
Math 366 : Geometry
Problem Set 2 Solutions

Problem 2 : Assume that x1, . . . , xn ∈ R2 are distinct point such that for any 1 ≤ i < j <
k < ℓ ≤ n, the four points {xi, xj , xk, xℓ} form the vertices of a convex 4-gon. Prove that the
points {x1, . . . , xn} form the vertices of a convex n-gon.
Solution : Assume that the xi do not form the vertices of a convex n-gon. This implies that
we can write {x1, . . . , xn} as the disjoint union of proper nonempty sets S1 and S2 such that
S1 forms the vertices of a convex polygon P and S2 is contained in the convex hull of S1. Pick
some xi ∈ S1, and divide P into triangles each of which has xi as one of its vertices (draw a
picture to see what I mean!). Letting xj ∈ S2, we know that xj has to be contained in one of
those triangles, say with vertices xi and xi′ and xi′′ . But then the four points {xi, xi′ , xi′′ , xj}
do not form the vertices of a convex 4-gon, a contradiction.

Problem 5 : Consider n ≥ 4 parallel line segments in R2. Assume that for every three of
these line segments, there is a line in R2 meeting all three segments. Prove that there is a
single line meeting all n of the line segments.
Solution : Let S1, . . . , Sn be the line segments. By appropriately rotating the plane, we can
assume that all of the Si are vertical. For 1 ≤ i ≤ n, let ci, di, ei ∈ R be such that Si is the
portion of the line vertical line x = ci satisfying di ≤ y ≤ ei. Define

C(Si) = {(α, β) ∈ R2 | the line y = αx+ β meets Si} ⊂ R2.

I claim that C(Si) is convex. Indeed, consider (α, β) and (α′, β′) in C(Si) and t, t′ ≥ 0 with
t+ t′ = 1. We want to prove that

t(α, β) + t′(α′, β′) = (tα+ t′α′, tβ + t′β′) ∈ C(Si).

We know that there exists some y0, y
′
0 ∈ [di, ei] such that

y0 = αxi + β and y′0 = α′xi + β′.

Adding t time the first equality to t′ times the second, we see that

ty0 + t′y′0 = t(αxi + β) + t′(α′xi + β′) = (tα+ t′α′)xi + (tβ + t′β′).

Since the interval [di, ei] is convex, we have that ty0 + t′y′0 ∈ [di, ei]. We conclude that the
line

y = (tα+ t′α′)x+ (tβ + t′β′)

intersects the line segment Si, i.e. that (tα+ t′α′, tβ + t′β′) ∈ C(Si), as claimed.
Now, the assumptions of the problem say that for any 1 ≤ i1 < i2 < i3 ≤ n, there exists a
line meeting Si1 and Si2 and Si3 . This is equivalent to saying that the convex sets C(Si1)
and C(Si2) and C(Si3) must intersect. Helly’s Theorem therefore says that all of the C(Si)
must intersect, i.e. that there exists a single line meeting all of the Si, as desired.
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