Math 366 : Geometry Problem Set 4

For problems 2-5, you will get half credit for a proof in \mathbb{R}^{2}.

1. Let $D \subset \mathbb{R}^{2}$ be a disc of radius $\frac{1}{\sqrt{3}}$ centered at the origin. For $\epsilon>0$, define

$$
X_{\epsilon}=\left\{(x, y) \in D \left\lvert\,-\frac{1}{\sqrt{3}} \leq x \leq \frac{1}{\sqrt{3}}-\epsilon\right.\right\} .
$$

Prove that for $0<\epsilon<0.1$, the set X_{ϵ} can be subdivided into three regions each of diameter strictly less than 1 .
2. Let ℓ be a finite line segment in \mathbb{R}^{n} and let $p \in \mathbb{R}^{n}$ be a point. Prove that the point $q \in \ell$ whose distance from p is maximal is one of the endpoints of ℓ.
3. Consider $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$ which form the vertices of a convex polytope (this means that for all $1 \leq i \leq k$, the point x_{i} is not in the convex hull of the other points $\left.\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right\}\right)$. For a point $p \in \operatorname{conv}\left(x_{1}, \ldots, x_{k}\right)$, define the weight of p to be the number of nonzero t_{i} in an expression $p=t_{1} x_{1}+\cdots+t_{k} x_{k}$ with $t_{i} \geq 0$ and $t_{1}+\cdots+t_{k}=1$.
Problem : Prove that if the weight of $p \in \operatorname{conv}\left(x_{1}, \ldots, x_{k}\right)$ is strictly greater than 1 , then there exists a line segment ℓ in $\operatorname{conv}\left(x_{1}, \ldots, x_{k}\right)$ containing p such that the endpoints of ℓ have weight strictly smaller than p. Hint: Writing $p=t_{1} x_{1}+\cdots+t_{k} x_{k}$, choose x_{i} such that $t_{i} \neq 0$. The line segment you want will start at x_{i} and go through p (and, of course, end at a point of smaller weight).
4. Consider $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$ which form the vertices of a convex polytope, and let d be the diameter of the convex hull of the x_{i}. Prove that

$$
d=\max \left\{\operatorname{dist}\left(x_{i}, x_{j}\right) \mid 1 \leq i, j \leq k\right\} .
$$

Hint : Consider two points p_{1} and p_{2} in the convex hull of the x_{i}. Prove that if one of the p_{i} (say, p_{1}) is not equal to one of the x_{i}, then there exists a point p_{1}^{\prime} in the convex hull whose weight is strictly smaller than the weight of $p_{1} \operatorname{such}$ that $\operatorname{dist}\left(p_{1}, p_{2}\right)<\operatorname{dist}\left(p_{1}^{\prime}, p_{2}\right)$. You will use problems 2 and 3 . Why does this imply the desired result?
5. Prove that if $X \subset \mathbb{R}^{n}$ is a box of the form $\left[x_{1}, y_{1}\right] \times\left[x_{2}, y_{2}\right] \times \cdots \times\left[x_{n}, y_{n}\right]$ with $x_{i}<y_{i}$ for all i and the diameter of X is 1 , then X can be subdivided into two parts whose diameters are strictly smaller than 1 . Half credit for a 2-dimensional proof.

