Math 366 : Geometry Problem Set 2

1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear if $f(\vec{v}+\vec{w})=f(\vec{v})+f(\vec{w})$ for all $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ and if $f(c \vec{v})=c f(\vec{v})$ for all $\vec{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. A function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is affine if there exists a linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a point $\vec{v}_{0} \in \mathbb{R}^{n}$ such that $g(\vec{w})=f(\vec{w})+\vec{v}_{0}$ for all $\vec{w} \in \mathbb{R}^{n}$.
(a) If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is affine and $U \subset \mathbb{R}^{n}$ is convex, then prove that $g(U)$ is convex.
(b) If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is affine and $V \subset \mathbb{R}^{n}$ is convex, then prove that $g^{-1}(V)$ is convex.
2. Assume that $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ are distinct point such that for any $1 \leq i<j<k<\ell \leq n$, the four points $\left\{x_{i}, x_{j}, x_{k}, x_{\ell}\right\}$ form the vertices of a convex 4 -gon. Prove that the points $\left\{x_{1}, \ldots, x_{n}\right\}$ form the vertices of a convex n-gon.
3. Give a rigorous proof that if S is a set of 5 distinct points in general position in \mathbb{R}^{2}, then four points in S form the vertices of a convex 4 -gon (i.e. a quadrilateral). Make sure that your proof is complete and rigorous; don't just draw some pictures and assert that they exhaust all possibilities.
4. Does Helly's theorem hold for infinite numbers of convex sets? In other words, if U_{1}, U_{2}, \ldots are convex sets in \mathbb{R}^{d} such that any k-fold intersection of the U_{i} 's is nonempty for $k \leq d+1$, then is it necessarily true that $\cap_{i=1}^{\infty} U_{i}$ is nonempty? Either prove this or construct a counterexample. Hint : Think hard about what happens in \mathbb{R}^{1}.
5. Consider $n \geq 4$ parallel line segments in \mathbb{R}^{2}. Assume that for every three of these line segments, there is a line in \mathbb{R}^{2} meeting all three segments. Prove that there is a single line meeting all n of the line segments. Hint : First rotate the plane so that all the line segments in question are vertical. For any vertical line segment S, let

$$
C(S)=\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \text { the line } y=\alpha x+\beta \text { meets } S\right\}
$$

First prove that $C(S)$ is convex, and then use this together with Helly's theorem to prove the desired result.

