Math 366 : Geometry Problem Set 2 Solutions

Problem 2 : Assume that $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ are distinct point such that for any $1 \leq i<j<$ $k<\ell \leq n$, the four points $\left\{x_{i}, x_{j}, x_{k}, x_{\ell}\right\}$ form the vertices of a convex 4 -gon. Prove that the points $\left\{x_{1}, \ldots, x_{n}\right\}$ form the vertices of a convex n-gon.
Solution : Assume that the x_{i} do not form the vertices of a convex n-gon. This implies that we can write $\left\{x_{1}, \ldots, x_{n}\right\}$ as the disjoint union of proper nonempty sets S_{1} and S_{2} such that S_{1} forms the vertices of a convex polygon P and S_{2} is contained in the convex hull of S_{1}. Pick some $x_{i} \in S_{1}$, and divide P into triangles each of which has x_{i} as one of its vertices (draw a picture to see what I mean!). Letting $x_{j} \in S_{2}$, we know that x_{j} has to be contained in one of those triangles, say with vertices x_{i} and $x_{i^{\prime}}$ and $x_{i^{\prime \prime}}$. But then the four points $\left\{x_{i}, x_{i^{\prime}}, x_{i^{\prime \prime}}, x_{j}\right\}$ do not form the vertices of a convex 4 -gon, a contradiction.

Problem 5 : Consider $n \geq 4$ parallel line segments in \mathbb{R}^{2}. Assume that for every three of these line segments, there is a line in \mathbb{R}^{2} meeting all three segments. Prove that there is a single line meeting all n of the line segments.
Solution : Let S_{1}, \ldots, S_{n} be the line segments. By appropriately rotating the plane, we can assume that all of the S_{i} are vertical. For $1 \leq i \leq n$, let $c_{i}, d_{i}, e_{i} \in \mathbb{R}$ be such that S_{i} is the portion of the line vertical line $x=c_{i}$ satisfying $d_{i} \leq y \leq e_{i}$. Define

$$
C\left(S_{i}\right)=\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \text { the line } y=\alpha x+\beta \text { meets } S_{i}\right\} \subset \mathbb{R}^{2} .
$$

I claim that $C\left(S_{i}\right)$ is convex. Indeed, consider (α, β) and ($\alpha^{\prime}, \beta^{\prime}$) in $C\left(S_{i}\right)$ and $t, t^{\prime} \geq 0$ with $t+t^{\prime}=1$. We want to prove that

$$
t(\alpha, \beta)+t^{\prime}\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(t \alpha+t^{\prime} \alpha^{\prime}, t \beta+t^{\prime} \beta^{\prime}\right) \in C\left(S_{i}\right)
$$

We know that there exists some $y_{0}, y_{0}^{\prime} \in\left[d_{i}, e_{i}\right]$ such that

$$
y_{0}=\alpha x_{i}+\beta \quad \text { and } \quad y_{0}^{\prime}=\alpha^{\prime} x_{i}+\beta^{\prime} .
$$

Adding t time the first equality to t^{\prime} times the second, we see that

$$
t y_{0}+t^{\prime} y_{0}^{\prime}=t\left(\alpha x_{i}+\beta\right)+t^{\prime}\left(\alpha^{\prime} x_{i}+\beta^{\prime}\right)=\left(t \alpha+t^{\prime} \alpha^{\prime}\right) x_{i}+\left(t \beta+t^{\prime} \beta^{\prime}\right)
$$

Since the interval $\left[d_{i}, e_{i}\right]$ is convex, we have that $t y_{0}+t^{\prime} y_{0}^{\prime} \in\left[d_{i}, e_{i}\right]$. We conclude that the line

$$
y=\left(t \alpha+t^{\prime} \alpha^{\prime}\right) x+\left(t \beta+t^{\prime} \beta^{\prime}\right)
$$

intersects the line segment S_{i}, i.e. that $\left(t \alpha+t^{\prime} \alpha^{\prime}, t \beta+t^{\prime} \beta^{\prime}\right) \in C\left(S_{i}\right)$, as claimed.
Now, the assumptions of the problem say that for any $1 \leq i_{1}<i_{2}<i_{3} \leq n$, there exists a line meeting $S_{i_{1}}$ and $S_{i_{2}}$ and $S_{i_{3}}$. This is equivalent to saying that the convex sets $C\left(S_{i_{1}}\right)$ and $C\left(S_{i_{2}}\right)$ and $C\left(S_{i_{3}}\right)$ must intersect. Helly's Theorem therefore says that all of the $C\left(S_{i}\right)$ must intersect, i.e. that there exists a single line meeting all of the S_{i}, as desired.

