z, z). The Euler 
class of zt' is clearly equal to q*(e). Hence the a-class of it is given by 

a = s* q*(e)= e~H2(E; Z). 

This fact will play an important role in the proof of our main result of this 
section (Theorem 7.5). 

Next we describe the classifying spaces for surface bundles with cross sections. 
Let Z~, q be a compact orientable surface of genus g with q boundary components 
and let xt, ..., xp be p fixed points on Int Zg, q. Let D~,q be the group of all 
orientation preserving diffeomorphisms of Zg.q such that they restrict to the 
identity on the boundary OZ~,q and also fix the p points xl ,  ..., xp. We denote 
J//~ ~ for the group of path components of D~,q. It is usually called the (pure) 
mapping class group of genus g with p punctures and q boundary components. 
Let E~,~ be the connected component of the identity of DgP.q. 

PrOposition 7.1. E~,q is contractible. 

Proof. The cases where p = 0 are nothing but the main theorems of Earle and 
Eells [EE] (q=0) and Earle and Schatz [EE] (q: arbitrary). The general cases 
follow from them by an inductive argument using the natural sequence 

p ~ p - 1  Dg, q Dg, q ~ Z s . q \ { x  t . . . . .  xp-1} 

which is a locally trivial fibration. 

Corollary 7.2. The classifying space BDPg, q of the topological group D~,q is an 
Eilenberg-MacLance space K (Jr q, 1). 
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Now it is easy to see that  the space BD~, q classifies those oriented Zs-bundles 
which have p + q  disjoint cross sections the normal  bundles  of the last q of 
which are trivialized. Therefore we can consider elements e~ and  tri as cohomol-  
ogy classes of the space BD~.q and  hence cohomology classes of the group 
~ / / ~  by Corol lary 7.2. Thus  we obta in  a homomorph i sm 

~b: Q[-e 1 . . . . .  eg_2, tr I . . . . .  trp] ~ n * ( J / ~ q  ; Q). 

We prove that  the above homomorph i sm is injective up to degree -~ g. For  
that  let ~: E ~ X  be an oriented surface bundle  over an  oriented closed 2n- 
d imensional  manifold X which is assumed to be an iterated surface bundle. 
We consider an rn-construction on it: 

/•, r E* q , E 

/~ , E  , X  
P 

(see w 4). For  each non-negat ive  integer i and a par t i t ion I = {il, ..., it} of n + 1 - i, 
we consider the number  

~' ~*  (~,) [5 ]  = ~' ~* (~,, . . .  ~ir) [5 ]  

where 5cE* is the ramification locus. For  each subset J = { J l  . . . . .  j,} of l, 
we write j c =  {kl . . . . .  kt} (s + t = r) as before. 

P r o p o s i t i o n  7.3. The number %~*(~I)[/~] is given by 

~i ~*  (el) [ / )3  = d m 2 r  + 1 - i  E (  - -  1)'(1 - - m  - ( k '  + 1)).. .  (1 - - m  - ( k ' +  1)) 
J 

�9 e d e i + k l + . . . + k t _  1 I X ]  

where d is the degree of  the finite covering ff~ ~ E and J runs through all the 
subsets of  I. 

Proof. First we recall the fact that the restriction of the cohomology class q*(e) 
to D is equal  to that  of the cohomology class v. Also it is easy to see that 
the degree of the natura l  m a p / 3  ~ D is equal  to dm. Using these facts together 
with Proposi t ion 5.4, we compute  

~ * ( ~ , ) [ D ] = { r * ( q * ( e )  - m - 1  )} '  v rn2r*(Tz')*{Tz*(eil)--(1--rn-(il+l))ei~} ... 
i n  

rn E r* (n')* { n* (ei)--(1 - -m -ti" + 1)) eir} [/~] 

=drn2"+l-ivi(n ')* {n* (e , ) - - (1 - - rn - " ,+  l))e i,} ... 

(n')* {n* ( e i . ) - ( l  - rn -(~'+ 1)) e~.} [D] 

= dmZ,+ 1 - i  ~ ( _  1)t(1 _rn-(k,  + 1))... 
J 

(1 - - m  -(k' + 1)) ej  ei+k, +... +k,- 1 [X] .  

The completes the proof. 
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Proposition 7.4. For any natural number n, there exists no non-trivial linear relation 
between the numbers ~i ~*(el)[/~] where D runs through all the ramification loci 
of m-constructions on surfaces bundles n: E-~ X with the base space X being 
iterated surface bundles of dimension 2 n. 

Proof This follows from Proposit ion 5.6 and Proposition 7.3 by a similar argu- 
ment as that of the proof of Proposit ion 5.6. 

The following is the main result of this section. 

Theorem 7.5. The homomorphism 

t~: Q [ e l  . . . . .  %-2 ,  a l  . . . . .  op] -~ H * ( ~ q ;  Q) 

is injective up to degree ~ g for all g, p and q. 

To prove this we use a fundamental result of Harer mentioned in w 6, which 
states that the homology group/-It k ( ~ ,  q; Q) is independent of g and q provided 
3 k__< g. In terms of the cohomology group, for a fixed p the groups H* (Jfg q; Q) 
are all isomorphic each other in the above range. Moreover it is easy to see 
that under these isomorphisms, our characteristic classes are preserved. 

Next let gl . . . .  , g ,  be integers greater than one and let xj be the base point 
of Zg~. 1 (J= 1 . . . . .  p). We write 6(J)eHE(jlllgj. 1; Z) for the t~-class defined by the 
base point xj. 

Now let g be a natural  number such that Sgj=<g and let Yt . . . .  , yp be p 
fixed points on IntSg, 1. We have the characteristic classes a j e H 2 ( j g [ 1 ;  Z) 
(j = 1 . . . . .  p) which are defined by the fixed points yx . . . . .  yp. Choose any embed- 

P 

ding of the disjoint union LI E~j, 1 of compact surfaces s t with boundaries 
j=l  

into 2~g. ~ such that the point xj goes to y~ (j = 1 . . . .  , p). This induces a homo- 
morphism 

~: . M ; , , ,  x . . .  x ,-~',,~, 1 - - - , .~ '~  , .  

The following is immediate. 

Lemma 7.6. t*(aj)=p*(a (j)) for all j =  1 . . . . .  p. 

Proof of Theorem 7.5. First recall that the total space E of any surface bundle 
n: E-~ X serves as the base space of the associated pull back surface bundle 
n': E * ~  E which has a canonical cross section. Moreover  the a-class of n' is 
equal to the Euler class eeriE(E; Z) of n. Then in view of Harer 's  result men- 
tioned above, the required assertion for the case p = 1 follows from Proposit ion 
7.4. The general cases follow from this by an easy argument using Proposit ion 3.4 
and Lemma 7.6 (cf. the proof  of Theorem 6.1). This completes the proof. 

Remark 7.7. According to a recent result of Hater  and Zagier rHZ],  the homo- 
morphism t~ is far from being surjective, because the Euler characteristic of 
d , f~  is extremely large. However in view of the fact that the Euler characteristic 
of the Siegel modular  group Sp (2g; Z) is even larger than that of Jig, yet 
the stable cohomology is a polynomial ring on (4k + 2)-dimensional generators, 
it seems to be still reasonable to conjecture that our characteristic classes exhaust 
all the "s table"  characteristic classes of surface bundles. Namely the natural  
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homomorphism 

Q [ e l ,  e2 . . . .  ; tr I . . . . .  ap] --* lim H*(Jg[q;  Q) 
g ~ o o  

would be an isomorphism. Theorem 7.5 shows that it is in fact injective. 

S. Morita 

8. The generalized Nielsen realization problem 

Recall that the Nielsen realization problem is the one to determine whether 
any finite subgroup of the mapping class group ~ 's  lifts to Diff+ 2~ (or 
Homeo+ 2~g). This problem was solved affirmatively by Kerckhoff [Ke]. We 
can also ask the same question for infinite subgroups of J/g. However we have 

Theorem 8.1. There are cohomological obstructions to the existence of liftings 
of infinite subgroups of ~Ig to Diff+ Sg. More precisely if we denote p: Diff+ Zs 
-~ d/lg for the natural homomorphism, then we have 

p*(ei)=O in HEi(Diff+ Sg; Q) for all i > 3  

(here we understand Diff+ Sg to be a discrete group). It follows that the homo- 
morphism p does not have a right inverse for all g > 1 8. 

Proof. Let n: E ~ X be an oriented Zs-bundle with holonomy homomorphism 
h: nl (X) ~ ~gg. Assume that h lifts to Diff+ 27g, namely there is a homomorphism 
h': n l ( X ) ~  Diff+ 278 such that  ph'= h. This means that  there is a codimension 
two foliation ~,~ on E whose leaves are all transverse to the fibres of n. Now 
the normal bundle v(~-) of ~ is canonically isomorphic to the tangent bundle 

of n. According to Bott's vanishing theorem [Bo], pk (0  = 0 for all k > 2, where 
Pl ( 0  is the first rational Pontrjagin class of ~. Since P l (4)= (e(~)) 2, we conclude 
that (e(r 4 vanishes in HS(E; Q). In view of Theorem 6.1, the required assertion 
follows from this. 

Remark 8.2. The above proof  does not  work for homeomorphisms. In fact Thur- 
ston I-T] proved that  the natural  homomorphism 

Homeo + 2~ ~ Jgs 

induces an isomorphism on homology. Therefore the problem to determine 
whether the above homomorphism splits or not remains to be open. 
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