Math 444/539, Homework 5

1. Let X be a path-connected topological space with abelian fundamental group. Fix two points $p, q \in X$. Recall that $\varphi_{\gamma}: \pi_{1}(X, q) \rightarrow \pi_{1}(X, p)$ is the homomorphism associated to an equivalence class γ of paths from p to q. Prove that if γ and γ^{\prime} are two paths from p to q, then $\varphi_{\gamma}=\varphi_{\gamma^{\prime}}$.
2. Let X be a topological space, let $p, q \in X$ be two points, and let f and g be two paths from p to q. Prove that f is equivalent to g if and only if $f \cdot \bar{g}$ is equivalent to the constant path e_{p}.
3. Let X be a topological space. Prove that the following three conditions are equivalent.
(a) Every map $S^{1} \rightarrow X$ is homotopic to a constant map.
(b) For every map $f: S^{1} \rightarrow X$, there exists a map $g: D^{2} \rightarrow X$ such that $\left.g\right|_{\partial D^{2}}=f$.
(c) For all $p \in X$, we have $\pi_{1}(X, p)=1$.

I want the emphasize that in this problem, "homotopic" means "homotopic without regards to basepoints".
4. Let G be a topological group. Let $e \in G$ be the identity element. Prove that $\pi_{1}(G, e)$ is abelian. Hint : in addition to the multiplication of loops - in $\pi_{1}(G, e)$, the group structure of G gives another way of multiplying loops. Namely, for loops f and g based at e, we can define $f * g$ to be the loop $t \mapsto f(t) g(t)$. The first step is to prove that the loop $f * g$ is equivalent to the loop $g \cdot f$.
5. Let X be a topological space and let $\left\{U_{\alpha}\right\}$ be an open covering of X with the following properties.
(a) There exists a point $p \in X$ such that $p \in U_{\alpha}$ for all α.
(b) Each U_{α} is simply-connected, that is, U_{α} is path-connected and $\pi_{1}\left(U_{\alpha}, q\right)=1$ for all $q \in U_{\alpha}$.
(c) For $\alpha \neq \beta$, the set $U_{\alpha} \cap U_{\beta}$ is path-connected.

Prove that X is simply-connected. Hint : consider $\gamma \in \pi_{1}(X, p)$. Prove that we can write $\gamma=\gamma_{1} \cdots \gamma_{k}$, where $\gamma_{i} \in \pi_{1}(X, p)$ can be realized by a loop based at p that lies entirely inside one of the U_{α}. The notion of the Lebesgue number of a covering from point-set topology will be useful here.
6. Using the previous problem, prove that S^{n} is simply-connected for $n \geq 2$.
7. Consider a map $f: S^{1} \rightarrow S^{1}$. Pick some path γ from $f(1) \in S^{1}$ to $1 \in S^{1}$. We therefore get an induced sequence of maps

$$
\mathbb{Z}=\pi_{1}\left(S^{1}, 1\right) \xrightarrow{f_{*}} \pi_{1}\left(S^{1}, f(1)\right) \xrightarrow{\phi_{\gamma}} \pi_{1}\left(S^{1}, 1\right)=\mathbb{Z} .
$$

which we will denote $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$.
(a) Prove that ψ is multiplication by some integer n.
(b) Prove that n is independent of the choice of path γ.
(c) Prove that n is the degree of the map f.
8. Prove that if $f: S^{1} \rightarrow S^{1}$ has degree different from 1 , then there exists some $x \in S^{1}$ such that $f(x)=x$.

