Math 366 : Geometry
 Problem Set 10

1. Fix vector spaces W and V over \mathbb{Q}. Recall that $W \otimes_{\mathbb{Q}} V=A / B$, where A and B are as follows.

- A is the vector space with basis $\{\vec{w} \otimes \vec{v} \mid \vec{w} \in W$ and $\vec{v} \in V\}$.
- B is the subspace of A spanned by the following elements:

$$
\begin{aligned}
&\left\{\left(\vec{w}+\vec{w}^{\prime}\right) \otimes \vec{v}-\vec{w} \otimes \vec{v}-\vec{w}^{\prime} \otimes \vec{v} \mid \vec{w}, \vec{w}^{\prime} \in W, \vec{v} \in V\right\} \\
& \cup\left\{\vec{w} \otimes\left(\vec{v}+\vec{v}^{\prime}\right)-\vec{w} \otimes \vec{v}-\vec{w} \otimes \vec{v}^{\prime} \mid \vec{w} \in W, \vec{v}, \vec{v}^{\prime} \in V\right\} \\
& \cup\{(c \vec{w}) \otimes \vec{v}-c(\vec{w} \otimes \vec{v}) \mid \vec{w} \in W, \vec{v} \in V, c \in \mathbb{Q}\} \\
& \cup\{\vec{w} \otimes(c \vec{v})-c(\vec{w} \otimes \vec{v}) \mid \vec{w} \in W, \vec{v} \in V, c \in \mathbb{Q}\}
\end{aligned}
$$

The problems are then as follows.
(a) Consider linear maps $f: W \rightarrow \mathbb{Q}$ and $g: V \rightarrow \mathbb{Q}$. Define a linear map $H: A \rightarrow \mathbb{Q}$ via the formula $H(\vec{w} \otimes \vec{v})=f(\vec{w}) g(\vec{v})$ on a basis element $\vec{w} \otimes \vec{v}$ of A. Prove that $H(B)=0$, and thus that H induces a linear map $h: W \otimes_{\mathbb{Q}} V \rightarrow \mathbb{Q}$.
(b) Let $\vec{w}_{1}, \ldots, \vec{w}_{n} \in W$ be linearly independent. Also, let $\vec{v}_{1}, \ldots, \vec{v}_{m} \in V$ be linearly independent. Prove that the elements $\vec{w}_{i} \otimes \vec{v}_{j} \in W \otimes_{\mathbb{Q}} V$ are linearly independent. Hint : Assume that there is a linear dependence $\sum_{i, j} c_{i j} \vec{w}_{i} \otimes \vec{v}_{j}$. For any linear map $h: W \otimes_{\mathbb{Q}} V \rightarrow \mathbb{Q}$, we then have $\sum_{i, j} c_{i j} h\left(\vec{w}_{i} \otimes \vec{v}_{j}\right)$. For any fixed i_{0} and j_{0}, use part a to construct a linear map h such that $h\left(\vec{w}_{i} \otimes \vec{v}_{j}\right)$ equals 1 if $i=i_{0}$ and $j=j_{0}$ and equals 0 otherwise. Use this to show that all the coefficients $c_{i j}$ have to vanish.
2. Do either of the following two problems. The second is easier. I remark that you are not allowed to use the converse of Dehn's theorem that says that two polyhedra with equal volumes and Dehn invariants are scissors congruent.
(a) Define a prism in \mathbb{R}^{3} to be a polyhedron which has five sides, two of which are parallel (to help you visualize this, observe that any cross section parallel to the two parallel sides is a triangle). Prove that if $P, Q \subset \mathbb{R}^{3}$ are prisms whose volumes are equal, then P and Q are scissors congruent. Hint: Try to reduce this to the two-dimensional case.
(b) Define a cuboid in \mathbb{R}^{3} to be a polyhedron composed of three pairs of parallel sides which meet at right angles (for instance, a cube; a cuboid bears the same relation to a cube that a rectangle bears to a square). Prove that if $P, Q \subset \mathbb{R}^{3}$ are cuboids whose volumes are equal, then P and Q are scissors congruent.
3. Prove that a volume 1 octahedron is not scissors congruence to a cube of volume 1 .

