Math 444/539, Homework 6

1. Let S be a set. Prove that every word in $S^{ \pm 1}$ is equivalent to a unique reduced word. Hint: Let \mathcal{W} be the set of reduced words on $S^{ \pm 1}$. For $s \in S^{ \pm 1}$, define a function $\phi_{s}: \mathcal{W} \rightarrow \mathcal{W}$ by defining $\phi_{s}(w)$ to be $s w$ if w does not begin with s^{-1} and to equal v if w begins with s^{-1} and $w=s^{-1} v$. Show that $\phi_{s} \circ \phi_{s^{-1}}=\operatorname{id}_{\mathcal{W}}$ for all $s \in S^{ \pm 1}$. Next, if $w=s_{1}^{\epsilon_{1}} \cdots s_{k}^{\epsilon_{k}}$ with $s_{i} \in S$ and $\epsilon= \pm 1$ is an arbitrary word on $S^{ \pm 1}$, then define $\phi_{w}: \mathcal{W} \rightarrow \mathcal{W}$ via the formula

$$
\phi_{w}=\phi_{s_{1}^{\epsilon_{1}}} \circ \cdots \circ \phi_{s_{k}^{\epsilon_{k}}} .
$$

Show that if w and w^{\prime} are equivalent words on $S^{ \pm 1}$, then $\phi_{w}=\phi_{w^{\prime}}$. Use this to deduce the desired result.
2. If S and S^{\prime} are finite sets of different cardinality, prove that $F(S)$ is not isomorphic to $F\left(S^{\prime}\right)$.
3. Prove directly from the definition of a free group and a free product (in terms of the universal mapping property) that $\mathbb{Z} * \mathbb{Z}$ is isomorphic to a free group on a 2-element set.
4. Prove that the symmetric group S_{n} on n letters $\{1, \ldots, n\}$ has the presentation

$$
\begin{aligned}
\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| & \sigma_{i}^{2}=1 \text { for } 1 \leq i \leq n-1,\left[\sigma_{i}, \sigma_{j}\right]=1 \text { if } 1 \leq i, j \leq n-1 \\
& \text { satisfy } \left.|i-j|>1, \text { and } \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \text { for } 1 \leq i \leq n-2\right\rangle .
\end{aligned}
$$

Here σ_{i} corresponds to the transposition $(i, i+1)$. Hint: Prove this by induction on n.
5. Let G be the set of all matrices of the form $\left(\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$ with $a, b, c \in \mathbb{Z}$. Prove that G is a group and that G can be given the presentation $\langle x, y, z \mid[x, y]=z,[x, z]=1,[y, z]=1\rangle$. Hint: the generator x corresponds to the matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, the element y corresponds to the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, and the element z corresponds to the matrix $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
6. Define $G=\left\langle a, b \mid a^{2}=b^{3}\right\rangle$. Prove that G is not abelian. Hint: try to find a surjective homomorphism from G to the symmetric group S_{3}.
7. Let G and H be nontrivial groups. Prove that $G * H$ has a trivial center and that if $x \in G * H$ satisfies $x^{n}=1$ for some $n \geq 1$, then x is conjugate to an element of either G or H.

