Math 444/539, Homework 2

- 1. Let M^n be a smooth *n*-manifold.
 - (a) Prove that the tangent bundle TM^n is a smooth 2n-dimensional manifold.
 - (b) Construct (with proof!) a surjective submersion $\pi: TM^n \to M^n$.
- 2. Let $f: M_1^{n_1} \to M_2^{n_2}$ be a submersion.
 - (a) Prove that if $U \subset M_1^{n_1}$ is open, then f(U) is open.
 - (b) If $M_1^{n_1}$ is compact and $M_2^{n_2}$ is connected, then prove that f is surjective.
- 3. Let M^n be a smooth *n*-manifold with boundary. Prove that the boundary ∂M^n is a smooth (n-1)-manifold (without boundary).
- 4. A standard projection of \mathbb{R}^m onto an *n*-dimensional subspace is a linear map $\pi : \mathbb{R}^m \to \mathbb{R}^n$ that can be written in the form $\pi(x_1, \ldots, x_m) = (x_{i_1}, \ldots, x_{i_n})$ for some $1 \leq i_1 < \cdots < i_n \leq m$. Problem: For an embedding $f : M^n \to \mathbb{R}^m$ and a point $p \in M^n$, prove that there exists a chart $\phi : U \to V$ such that $p \in U$ and $\phi = \pi \circ (f|_U)$ for some standard projection $\pi : \mathbb{R}^m \to \mathbb{R}^n$. We remark that each chart in the system of charts we gave for S^n on the first day of class is of this form.
- 5. A polynomial $f(x_1, \ldots, x_k)$ is homogeneous of degree m if

$$f(tx_1,\ldots,tx_k) = t^m f(x_1,\ldots,x_k) \qquad (t,x_1,\ldots,x_k \in \mathbb{R}).$$

Fix some polynomial $f(x_1, \ldots, x_k)$ which is homogeneous of degree $m \ge 1$.

(a) Prove *Euler's Identity*:

$$mf = \sum_{i=1}^{k} x_i \frac{\partial f}{\partial x_i}.$$

- (b) Prove that all nonzero numbers $a \in \mathbb{R}$ are regular values of $f(x_1, \ldots, x_k)$, and hence that $f^{-1}(a)$ is a smooth submanifold of \mathbb{R}^n of dimension (n-1).
- (c) Prove that if a, b > 0, then the manifolds $f^{-1}(a)$ and $f^{-1}(b)$ are diffeomorphic, and similarly if a, b < 0.
- 6. Let A be an $n \times n$ real matrix whose entries are all nonnegative. Prove that A has a real nonnegative eigenvalue. Hint: This is trivial if A is singular (i.e. if 0 is an eigenvalue), so we can assume that A is nonsingular. Define a function $f: S^{n-1} \to S^{n-1}$ via the formula

$$f(v) = \frac{Av}{\|Av\|}$$

this makes sense since A is nonsingular. Prove that f preserves the set

$$Q = \{ (x_1, \dots, x_n) \in S^{n-1} \mid x_i \ge 0 \text{ for all } i \}$$

Next, prove that Q is homeomorphic to an (n-1)-disc. Finally, apply the Brouwer Fixed Point Theorem.

- 7. A continuous function $f : X \to Y$ is *nullhomotopic* if there exists a continuous function $F : X \times I \to Y$ such that F(x, 0) = f(x) for all $x \in X$ and $x \mapsto F(x, 1)$ is a constant map. In other words, f can be "deformed" to a constant map.
 - (a) Prove that if X is a topological space and $f: X \to \mathbb{R}^n$ is a continuous function, then f is nullhomotopic.
 - (b) Prove that if X is a topological space and $f: X \to S^n$ is a continuous nonsurjective function, then f is nullhomotopic.
 - (c) Prove that if M^k is a smooth k-manifold with k < n, then every smooth map $f: M^k \to S^n$ is nullhomotopic.