Math 366 : Geometry Problem Set 7

1. The regular cube in \mathbb{R}^{3} is the convex hull C of the 8 points $(\pm 1, \pm 1, \pm 1)$. Prove that C is a regular polytope. Hint : Imitate the proof I gave in class for the regularity of the icosahedron.
2. The regular tetrahedron in \mathbb{R}^{3} is the convex hull T of four points $x_{1}, \ldots, x_{4} \in \mathbb{R}^{3}$ such that $\operatorname{dist}\left(x_{i}, x_{j}\right)=1$ for all $i \neq j$.
(a) Note that it is not completely obvious that such points exist. Find them.
(b) Prove that T is a regular polytope. Hint: Imitate the proof I gave in class for the regularity of the icosahedron.
3. Recall that the regular icosahedron \mathcal{I} is the convex hull of the 12 points $(\pm 1, \pm \phi, 0)$ and $(\pm \phi, 0, \pm 1)$ and $(0, \pm 1, \pm \phi)$, where ϕ is the golden mean $\frac{1+\sqrt{5}}{2}$.
(a) Let ℓ be the line through the points $(1, \phi, 0)$ and $(-1,-\phi, 0)$ and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the rotation about ℓ by an angle $2 \pi / 5$. Prove that f restricts to a symmetry of \mathcal{I}. Hint : Determine a formula for f and then check that f takes vertices to vertices.
(b) Let P be the plane containing the points $(1, \phi, 0)$ and $(-1,-\phi, 0)$ and $(\phi, 0,1)$ and let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection in P. Prove that g restricts to a symmetry of \mathcal{I}.
