Math 366 : Geometry Problem Set 9

1. Let $X \subset \mathbb{R}^{2}$ be a finite set of points. Prove that each Voronoi cell of X is convex.
2. For each $n \geq 4$, construct a set X of n points in \mathbb{R}^{2} such that one of the Voronoi cells of X is an $(n-1)$-gon. Prove that your answer works!
3. Let $X \subset \mathbb{R}^{2}$ be a finite set of $n \geq 3$ points that do not all line on a single line. Prove that there exists a triangulation with vertex set X. Hint : Prove it by induction on n. The base case $n=3$ is easy. For the inductive case, choose a vertex from X, remove it, and see what happens. Be careful - you might get a set of points that all lie on a line!
4. Let $X \subset \mathbb{R}^{2}$ be the vertices of a convex n-gon (remark : X is not in general position!). Prove that any two triangulations of X are connected by at most $2 n$ flips. Hint : Try to connect a given triangulation to one where all the triangles contain some fixed vertex.
5. Let $X \subset \mathbb{R}^{2}$ be a finite set in general position and let A be a triangulation of X. Assume that none of the triangles in X is obtuse. Prove that A is the Delaunay triangulation.
